Interlocking the Catalyst: Thread versus Rotaxane-Mediated Enantiodivergent Michael Addition of Ketones to $\boldsymbol{\beta}$-Nitrostyrene

A. Martinez-Cuezva, ${ }^{*}{ }^{1}$ M. Marin-Luna, ${ }^{2}$ D. A. Alonso, ${ }^{3}$ D. Ros-Ñiguez, ${ }^{3}$ M. Alajarin, ${ }^{1}$ J. Berna ${ }^{*},{ }^{1}$
${ }^{1}$ Departamento de Química Orgánica, Facultad de Química, and \ddagger Sección Universitaria de Instrumentación Científica, Servicio de Apoyo a la Investigación, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100 Murcia, Spain
${ }^{2}$ Departamento de Química Orgánica, Universidade de Vigo, Campus Lagoas-Marcosende, E-36310, Vigo, Spain.
${ }^{3}$ Departamento Química Orgánica, Facultad de Ciencias, Universidad de Alicante, E-03080, Alicante, Spain

Supporting Information

Table of
Contents S2

1. General experimental section S3
2. Synthesis of thread 3a S4
3. Synthesis of thread 3b S5
4. General procedure for the preparation of the [2]rotaxanes 5a,b S7
5. Boc-deprotection of threads 3a,b and rotaxanes 5a,b S8
6. Stacked ${ }^{1}$ HNMR spectra of thread 4 a and rotaxane $\mathbf{6 a}$ S11
7. Photoisomerization of rotaxane 6a S12
8. Michael reaction between ketones 7 and $\boldsymbol{\beta}$-nitrostyrene $\mathbf{8}$ S13
9. Computational Studies S16
10. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of synthesized compounds S27
11. Copies of HPLC Traces of Synthesized Compounds S38

1. General Experimental Section

Unless stated otherwise, all reagents were purchased from Aldrich Chemicals and used without further purification. HPLC grade solvents (Scharlab) were nitrogen saturated and were dried and deoxygenated using an Innovative Technology Inc. Pure-Solv 400 Solvent Purification System. Column chromatography was carried out using silica gel ($60 \AA, 70-200 \mu \mathrm{~m}, \mathrm{SDS}$) as stationary phase, and TLC was performed on precoated silica gel on aluminun cards $(0.25 \mathrm{~mm}$ thick, with fluorescent indicator 254 nm, Fluka) and observed under UV light. All melting points were determined on a Kofler hot-plate melting point apparatus and are uncorrected. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra were recorded at 298 K on a Bruker Avance 300 and 400 MHz instruments. ${ }^{1} \mathrm{H}$ NMR chemical shifts are reported relative to $\mathrm{Me}_{4} \mathrm{Si}$ and were referenced via residual proton resonances of the corresponding deuterated solvent whereas ${ }^{13} \mathrm{C}$ NMR spectra are reported relative to $\mathrm{Me}_{4} \mathrm{Si}$ using the carbon signals of the deuterated solvent. Signals in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the synthesized compounds were assigned with the aid of DEPT, APT, or two-dimensional NMR experiments (COSY, HMQC and HMBC). Abbreviations of coupling patterns are as follows: br, broad; s, singlet; d, doublet; t , triplet; q , quadruplet; m , multiplet. Coupling constants (J) are expressed in Hz. High-resolution mass spectra (HRMS) were obtained using a time-of-flight (TOF) instrument equipped with electrospray ionization (ESI). Optical rotation $\left([\alpha]_{D}^{25}\right)$ was measured with a JASCO P-1020 polarimeter (concentration: g / mL in chloroform as solvent). The enantiomeric ratios were determined by HPLC analysis employing a chiral stationary phase column specified in the individual experiment, by comparing the samples with the appropriate racemic mixtures.

Abbreviation list:
DIPEA: N, N-Diisopropylethylamine
DMAP: dimethylaminopyridine
EDCI: N-(3-Dimethylaminopropyl)- N^{\prime}-ethylcarbodiimide hydrochloride
DMF: N, N-dimethylformamide
$p-\mathrm{NO}_{2}$-BA: p-nitrobenzoic acid
TFA: trifluoroacetic acid
HOBt: Hydroxybenzotriazole

2. Synthesis of thread 3a

Scheme S1. a) 2,2-diphenylethylamine, EDCI, DIPEA, $\mathrm{HOBt}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to r.t., overnight; b) S1, EDCI, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $0^{\circ} \mathrm{C}$ to r.t., overnight.

To a suspension of compound $\mathbf{1}(2.15 \mathrm{~g}, 10 \mathrm{mmol})$ in dry dichloromethane (50 mL) under N_{2} atmosphere was added 3,3-diphenylethylamine ($2.36 \mathrm{~g}, 12 \mathrm{mmol}$), $\mathrm{HOBt}(1.62 \mathrm{~g}, 12 \mathrm{mmol})$ and DIPEA ($4 \mathrm{~mL}, 24$ $\mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 10 min and EDCI $(2.35 \mathrm{~g}, 12 \mathrm{mmol})$ was added. The reaction mixture was stirred at room temperature overnight. After this time the reaction mixture was washed with water ($2 \times 100 \mathrm{~mL}$), $\mathrm{HCl} 1 \mathrm{~N}(2 \times 100 \mathrm{~mL}), \mathrm{NaHCO}_{3}(2 \times 100 \mathrm{~mL})$ and brine ($2 \times 100 \mathrm{~mL}$). The organic phase was dried over anhydrous MgSO_{4} and concentrated under reduced pressure. The solid crude was subjected to column chromatography on silica gel using $\mathrm{CHCl}_{3} / \mathrm{MeOH}(20 / 1)$ mixture as eluent to give the title product as a white solid (2a, $2.06 \mathrm{~g}, 50 \%$); mp 126-128 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}-58.2^{\circ}\left(c 0.015, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) $\delta 7.32-7.15(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ph}), 6.41\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}_{\mathrm{c}}\right), 4.33-4.21\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{d}+\mathrm{f}}\right)$, $4.17\left(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 4.00-3.90\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 3.87-3.76\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 3.45-3.35\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{g}}\right), 3.27$ (dd, $\left.J=11.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{g}}\right), 2.35-1.90\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{e}}+\mathrm{OH}_{\mathrm{i}}\right), 1.37\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{\mathrm{h}}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta 172.1(\mathrm{CO}), 155.5(\mathrm{CO}), 142.0(\mathrm{C}), 128.8(\mathrm{CH}), 128.2(\mathrm{CH}), 127.0(\mathrm{CH}), 80.8(\mathrm{C}), 69.9$ $(\mathrm{CH}), 59.5(\mathrm{CH}), 54.7\left(\mathrm{CH}_{2}\right), 50.9(\mathrm{CH}), 43.9\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}$ $+\mathrm{H}]^{+} 411.2278$, found 411.2291.

S1
Fragment $\mathbf{S 1}$ was synthesized following the described procedure reported in A. Martinez-Cuezva, S. Valero-Moya, M. Alajarin and J. Berna, Chem. Commun. 2015, 51, 14501-14504 and showed identical spectroscopic data as those reported therein.

To a solution of compound $\mathbf{2 a}(2.23 \mathrm{~g}, 5.44 \mathrm{mmol})$ in dry dichloromethane (100 mL) under N_{2} atmosphere was added fragment $\mathbf{S} 1(1.92 \mathrm{~g}, 6.53 \mathrm{mmol})$ and DMAP $(132 \mathrm{mg}, 1.09 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 10 min and EDCI $(1.25 \mathrm{~g}, 6.53 \mathrm{mmol})$ was added. The reaction mixture was stirred at room temperature overnight. After this time the reaction mixture was washed with water (2 x $100 \mathrm{~mL}), \mathrm{HCl} 1 \mathrm{~N}(2 \times 100 \mathrm{~mL}), \mathrm{NaHCO}_{3}(2 \times 100 \mathrm{~mL})$ and brine $(2 \times 100 \mathrm{~mL})$. The organic phase was dried over anhydrous MgSO_{4} and concentrated under reduced pressure. The solid crude was subjected to column chromatography on silica gel using hexane/AcOEt (1/1) mixture as eluent to give the title product as a white solid (3a, $1.50 \mathrm{~g}, 40 \%$); mp $81-83{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}-22.5^{\circ}\left(c \quad 0.0043, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta 7.36-7.18(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph}), 6.70\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{i}+\mathrm{j}}\right), 6.00-5.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NH}_{\mathrm{c}+\mathrm{k}}\right), 5.18\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{f}}\right)$, 4.30-4.10 (m, 3H, $\mathrm{H}_{\mathrm{a}+\mathrm{m}+\mathrm{d}}$), 4.04-3.80 (m, 4H, H $\left.\mathrm{H}_{\mathrm{b}+1}\right), 3.79-3.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{g}}\right), 2.55-2.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{e}}\right), 1.36(\mathrm{~s}$, $9 \mathrm{H}, \mathrm{H}_{\mathrm{h}}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) $\delta 171.7(\mathrm{CO}), 171.0(\mathrm{CO}), 164.9(\mathrm{CO}), 163.3(\mathrm{CO}), 155.5$ $(\mathrm{CO}), 141.8(\mathrm{C}), 141.5(\mathrm{CH}), 136.9(\mathrm{CH}), 129.9(\mathrm{CH}), 129.0(\mathrm{CH}), 128.8(\mathrm{CH}), 128.1(\mathrm{CH}), 127.2(\mathrm{CH})$, $127.0(\mathrm{CH}), 81.2(\mathrm{C}), 73.6(\mathrm{CH}), 58.5(\mathrm{CH}), 52.2\left(\mathrm{CH}_{2}\right), 50.8(\mathrm{CH}), 50.5(\mathrm{CH}), 44.2(\mathrm{CH}), 43.8(\mathrm{CH})$, $36.7\left(\mathrm{CH}_{2}\right)$, $33.8\left(\mathrm{CH}_{2}\right), 29.8\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) calcd for $\mathrm{C}_{42} \mathrm{H}_{46} \mathrm{~N}_{3} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 688.3381$, found 688.3383.

3. Synthesis of thread 3b

Scheme S2. a) dibenzylamine, EDCI, DIPEA, $\mathrm{HOBt}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to r.t., overnight; c) S1, EDCI, DMAP, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to r.t., overnight.

To a suspension of compound $1(6.00 \mathrm{~g}, 26.0 \mathrm{mmol})$ in dry dichloromethane (100 mL) under N_{2} atmosphere was added dibenzylamine ($4.90 \mathrm{~mL}, 39.0 \mathrm{mmol}$), HOBt ($4.46 \mathrm{~g}, 29.0 \mathrm{mmol}$) and DIPEA $(12.00 \mathrm{~mL}, 69.0 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 10 min and EDCI $(6.55 \mathrm{~g}, 34.00 \mathrm{mmol})$ was added. The reaction mixture was stirred at room temperature overnight. After this time the reaction mixture was washed with water ($2 \times 100 \mathrm{~mL}$), $\mathrm{HCl} 1 \mathrm{~N}(2 \times 100 \mathrm{~mL})$, $\mathrm{NaOH} 1 \mathrm{~N}(2 \times 100 \mathrm{~mL})$ and brine
($2 \times 100 \mathrm{~mL}$). The organic phase was dried over anhydrous MgSO_{4} and concentrated under reduced pressure. The solid crude was subjected to column chromatography on silica gel using $\mathrm{CHCl}_{3} / \mathrm{AcOEt}(4: 1$ to $1: 1$) mixture as eluent to give the title product as a white solid ($2 \mathbf{b}, 3.61 \mathrm{~g}, 34 \%$); $[\alpha]_{\mathrm{D}}^{25}+43.5^{\circ}(c 0.01$, CHCl_{3}) ; mp 190-192 ${ }^{\circ} \mathrm{C}$; mixture of rotamers ($1: 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) $\delta 7.40-7.16(\mathrm{~m}$, $10 \mathrm{H}, \mathrm{Ph}), 5.40-4.96\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 4.84-4.73\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{a}+\mathrm{b}}\right), 4.63-4.24\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{a}+\mathrm{b}+\mathrm{d}}\right), 3.76-3.70(\mathrm{~m}, 1 \mathrm{H}$, H_{e}), 3.64-3.44 (m, 1H, H_{e}), 2.20-1.84 (m, 3H, $\mathrm{H}_{\mathrm{c}+\mathrm{g}}$), $1.49\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{\mathrm{f}}\right), 1.34\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{\mathrm{f}}\right) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta 174.2(\mathrm{CO}), 173.7(\mathrm{CO}), 154.8(\mathrm{CO}), 154.2(\mathrm{CO}), 137.2(\mathrm{C}), 137.1$ (C), 137.0 (C), $136.5(\mathrm{C}), 129.2(\mathrm{CH}), 129.1(\mathrm{CH}), 129.0(\mathrm{CH}), 128.8(\mathrm{CH}), 128.7(\mathrm{CH}), 128.0(\mathrm{CH}), 127.8(\mathrm{CH}), 127.7$ $(\mathrm{CH}), 127.3(\mathrm{CH}), 126.8(\mathrm{CH}), 126.6(\mathrm{CH}), 80.5(\mathrm{C}), 80.0(\mathrm{C}), 70.8(\mathrm{CH}), 69.7(\mathrm{CH}), 55.5\left(\mathrm{CH}_{2}\right), 55.4$ $\left(\mathrm{CH}_{2}\right), 55.2(\mathrm{CH}), 54.8(\mathrm{CH}), 50.5\left(\mathrm{CH}_{2}\right), 49.9\left(\mathrm{CH}_{2}\right), 49.6\left(\mathrm{CH}_{2}\right), 49.3\left(\mathrm{CH}_{2}\right), 40.2\left(\mathrm{CH}_{2}\right), 39.2\left(\mathrm{CH}_{2}\right)$, $28.6\left(\mathrm{CH}_{3}\right)$, $28.5\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 411.2278$, found 411.2291 .

3b
To a solution of compound $\mathbf{2 b}(1.00 \mathrm{~g}, 2.30 \mathrm{mmol})$ in dry dichloromethane (40 mL) under N_{2} atmosphere was added fragment $\mathbf{S 1}(1.30 \mathrm{~g}, 4.60 \mathrm{mmol})$, DMAP ($56 \mathrm{mg}, 0.46 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(640 \mu \mathrm{~L}, 4.60 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 10 min and EDCI ($878 \mathrm{mg}, 4.60 \mathrm{mmol}$) was added. The reaction mixture was stirred at room temperature overnight. After this time the reaction mixture was washed with water ($2 \times 100 \mathrm{~mL}$), $\mathrm{HCl} 1 \mathrm{~N}(2 \times 100 \mathrm{~mL}), \mathrm{NaOH} 1 \mathrm{~N}(2 \times 100 \mathrm{~mL})$ and brine ($2 \times 100 \mathrm{~mL}$). The organic phase was dried over anhydrous MgSO_{4} and concentrated under reduced pressure. The solid crude was subjected to column chromatography on silica gel using hexane/ $\mathrm{AcOEt}(1: 1)$ mixture as eluent to give the title product as a white solid ($\mathbf{3 b}, 817 \mathrm{mg}, 70 \%$); $[\alpha]_{\mathrm{D}}^{25}+32.0^{\circ}\left(c 0.0099, \mathrm{CHCl}_{3}\right) ; \mathrm{mp} 73-75^{\circ} \mathrm{C}$; mixture of rotamers (1.4:1); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) $\delta 7.40-7.13(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph}), 6.74-6.63(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{g}+\mathrm{h}}\right), 5.70-5.62\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}_{\mathrm{i}}\right), 5.45-5.32\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{d}}\right), 5.08-4.97\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 4.87-4.59\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{a}+\mathrm{b}}\right)$, 4.45-4.20 (m, 3H, $\mathrm{H}_{\mathrm{a}+\mathrm{k}}$), 4.02-3.96 (m, 2H, H), $3.86\left(\mathrm{td}, J=12.5,4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{e}}\right), 3.75(\mathrm{~d}, J=12.5 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}_{\mathrm{e}}\right), 3.57\left(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{e}}\right), 2.35-2.32\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 2.05-1.90\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 1.48\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{f}}\right)$, $1.36\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{f}}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) $\delta 173.7(\mathrm{CO}), 173.2(\mathrm{CO}), 165.0(\mathrm{CO}), 164.9(\mathrm{CO})$, 163.7 (CO), 154.4 (CO), 153.7 (CO), 141.6 (C), 137.1 (C), $137.0(\mathrm{C}), 136.9(\mathrm{CH}), 136.9(\mathrm{CH}), 136.4(\mathrm{C})$, $129.9(\mathrm{CH}), 129.8(\mathrm{CH}), 129.1(\mathrm{CH}), 129.0(\mathrm{CH}), 128.9(\mathrm{CH}), 128.8(\mathrm{CH}), 128.6(\mathrm{CH}), 128.0(\mathrm{CH})$, $127.9(\mathrm{CH}), 127.8(\mathrm{CH}), 127.7(\mathrm{CH}), 127.3(\mathrm{CH}), 127.0(\mathrm{CH}), 126.7(\mathrm{CH}), 126.5(\mathrm{CH}), 80.8(\mathrm{C}), 80.3$ (C), $74.3(\mathrm{CH}), 73.2(\mathrm{CH}), 55.1(\mathrm{CH}), 54.8(\mathrm{CH}), 52.7\left(\mathrm{CH}_{2}\right), 52.6\left(\mathrm{CH}_{2}\right), 50.6\left(\mathrm{CH}_{2}\right), 50.4(\mathrm{CH}), 50.1$ $\left(\mathrm{CH}_{2}\right), 49.8\left(\mathrm{CH}_{2}\right), 49.6\left(\mathrm{CH}_{2}\right), 44.2\left(\mathrm{CH}_{2}\right), 37.6\left(\mathrm{CH}_{2}\right), 36.1\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{3}\right), 28.4\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) calcd for $\mathrm{C}_{42} \mathrm{H}_{46} \mathrm{~N}_{3} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 688.3381$, found 688.3390 .

4. General procedure for the preparation of the [2]rotaxanes 5a,b

The thread (1 equiv.) and $\mathrm{Et}_{3} \mathrm{~N}$ (24 equiv.) in anhydrous $\mathrm{CHCl}_{3}(250 \mathrm{~mL}$) were stirred vigorously whilst solutions of p-xylylenediamine (8 equiv.) in anhydrous $\mathrm{CHCl}_{3}(20 \mathrm{~mL}$) and isophthaloyl chloride (8 equiv.) in anhydrous $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$ were simultaneously added over a period of 4 h using motor-driven syringe pumps. After a further 4 h the resulting suspension was filtered through a Celite ${ }^{\circledR}$ pad, washed with water (2 x 50 mL), an aqueous solution of $\mathrm{HCl} 1 \mathrm{~N}(2 \mathrm{x} 50 \mathrm{~mL})$, a saturated solution of $\mathrm{NaHCO}_{3}(2 \mathrm{x}$ 50 mL) and brine ($2 \times 50 \mathrm{~mL}$). The organic phase was dried over MgSO_{4} and the solvent removed under reduced pressure. The resulting solid was subjected to column chromatography (silica gel) to yield unconsumed thread and [2]rotaxane.

Rotaxane 5a

Rotaxane 5a was obtained following the described method from thread 3a ($1.00 \mathrm{~g}, 1.46 \mathrm{mmol}$). The solid crude was subjected to column chromatography on silica gel using $\mathrm{CHCl}_{3} / \mathrm{AcOEt}$ (3:1) mixture to pure AcOEt as eluent to give the title product as a white solid (5a, $526 \mathrm{mg}, 28 \%$); mp $140-142{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}-$ $10.8^{\circ}\left(c 0.056, \mathrm{CHCl}_{3}\right)$; mixture of rotamers: $2: 1 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta 8.20-7.84(\mathrm{~m}$, $\left.7 \mathrm{H}, \mathrm{H}_{\mathrm{B}+\mathrm{C}}+\mathrm{NH}_{\mathrm{k}}\right), 7.75-7.50\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{A}}+\mathrm{NH}_{\mathrm{D}}\right), 7.40-7.05\left(\mathrm{~m}, 22 \mathrm{H}, \mathrm{Ph}+\mathrm{NH}_{\mathrm{D}}\right), 6.98-6.88\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{\mathrm{F}}\right)$, $6.80\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}_{\mathrm{c}}\right), 6.41\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}_{\mathrm{c}}\right), 5.75-5.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{i}+\mathrm{j}}\right), 4.95-4.60\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{f}}\right), 4.55-4.30(\mathrm{~m}, 8 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{E}}\right), 4.25-3.80\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{a}+\mathrm{d}+\mathrm{m}}\right), 3.65-3.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 3.35-3.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{1}\right), 2.30-2.10\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{e}+\mathrm{g}}\right)$, 1.80-1.50 (m, 1H, He $), 1.33\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{\mathrm{h}}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) $\delta 166.9(\mathrm{CO}), 164.6(\mathrm{CO})$, 141.9 (CO), 141.8 (CO), 137.6 (C), 137.5 (C), 137.3 (C), 136.3 (CH), 134.1 (C), 131.4 (CH), 131.3 (CH), $129.4(\mathrm{CH}), 128.9(\mathrm{CH}), 128.1(\mathrm{CH}), 127.1(\mathrm{CH}), 124.8(\mathrm{CH}), 81.6(\mathrm{C}), 73.7(\mathrm{CH}), 59.2(\mathrm{CH}), 51.9(\mathrm{CH})$, $50.8\left(\mathrm{CH}_{2}\right), 49.8(\mathrm{CH}), 45.1(\mathrm{CH}), 44.4\left(\mathrm{CH}_{2}\right), 44.3\left(\mathrm{CH}_{2}\right), 43.8\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) calcd for $\mathrm{C}_{74} \mathrm{H}_{74} \mathrm{~N}_{7} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+}$1220.5492, found 1220.5504.

Rotaxane 5b

Rotaxane 5b was obtained following the described method from thread 3b ($750 \mathrm{mg}, 1.10 \mathrm{mmol}$). The solid crude was subjected to column chromatography on silica gel using $\mathrm{CHCl}_{3} / \mathrm{AcOEt}$ (1:1) mixture to pure AcOEt as eluent to give the title product as a white solid ($\mathbf{5 b}, 307 \mathrm{mg}, 24 \%$) ; mp 116-118 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}$ $+3.4^{\circ}\left(c 0.011, \mathrm{CHCl}_{3}\right)$; mixture of rotamers: $1.6: 1 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta 8.51(\mathrm{t}, J=4.3$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NH}_{\mathrm{i}}\right), 8.35\left(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}_{\mathrm{i}}\right), 8.20-8.03\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}_{\mathrm{B}+\mathrm{C}}\right), 7.73\left(\mathrm{t}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NH}_{\mathrm{D}}\right), 7.57-$ $7.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{A}}\right), 7.48-7.08\left(\mathrm{~m}, 22 \mathrm{H}, \mathrm{Ph}+\mathrm{NH}_{\mathrm{D}}\right), 6.96-6.90\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{\mathrm{F}}\right), 5.87\left(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{h}}\right)$, $5.74\left(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{h}}\right), 5.56\left(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{g}}\right), 5.54\left(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{g}}\right), 5.31-4.10(\mathrm{~m}$, $\left.15 \mathrm{H}, \mathrm{H}_{\mathrm{E}+\mathrm{d}+\mathrm{a}+\mathrm{k}+\mathrm{b}}\right), 3.92-3.48\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{j}+\mathrm{e}}\right), 3.42-3.14\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{e}}\right), 2.22-1.78\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 1.34\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{\mathrm{f}}\right)$, $1.48\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{\mathrm{f}}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) $\delta 173.7(\mathrm{CO}), 172.8(\mathrm{CO}), 167.0(\mathrm{CO}), 166.7(\mathrm{CO})$, 166.5 (CO), 166.2 (CO), 164.6 (CO), 164.5 (CO), 154.0 (CO), 153.8 (CO), 141.7 (C), 141.6 (C), 141.5 (C), 137.4 (C), 137.2 (C), 137.0 (C), 136.9 (C), 136.7 (C), 136.5 (C), 136.1 (C), 135.8 (CH), 135.5 (CH), 134.1 (C), $133.9(\mathrm{C}), 133.8(\mathrm{C}), 131.4(\mathrm{CH}), 131.2(\mathrm{CH}), 131.0(\mathrm{CH}), 129.2(\mathrm{CH}), 129.1(\mathrm{CH}), 129.0$ $(\mathrm{CH}), 128.9(\mathrm{CH}), 128.8(\mathrm{CH}), 128.6(\mathrm{CH}), 128.1(\mathrm{CH}), 127.9(\mathrm{CH}), 127.6(\mathrm{CH}), 127.3(\mathrm{CH}), 127.0(\mathrm{CH})$, $126.5(\mathrm{CH}), 126.3(\mathrm{CH}), 126.1(\mathrm{CH}), 124.5(\mathrm{CH}), 81.2(\mathrm{C}), 80.8(\mathrm{C}), 74.7(\mathrm{CH}), 73.9(\mathrm{CH}), 54.9(\mathrm{CH})$, $54.8(\mathrm{CH}), 52.3\left(\mathrm{CH}_{2}\right), 52.0\left(\mathrm{CH}_{2}\right), 50.7\left(\mathrm{CH}_{2}\right), 50.0\left(\mathrm{CH}_{2}\right), 49.9\left(\mathrm{CH}_{2}\right), 49.5\left(\mathrm{CH}_{2}\right), 45.1\left(\mathrm{CH}_{2}\right), 44.2$ $\left(\mathrm{CH}_{2}\right), 36.8\left(\mathrm{CH}_{2}\right), 35.3\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{3}\right), 28.3\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) calcd for $\mathrm{C}_{74} \mathrm{H}_{74} \mathrm{~N}_{7} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+}$ 1220.5492 , found 1220.5513 .

5. Boc-deprotection of threads $\mathbf{3 a , b}$ and rotaxanes $5 \mathrm{a}, \mathrm{b}$

4a
To a solution of Boc-protected thread 3a ($50 \mathrm{mg}, 0.07 \mathrm{mmol}$) in chloroform (2 mL) was added TFA (55 $\mu \mathrm{L}, 0.72 \mathrm{mmol}$). The reaction was stirred at room temperature overnight. After this time the reaction
mixture was diluted chloroform $(20 \mathrm{~mL})$ and washed $\mathrm{NaHCO}_{3}(2 \times 20 \mathrm{~mL})$ and brine $(2 \times 20 \mathrm{~mL})$. The organic phase was dried over anhydrous MgSO_{4} and concentrated under reduced pressure, to give the title product as a white solid ($\mathbf{4 a}, 40 \mathrm{mg}, 94 \%$); mp $81-83{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}+16.2^{\circ}\left(c 0.027, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta 7.62\left(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}_{\mathrm{c}}\right), 7.35-7.15(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph}), 6.75(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{j}}\right), 6.68\left(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{i}}\right), 6.14\left(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}_{\mathrm{k}}\right), 5.13\left(\mathrm{t}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{f}}\right), 4.26-4.18(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}_{\mathrm{a}+\mathrm{m}}$), 4.02-3.94(m,3H, $\left.\mathrm{H}_{\mathrm{b}+1}\right), 3.87-3.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{b}+\mathrm{d}}\right), 2.98\left(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{g}}\right), 2.65-2.45(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}_{\mathrm{g}}+\mathrm{NH}_{\mathrm{h}}$), $2.26\left(\mathrm{dd}, J=8.5,14.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{e}}\right), 1.87\left(\mathrm{ddd}, J=5.1,7.9,14.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{e}}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) $\delta 173.6(\mathrm{CO}), 164.9(\mathrm{CO}), 163.4(\mathrm{CO}), 142.0(\mathrm{C}), 141.9(\mathrm{C}), 141.5(\mathrm{C}), 136.7$ $(\mathrm{CH}), 130.2(\mathrm{CH}), 129.0(\mathrm{CH}), 128.8(\mathrm{CH}), 128.8(\mathrm{CH}), 128.2(\mathrm{CH}), 128.1(\mathrm{CH}), 127.2(\mathrm{CH}), 126.9(\mathrm{CH})$, $77.3(\mathrm{CH}), 59.8(\mathrm{CH}), 52.7\left(\mathrm{CH}_{2}\right), 50.8(\mathrm{CH}), 50.5(\mathrm{CH}), 44.2\left(\mathrm{CH}_{2}\right), 43.3\left(\mathrm{CH}_{2}\right), 36.8\left(\mathrm{CH}_{2}\right)$; HRMS (ESI) calcd for $\mathrm{C}_{37} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 588.2857$, found 588.2864.

4b
To a solution of Boc-protected thread 3b ($90 \mathrm{mg}, 0.13 \mathrm{mmol}$) in chloroform (2 mL) was added TFA (100 $\mu \mathrm{L}, 1.3 \mathrm{mmol})$. The reaction was stirred at room temperature overnight. After this time the reaction mixture was diluted chloroform (20 mL) and washed $\mathrm{NaHCO}_{3}(2 \times 20 \mathrm{~mL})$ and brine ($2 \times 20 \mathrm{~mL}$). The organic phase was dried over anhydrous MgSO_{4} and concentrated under reduced pressure, to give the title product as a white solid ($\mathbf{4 b}, 76 \mathrm{mg}, 99 \%$); mp $58-60{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}-3.3^{\circ}\left(c \quad 0.0063, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta \quad 7.10-7.10(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph}), 6.75-6.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{g}+\mathrm{h}}\right), 5.96\left(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{i}}\right)$, 5.38-5.31 (m, 1H, H ${ }_{\mathrm{d}}$), $4.78\left(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 4.55-4.39\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 4.26-4.14\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{k}+\mathrm{b}}\right)$, 4.00-3.94 (m, 2H, H H_{j}), $3.52\left(\mathrm{dd}, J=5.4,12.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{e}}\right), 2.95\left(\mathrm{dd}, J=2.4,12.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{e}}\right), 2.81(\mathrm{~s}, 1 \mathrm{H}$, NH_{f}), 2.17-2.01 (m, 2H, H_{c}); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) $\delta 173.5(\mathrm{CO}), 165.1(\mathrm{CO}), 163.5(\mathrm{CO})$, $141.6(\mathrm{C}), 136.9(\mathrm{C}), 136.7(\mathrm{CH}), 136.0(\mathrm{C}), 130.2(\mathrm{CH}), 129.2(\mathrm{CH}), 128.9(\mathrm{CH}), 128.8(\mathrm{CH}), 128.2$ $(\mathrm{CH}), 128.1(\mathrm{CH}), 127.7(\mathrm{CH}), 127.1(\mathrm{CH}), 126.7(\mathrm{CH}), 77.4(\mathrm{CH}), 57.4(\mathrm{CH}), 53.1\left(\mathrm{CH}_{2}\right), 50.5(\mathrm{CH})$, $49.6\left(\mathrm{CH}_{2}\right), 48.6\left(\mathrm{CH}_{2}\right), 44.2\left(\mathrm{CH}_{2}\right), 38.1\left(\mathrm{CH}_{2}\right)$; HRMS (ESI) calcd for $\mathrm{C}_{37} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$588.2857, found 588.2846.

6a
To a solution of Boc-protected rotaxane $\mathbf{5 a}(460 \mathrm{mg}, 0.38 \mathrm{mmol})$ in chloroform $(4 \mathrm{~mL})$ was added TFA $(370 \mu \mathrm{~L}, 3.8 \mathrm{mmol})$. The reaction was stirred at room temperature overnight. After this time the reaction mixture was diluted chloroform (20 mL) and washed $\mathrm{NaHCO}_{3}(2 \times 20 \mathrm{~mL})$ and brine ($2 \times 20 \mathrm{~mL}$). The organic phase was dried over anhydrous MgSO_{4} and concentrated under reduced pressure, to give the title product as a white solid ($6 \mathbf{6}, 423 \mathrm{mg}, 99 \%$); mp $123-125{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}+10.1^{\circ}\left(c 0.0032, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) $\delta 8.13-8.03\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{NH}_{\mathrm{k}}+\mathrm{H}_{\mathrm{B}+\mathrm{C}}\right), 7.77-7.53\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{NH}_{\mathrm{D}+\mathrm{c}}\right), 7.49(\mathrm{~m}, J=7.9$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{A}}\right), 7.31-7.13(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph}), 6.95-6.88\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{\mathrm{F}}\right), 5.76\left(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{j}}\right), 5.70(\mathrm{~d}, J=$ $\left.15.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{i}}\right), 4.75-4.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{f}}\right), 4.49-4.35\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{\mathrm{E}}\right), 4.24-4.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{a}+\mathrm{m}}\right), 3.93-3.75(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 3.73-3.59\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{l}}\right), 3.14\left(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{d}}\right), 2.99\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}_{\mathrm{h}}\right), 2.56(\mathrm{dt}, J=8.4,13.2 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{H}_{\mathrm{g}}\right), 1.60\left(\mathrm{dd}, J=7.4,12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{e}}\right), 1.50-1.41\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{e}}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) $\delta 173.1(\mathrm{CO}), 167.1(\mathrm{CO}), 166.9(\mathrm{CO}), 165.1(\mathrm{CO}), 164.6$ (CO), 141.9 (C), 141.8 (C), 137.4 (C), 136.0 $(\mathrm{CH}), 134.4(\mathrm{C}), 134.2(\mathrm{C}), 131.2(\mathrm{CH}), 131.2(\mathrm{CH}), 129.3(\mathrm{CH}), 128.8(\mathrm{CH}), 128.2(\mathrm{CH}), 128.1(\mathrm{CH})$, $127.5(\mathrm{CH}), 127.0(\mathrm{CH}), 124.8(\mathrm{CH}), 76.8(\mathrm{CH}), 59.4(\mathrm{CH}), 51.9\left(\mathrm{CH}_{2}\right), 50.6(\mathrm{CH}), 49.9(\mathrm{CH}), 45.0$ $\left(\mathrm{CH}_{2}\right), 44.4\left(\mathrm{CH}_{2}\right), 44.2\left(\mathrm{CH}_{2}\right), 43.6\left(\mathrm{CH}_{2}\right), 36.7\left(\mathrm{CH}_{2}\right)$; HRMS (ESI) calcd for $\mathrm{C}_{69} \mathrm{H}_{66} \mathrm{~N}_{7} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+}$ 1120.4967, found 1120.4938 .

6b
To a solution of Boc-protected rotaxane $\mathbf{5 b}(235 \mathrm{mg}, 0.19 \mathrm{mmol})$ in chloroform (2 mL) was added TFA $(145 \mu \mathrm{~L}, 1.9 \mathrm{mmol})$. The reaction was stirred at room temperature overnight. After this time the reaction mixture was diluted chloroform (20 mL) and washed $\mathrm{NaHCO}_{3}(2 \times 20 \mathrm{~mL})$ and brine ($2 \times 20 \mathrm{~mL}$). The
organic phase was dried over anhydrous MgSO_{4} and concentrated under reduced pressure, to give the title product as a white solid ($\mathbf{6 b}, 209 \mathrm{mg}, 99 \%$); mp 117-119 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}-12.6^{\circ}\left(c 0.01, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta 8.12-8.00\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{NH}_{\mathrm{i}}+\mathrm{H}_{\mathrm{B}+\mathrm{C}}\right), 7.59\left(\mathrm{t}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NH}_{\mathrm{D}}\right), 7.50-7.38(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{A}}+\mathrm{NH}_{\mathrm{D}}\right), 7.36-7.08(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph}), 6.87\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{H}_{\mathrm{F}}\right), 5.80\left(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{h}}\right), 5.66(\mathrm{~d}, J=15.4 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}_{\mathrm{g}}\right), 4.99-4.92\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{d}}\right), 4.70\left(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 4.49-4.29\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{H}_{\mathrm{a}+\mathrm{E}}\right), 4.14(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}_{\mathrm{k}}\right), 4.01\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 3.71-3.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{j}}\right), 3.28-3.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NH}_{\mathrm{f}}+\mathrm{H}_{\mathrm{e}}\right), 2.47(\mathrm{dd}, J=$ $1.4,12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{e}}$), 2.06-1.78 (m, 2H, H_{c}); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) $\delta 172.9$ (CO), 167.1 (CO), 166.9 (CO), 166.1 (CO), 164.6 (CO), 141.9 (C), 141.8 (C), 137.2 (C), 136.5 (C), 136.0 (CH), 135.7 (C), 134.3 (C), $134.2(\mathrm{C}), 131.3(\mathrm{CH}), 131.2(\mathrm{CH}), 129.7(\mathrm{CH}), 128.8(\mathrm{CH}), 128.2(\mathrm{CH}), 128.0(\mathrm{CH})$, $127.8(\mathrm{CH}), 127.1(\mathrm{CH}), 127.0(\mathrm{CH}), 126.5(\mathrm{CH}), 124.6(\mathrm{CH}), 76.7(\mathrm{CH}), 57.2(\mathrm{CH}), 52.4\left(\mathrm{CH}_{2}\right), 50.0$ (CH), $49.5\left(\mathrm{CH}_{2}\right), 48.7\left(\mathrm{CH}_{2}\right), 45.0\left(\mathrm{CH}_{2}\right), 44.3\left(\mathrm{CH}_{2}\right), 44.2\left(\mathrm{CH}_{2}\right), 36.9\left(\mathrm{CH}_{2}\right)$; HRMS (ESI) calcd for $\mathrm{C}_{69} \mathrm{H}_{66} \mathrm{~N}_{7} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+} 1120.4967$, found 1120.4956 .

6. Stacked ${ }^{1}$ HNMR spectra of thread 4 a and rotaxane 6 a

Figure S1 displays the stacked ${ }^{1} \mathrm{H}$ NMR spectra of the unprotected thread $\mathbf{4 a}$ and its corresponding rotaxane $\mathbf{6 a}$. The comparison of these spectra allows determining the location of the macrocycle on the thread in the interlocked systems. The signals referred to the double bond $\left(\mathrm{H}_{\mathrm{i}}\right.$ and H_{j}, green $)$ in thread $\mathbf{4 a}$ appear at higher chemical shift if compared with those signals in rotaxane $\mathbf{6 a}(\Delta \delta=-0.99 \mathrm{ppm})$. This variation is similar to the previously described for a closely related system, with a monoamide-monoester one-station template with a level of occupancy of the binding site of 100% (Gatti, F. G.; Leigh, D. A.; Nepogodiev, S. A.; Slawin, A. M. Z.; Teat, S. J.; Wong, J. K. Y. J. Am. Chem. Soc. 2001, 123, 59835989.). In a similar way signals referred to the stopper close to the binding site $\left(\mathrm{H}_{\mathrm{m}}\right.$ and $\left.\mathrm{H}_{1}\right)$ are shifted 0.13 ppm and -0.38 ppm upfield, respectively. Remarkably the signal of the amide hydrogen NH_{k} is shifted to higher $\mathrm{ppm}(\Delta \delta=+1.28 \mathrm{ppm})$, as a consequence of the interaction with the macrocycle. Regarding the signals relative to the pyrrolidine moiety, all appear at lower chemical shifts $\left(\mathrm{H}_{\mathrm{f}}, \Delta \delta=-\right.$ $\left.0.35 \mathrm{ppm} ; \mathrm{H}_{\mathrm{j}}, \Delta \delta=-0.91 \mathrm{ppm} ; \mathrm{H}_{\mathrm{e}}, \Delta \delta=-0.76 \mathrm{ppm} ; \mathrm{H}_{\mathrm{g}}, \Delta \delta=-0.40 \mathrm{ppm}\right)$. These shifts could be a consequence of the establishment of $\mathrm{CH} \cdots \pi$ interactions between the aliphatic pyrrolidine core and the aromatic rings of the macrocycle. Conversely the signals referred to the amide moiety of the stopper $\left(\mathrm{NH}_{\mathrm{c}}\right.$, H_{a} and H_{b}) did not experience any displacement when the macrocycle is assembled. All these data suggest that the macrocycle spends most of the time on the fumaramide binding site in $\mathbf{6 a}$. In this scenario the active site of the pyrrolidine core is potentially not covered and possible catalysis pathways are totally feasible.

$6 \mathbf{a}$

$8.0 \quad 7.0$
$\begin{array}{cc}6.0 & 5.0 \\ & \delta(\mathrm{ppm})\end{array}$

0
 $3.0 \quad 2.0$

Figure S1. Partial ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of: a) thread 4a; b) [2]rotaxane $\mathbf{6 a}$.

7. Photoisomerization of rotaxane $\mathbf{6 a}$

A solution of rotaxane $E-6 \mathbf{~}(20 \mathrm{mg}, 0.02 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was irradiated at 312 nm for 30 minutes under N_{2} atmosphere. The reaction mixture was purified by using column chromatography on silica gel employing a $\mathrm{CHCl}_{3} / \mathrm{MeOH}(20 / 1)$ mixture as eluent to give the title product as a white solid (Z-6a, $9 \mathrm{mg}, 45 \%$); mp 119-121 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) $\delta 8.13-8.06\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}_{\mathrm{B}+\mathrm{C}}\right.$), 7.78 $\left(\mathrm{t}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NH}_{\mathrm{D}}\right), 7.63\left(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NH}_{\mathrm{D}}\right), 7.51\left(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{A}}\right), 7.34-7.14(\mathrm{~m}, 17 \mathrm{H}$, $\left.\mathrm{Ph}+\mathrm{NH}_{\mathrm{c}}\right), 7.06-7.00(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 6.99\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{H}_{\mathrm{F}}\right), 6.90-6.86\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}_{\mathrm{k}}\right), 5.40\left(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{j}}\right)$, $5.31\left(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{i}}\right), 4.64-4.58\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{f}}\right), 4.52-4.39\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{\mathrm{E}}\right), 4.15\left(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right)$, $3.89\left(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{m}}\right), 3.75-3.55\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{b}}+\mathrm{NH}_{\mathrm{h}}\right), 3.50-3.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{t}}\right), 2.84(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$,
$\left.\mathrm{H}_{\mathrm{d}}\right), 2.50-2.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{g}}\right), 1.62\left(\mathrm{dd}, J=7.7,14.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{e}}\right), 1.35-1.30\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{e}}\right) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta 172.9(\mathrm{CO}), 167.0(\mathrm{CO}), 166.8(\mathrm{CO}), 165.3(\mathrm{CO}), 164.5(\mathrm{CO}), 142.1(\mathrm{C}), 141.9$ (C), 141.8 (C), 141.7 (C), 137.6 (C), 137.4 (C), 134.5 (C), 134.3 (C), 132.5 (CH), 131.4 (CH), 131.2 (CH), $129.3(\mathrm{CH}), 129.1(\mathrm{CH}), 128.9(\mathrm{CH}), 128.9(\mathrm{CH}), 128.2(\mathrm{CH}), 128.1(\mathrm{CH}), 128.0(\mathrm{CH}), 127.2(\mathrm{CH})$, $127.0(\mathrm{CH}), 127.0(\mathrm{CH}), 125.1(\mathrm{CH}), 76.8(\mathrm{CH}), 59.2(\mathrm{CH}), 52.0\left(\mathrm{CH}_{2}\right), 50.2(\mathrm{CH}), 50.2(\mathrm{CH}), 44.6$ $\left(\mathrm{CH}_{2}\right), 44.5\left(\mathrm{CH}_{2}\right), 44.3\left(\mathrm{CH}_{2}\right), 44.1\left(\mathrm{CH}_{2}\right), 36.4\left(\mathrm{CH}_{2}\right)$; HRMS (ESI) calcd for $\mathrm{C}_{69} \mathrm{H}_{66} \mathrm{~N}_{7} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+}$ 1120.4967, found 1120.4951 .

8. Michael reaction between ketones $\mathbf{7}$ and $\boldsymbol{\beta}$-nitrostyrene 8.

The asymmetric Michael reaction between different ketones and β-nitrostyrene in the presence of catalytic amounts of the suitable prolinamide ($10 \mathrm{~mol} \%$). Different additives and temperatures were screened.

Table S1. Catalyst screening. ${ }^{\text {a }}$

entry		$-\mathrm{NO}_{2} \frac{\mathrm{CAT}^{\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}} \begin{array}{c} \text { days } \\ 2 \text { days } \end{array}}{\text { 9a }}$		
	CAT	Conv. (\%) ${ }^{\text {b }}$	e.r. ${ }^{\text {c }}$	Configuration
1	6 a	57	26.5:73.5	R
2	4a	59	68.5:31.5	S
3	Z-6a	-	-	-
4	6b	100	29.5:70.5	R
5	4b	100	74.5:25.5	S
${ }^{\text {a }}$ Reaction conditions: $\mathbf{8}(0.025 \mathrm{mmol})$, acetone $7 \mathbf{7 a}(18 \mu \mathrm{~L})$, catalyst ($10 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100$ $\mu \mathrm{L}), 25^{\circ} \mathrm{C}, 2$ days; ${ }^{\mathrm{b}}$ Calculated by ${ }^{1} \mathrm{H}$ NMR; ${ }^{\mathrm{c}}$ Determined by HPLC with chiral stationary phase.				

NOTE:

- Z-6a was tested as catalyst, showing to be unstable under the reaction conditions, founding the formation of an important amount of the E-isomer. Thus the obtained results are not reliable, since both isomers (E and Z isomers) are present as catalysts in the reaction media.

Table S2. Additive screening. ${ }^{\text {a }}$

entry	Additive	Conv. (\%) $^{\mathbf{b}}$	e.r. $^{\mathbf{c}}$	Configuration
1	-	100	$29.5: 70.5$	R
2	acetic acid	90	$27.5: 72.5$	R
3	benzoic acid	82	$28.5: 71.5$	R
4	p-nitrobenzoic acid $\left(p-\mathrm{NO}_{2}\right.$-BA)	100	$27: 73$	R
5	TFA	75	$37.5: 6 \mathbf{2 . 5}$	R
${ }^{\text {a }}$				

${ }^{\text {a Reaction conditions: }} \mathbf{8}(0.025 \mathrm{mmol})$, acetone $\mathbf{7 a}\left(18 \mu \mathrm{~L},, 10\right.$ equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mu \mathrm{~L}), 6 \mathbf{b}(10$ mol\%), additive ($10 \mathrm{~mol} \%$), $25^{\circ} \mathrm{C}$, 2 days; ${ }^{\mathrm{b}}$ Calculated by ${ }^{1} \mathrm{H}$ NMR; ${ }^{\mathrm{c}}$ Determined by HPLC with a chiral stationary phase.

Table S3. Temperature screening. ${ }^{\text {a }}$

		$\begin{gathered} \mathrm{Ph}^{2} \\ \\ 8 \end{gathered}$	CAT (10 mol\%) $p-\mathrm{NO}_{2}-\mathrm{BA}(10 \mathrm{~mol}$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, T 2 days		
entry	CAT	T (${ }^{\circ} \mathrm{C}$)	Conv. (\%) ${ }^{\text {b }}$	e.r. ${ }^{\text {c }}$	Configuration
1	6b	25	100	27:73	R
2	4b	25	100	76:24	S
3	6b	0	54	31.5:68.5	R
4	4b	0	50	75:25	S
${ }^{\text {a }}$ Reaction conditions: $8(0.025 \mathrm{mmol})$, acetone $7 \mathrm{7a}(18 \mu \mathrm{~L})$, catalyst ($10 \mathrm{~mol} \%$), p-nitrobenzoic acid ($10 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mu \mathrm{~L}), 2$ days; ${ }^{\mathrm{b}}$ Calculated by ${ }^{1} \mathrm{H}$ NMR; ${ }^{\mathrm{c}}$ Determined by HPLC with chiral stationary phase.					

Table S4. Solvent screening. ${ }^{\text {a }}$

entry	Solvent	Conv. (\%) $^{\mathbf{b}}$	e.r. $^{\text {c }}$	Configuration
1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	100	$27: 73$	R
2	CHCl_{3}	72	$27: 73$	R
3	DMF	100	$33.5: 66.5$	R
4	brine	75	$50: 50$	-
5	acetone	100	$32: 68$	R

${ }^{\text {a }}$ Reaction conditions: $\mathbf{8}(0.025 \mathrm{mmol})$, acetone $7 \mathbf{7 a}(18 \mu \mathrm{~L}), \mathbf{6 b}(10 \mathrm{~mol} \%), p$-nitrobenzoic acid $(10 \mathrm{~mol} \%), \mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mu \mathrm{~L}), 2$ days; ${ }^{\mathrm{b}}$ Calculated by ${ }^{1} \mathrm{H}$ NMR; ${ }^{\mathrm{c}}$ Determined by HPLC with chiral stationary phase.

General procedure: A solution of the β-nitrostyrene $8(0.025 \mathrm{mmol})$, ketone $7(0.25 \mathrm{mmol}), p$ nitrobenzoic acid (0.0025 mmol) and the corresponding prolinamide ($\mathbf{4 b}$ or $\mathbf{6 b}, 0.1$ equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(100 \mu \mathrm{~L})$ at room temperature were stirred for a period of 2 days. After this time pentane was added and the suspension was filtered through a pad of Celite ${ }^{\circledR}$ to remove the catalyst. The filtrate was concentrated under vacuum and analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The desired Michael adduct 9 was purified by preparative TLC and the enantiomeric excess analyzed by chiral HPLC.
NOTE:

- Racemates were synthesized following the described procedure, employing pyrrolidine ($30 \mathrm{~mol} \%$) as catalyst.

9a
Compound 9a was described in H. Huang, E. N. Jacobsen, J. Am. Chem. Soc. 2006, 128, 7170; and showed identical spectroscopic data as those reported therein. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AS-H; hexane: $\mathrm{iPrOH}=75: 25,1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}: \mathrm{t}_{\mathrm{r}}=10.5$ $\min (S$ enantiomer $), \mathrm{t}_{\mathrm{r}}=12.6 \mathrm{~min}(R$ enantiomer). The HPLC protocol was described in the same reference, where the two enantiomers are identified.

9b
Compound 9b was described in C.-L. Cao, M.-C. Ye, X.-L. Sun, Y. Tang, Org. Lett. 2006, 8, 2901, and showed identical spectroscopic data as those reported therein. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak ${ }^{\circledR}$ AS-H column; hexane: $\mathrm{iPrOH}=95: 5$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=$ 210 nm ; syn enantiomers: $\mathrm{t}_{\mathrm{r}}=13.9 \min (1 R, 2 S$ enantiomer $), \mathrm{t}_{\mathrm{r}}=18.9 \mathrm{~min}(1 S, 2 R$ enantiomer $)$. The HPLC protocol is described in: N. Mase, K. Watanabe, H. Yoda, K. Takabe, F. Tanaka, C. F. Barbas III, J. Am. Chem. Soc. 2006, 128, 4966; where the two syn enantiomers are identified.

9c
Compound 9b was described in T. C. Nugent, A. Bibi, A. Sadiq, M. Shoaib, M. N. Umar, F. N. Tehrani, Org. Biomol. Chem. 2012, 10, 9287, and showed identical spectroscopic data as those reported therein. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralcel OD-H column; hexane: $\mathrm{iPrOH}=90: 10$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}$; syn enantiomers: $\mathrm{t}_{\mathrm{r}}=17.3 \mathrm{~min}(1 S, 2 R$ enantiomer), $\mathrm{t}_{\mathrm{r}}=20.4 \mathrm{~min}$ ($1 R, 2 S$ enantiomer). The HPLC protocol was described in the same reference, where the 4 different enantiomers were identified.

9. Computational Studies

COMPUTATIONAL METHODS

Geometries of the molecules were optimized by using the wB97XD functional ${ }^{1}$ and the cc-pVDZ ${ }^{2}$ basis set. This method was used previously in related structures. ${ }^{3}$ Solvent effects were calculated with the PCM continuum solvation model ${ }^{4}$ for dichloromethane. The nature of transition structures of all stationary points was confirmed by frequency analysis at the same level of theory. The wave function stability was

[^0]confirmed in all stationary points. ${ }^{5}$ All calculations were performed using the ultrafine grid implemented in Gaussian 09 E.01. ${ }^{6}$

COMPUTATIONAL RESULTS

A set of conformers of the transition structure for the Si - and $R e$-attack of both simplified enamine-thread $\mathbf{4 c}$ ' and enamine-rotaxane $\mathbf{6 c}$ ' over both faces of (E) - β-nitrostyrene $\mathbf{8}$ were computed at PCM(dichloromethane)/wB97XD/cc-pVDZ theoretical level. For that pathway involving the enaminethread $\mathbf{4 c}$ ' the transition structure $\mathrm{TS}_{\mathbf{4 c}} \cdot$ Sis leading to the $(S)-\mathbf{9 a}$ Michael adduct was computed to be 7.0 $\mathrm{kJ} / \mathrm{mol}$ lower in energy than that $\mathrm{TS}_{4 \mathrm{c} \cdot \text { 'Res }}$ furnishing the enantiomer (R) - 9 a (Figure S2a). Front and side view of corresponding transition structures to that attack are shown in Figure S3 and a topological analysis in Figure S4. In both cases a NH \cdots ONO hydrogen bond between the NH of the amide group and the nitro group is observed ($1.99 \AA$ in both cases). So, the Michael addition orientation seems to be driven by a hydrogen bond. The length for the C-C making bond is of $2.00 \AA$ for the $R e$-attack while for the Si attack the related distance is longer, $2.20 \AA$. This indicates a less steric hindrance around the reactive site in the transition structure of the $S i$-attack than that of the $R e$-attack.

In contrast, if the rotaxane $\mathbf{6 c}$ acts as catalyst the Michael addition over the $R e$-face of the nitrostyrene is preferred in $7.3 \mathrm{~kJ} / \mathrm{mol}$ respect to the $S i$-attack (Figure S2b). As shown in Figure S 5 and S6, this preference could be justified by attending to the $\mathrm{NH} \cdots \mathrm{ONO}$ hydrogen bond between one NH group of the ring with the nitro group ($2.50 \AA$). A similar hydrogen bond is missed in the transition structure for the Si attack. This absence could be related to the less available space to accommodate the styrene molecule due to the bulky macrocycle.

[^1]a)

Figure S2. General scheme for the nucleophilic attack of the enamine of: a) simplified enamine-thread $\mathbf{4 c}{ }^{\prime}$ plus $\mathbf{8}$; b) simplified enamine-rotaxane $\mathbf{6 c}$ ' plus 8. Energy differences, $\Delta \mathrm{G}^{\ddagger}{ }_{(\text {Si-Re })}$, between the two possible transition structures are shown in $\mathrm{kJ} / \mathrm{mol}$.

Front view

$\mathrm{O}_{2} \mathrm{~N}$

Side view

Figure S3. Computed transition structures for the both $S i$ - and $R e$-attack $\mathrm{TS}_{4 \mathbf{c}} \cdot \mathrm{Si} 8$ and $\mathrm{TS}_{4 \mathbf{c} \cdot} \cdot$ Re8 .

Figure S4. Topological analysis of computed transition structures for the both Si - and $R e$-attack $\mathrm{TS}_{4 \mathrm{c}} \cdot$ Sis and $\mathrm{TS}_{4 \mathbf{c} \cdot} \cdot$ Res. Hydrogen atoms have been removed for clarity.

Figure S5. Computed transition structures for the both $S i$ - and $R e$-attack $\mathrm{TS}_{6 \mathbf{c} \cdot} \cdot \mathrm{Si8}$ and $\mathrm{TS}_{6 \mathrm{ce}} \cdot \mathrm{Res}$.

$\Phi=+175.9^{\circ}$
$d=2.17 \AA$
$d=2.17 \AA$
$\theta=115.1^{\circ}$
$\mathrm{d}_{\mathrm{N}-\mathrm{N}}=3.95 \AA$
$\mathrm{Wi}_{\mathrm{C}-\mathrm{C}}=0.361$ $\mathrm{Wi}_{\mathrm{C}-\mathrm{C}}=0.361$
$\mathrm{CT}=0.376 \mathrm{e}$

$\mathrm{TS}_{6 c^{\prime} \cdot \text { Re8 }}$

Figure S6. Topological analysis of computed transition structures for the both Si - and $R e$-attack $\mathrm{TS}_{6 \mathrm{c}} \cdot$ Sis and $\mathrm{TS}_{6 \mathrm{c} \cdot} \cdot$ Res. . Hydrogen atoms have been removed for clarity.

Table S5. Value of imaginary frequencies, electronic, free and enthalpy energies (in Hartrees) of all computed conformers for systems shown in Figures S3-S6. Free energies and enthalpy energies in solution at $298.15 \mathrm{~K}\left(\mathrm{G}_{298, \text { sol }}\right.$ and $\left.\mathrm{H}_{298, \text { sol }}\right)$ were calculated at the PCM(dichloromethane)/wB97XD/ccpVDZ level. Note that the filenames are used in our calculations and do not follow any guide.

Filename	Imag. Freq	$\begin{gathered} \mathrm{E}_{\text {SCF, } 298, \text { sol }} \\ \mathrm{PCM} / \mathrm{wB} 97 \mathrm{XD} / \mathrm{cc}- \\ \mathrm{pVDZ} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{G}_{298, \text { sol }} \\ \text { PCM/wB97XD/CC- } \\ \text { pVDZ } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{H}_{298, \text { sol }} \\ \mathrm{PCM} / \mathrm{wB} 97 \mathrm{XD} / \mathrm{cc}- \\ \mathrm{pVDZ} \\ \hline \end{gathered}$
$\mathrm{TS}_{4 \mathrm{c} \cdot} \cdot \mathrm{Si8}$ and $\mathrm{TS}_{4 \mathrm{4c} \cdot \mathrm{Re8} \text {. }}$				
ts_threadsmall_si_16	-374.9	-1564.392385	-1563.937956	-1563.838331
ts_threadsmall_re_01	-432.6	-1564.38835	-1563.935283	-1563.834586
ts_threadsmall_si_20	-393.9	-1564.387181	-1563.933033	-1563.832841
ts_threadsmall_si_21	-389.3	-1564.387134	-1563.932865	-1563.832588
ts_threadsmall_si_05	-441.3	-1564.379058	-1563.928409	-1563.825675
ts_threadsmall_re_04	-484.8	-1564.375361	-1563.925231	-1563.821667
ts_threadsmall_re_03	-448.7	-1564.375607	-1563.923173	-1563.821137
$\mathrm{TS}_{6 \mathbf{6} \cdot \mathrm{Si8}}$ and $\mathrm{TS}_{6 \mathbf{6} \cdot} \mathrm{Re} \mathbf{8}$				
ts_rtxsmall_re_05	-416.8	-3320.307782	-3319.335104	-3319.163182
ts_rtxsmall_si_10	-406.1	-3320.301879	-3319.332321	-3319.157869
ts_rtxsmall_si_04	-467.6	-3320.296511	-3319.326016	-3319.151932
ts_rtxsmall_si_07	-467.7	-3320.296511	-3319.326001	-3319.151925
ts_rtxsmall_re_06	-441.2	-3320.294241	-3319.323289	-3319.149714
ts_rtxsmall_re_04	-446.0	-3320.296909	-3319.323166	-3319.152293

N	3.610922	-2.662105	-1.155217	H	-3.685017	0.212620	2.146901
C	4.201535	-3.786434	-1.863210	H	-2.966067	0.802523	-2.252281
H	3.642774	-4.692680	-1.610787	N	-0.988367	1.026728	-1.689123
H	4.154737	-3.618879	-2.950919	O	-0.728251	1.822559	-2.631610
C	4.190205	-1.351716	-1.417046	O	-0.067549	0.662718	-0.897235
H	4.200478	-0.721368	-0.519934	H	0.012239	4.932908	-3.039805
H	5.234108	-1.492850	-1.723580	H	3.662465	-0.821253	-2.226688
O	1.179190	0.550023	2.049834	H	5.255067	-3.909998	-1.569890
C	2.052276	1.452605	2.543317				
O	2.810920	1.210823	3.456033		ine-rot	xane 6c	, plus
C	1.998949	2.741572	1.817045		attack)	: $\mathrm{TS}_{6 \mathrm{c}}{ }^{\prime}$	
H	2.547808	3.571579	2.265299	O	-0.206446	1.257481	0.858207
C	1.392323	2.854429	0.631841	C	-0.645565	0.052249	0.510690
H	0.869241	1.999522	0.191686	O	-1.761923	-0.024923	0.026695
C	1.419040	4.125589	-0.156013	C	0.215118	-1.127528	0.764055
O	1.922640	5.165849	0.268167	H	1.054258	-1.041504	1.454116
N	0.839322	4.017680	-1.369722	C	-0.054914	-2.296824	0.182064
H	0.453623	3.126301	-1.696525	H	-0.892846	-2.385553	-0.514908
C	0.763233	5.146466	-2.269370	C	0.777367	-3.500499	0.471306
H	1.729987	5.345302	-2.761228	O	1.821564	-3.448248	1.141085
H	0.472269	6.052495	-1.719002	N	0.303804	-4.649320	-0.025202
C	-0.428915	-1.951893	-0.435006	H	-0.502648	-4.614784	-0.636518
C	-1.835926	-2.004961	-0.157319	C	1.005304	-5.907447	0.126127
C	-0.017159	-2.092171	-1.863314	H	1.476541	-5.942001	1.115586
H	-2.138399	-2.298722	0.850426	H	1.789569	-6.019622	-0.639579
H	-2.419841	-2.489456	-0.943410	N	2.444401	-1.748549	3.591851
H	-0.018317	-3.161425	-2.124259	H	2.418429	-2.382407	2.796513
H	-0.770481	-1.590994	-2.489031	N	-4.210566	-0.250982	1.893293
H	0.967461	-1.671487	-2.087594	H	-3.617428	-0.045215	1.096123
C	-6.224367	-0.959382	-0.536815	N	4.119257	-2.989366	-1.027177
C	-4.888388	-0.767093	-0.880143	H	3.578962	-3.211380	-0.196725
C	-6.653851	-0.728609	0.771185	N	-2.504890	-1.438456	-2.735411
H	-6.934940	-1.294029	-1.294737	H	-2.503010	-0.791412	-1.954489
C	-3.961290	-0.337445	0.078581	O	3.223112	0.174063	4.507470
H	-4.560947	-0.961856	-1.903953	O	-5.935265	-1.488291	2.706773
C	-5.737176	-0.307661	1.733881	O	5.542451	-1.535816	-2.033202
H	-7.701019	-0.879516	1.039115	O	-3.549154	-3.142574	-3.809367
C	-2.523329	-0.130004	-0.260935	C	4.204795	-0.506153	2.449152
C	-4.399782	-0.117456	1.389311	C	5.142671	0.528882	2.506314
H	-6.063739	-0.125363	2.759298	H	5.160671	1.170077	3.387480
C	-2.229874	0.542642	-1.497578	C	6.022298	0.734650	1.445585
H	-1.926208	0.253141	0.572907	H	6.750039	1.545826	1.491358

C	5.966643	-0.087240	0.322548	C	2.310453	-2.996499	-2.688612
H	6.641465	0.060965	-0.520949	C	1.223101	-3.809126	-3.018888
C	5.023458	-1.115543	0.248346	H	1.331858	-4.896543	-2.990427
C	4.147145	-1.315488	1.314335	C	-0.002884	-3.248253	-3.378591
H	3.367882	-2.069489	1.233000	H	-0.849994	-3.891922	-3.629153
C	3.252618	-0.660754	3.604196	C	3.644716	-3.582576	-2.265819
C	1.458425	-1.975129	4.636961	H	3.564004	-4.670592	-2.137182
H	1.839140	-1.507227	5.553713	H	4.409453	-3.389229	-3.029635
H	1.385206	-3.057637	4.806792	C	4.929799	-1.901692	-1.030466
C	0.101557	-1.409148	4.280906	C	1.153190	1.536233	1.257344
C	-0.112437	-0.026897	4.298075	C	1.185794	3.041744	1.445329
H	0.702220	0.633477	4.603828	C	2.168832	1.300317	0.134738
C	-1.347892	0.502500	3.928329	H	1.377579	0.993647	2.185241
H	-1.497830	1.585088	3.941448	H	2.062281	3.323670	2.047579
C	-2.399318	-0.336280	3.551126	H	0.279501	3.418420	1.925561
C	-2.181768	-1.717344	3.528539	C	2.273576	2.647938	-0.626129
H	-2.991749	-2.387313	3.230984	H	1.867434	0.484985	-0.535983
C	-0.945446	-2.246565	3.887222	H	3.133477	1.027442	0.579776
H	-0.792310	-3.328232	3.861867	H	1.889794	2.526798	-1.642785
C	-3.754852	0.227449	3.181854	N	1.366897	3.539723	0.088727
H	-4.513503	-0.077702	3.915274	C	3.710348	3.184996	-0.590940
H	-3.714153	1.326621	3.185886	N	4.590577	2.659214	-1.479417
C	-5.208131	-1.165683	1.771707	C	5.967552	3.118865	-1.467200
C	-5.386070	-1.766896	0.404536	H	6.118144	3.768681	-0.599920
C	-6.612356	-2.361612	0.095340	H	6.193684	3.679396	-2.389040
H	-7.402695	-2.356228	0.846486	C	4.280715	1.677403	-2.504532
C	-6.808160	-2.951442	-1.151118	H	3.218917	1.413510	-2.507912
H	-7.767464	-3.412550	-1.390624	H	4.529336	2.082874	-3.498235
C	-5.781870	-2.953509	-2.093421	O	4.022808	4.027245	0.245724
H	-5.917514	-3.412147	-3.073203	C	0.576894	4.430230	-0.539568
C	-4.552706	-2.359043	-1.795158	C	-0.656319	4.855927	-0.055637
C	-4.356188	-1.786166	-0.537763	C	0.984320	4.931861	-1.891824
H	-3.379423	-1.380160	-0.277509	H	-1.090291	5.742926	-0.518098
C	-3.490944	-2.361288	-2.862000	H	-0.957099	4.672415	0.974450
C	-1.499550	-1.244223	-3.769502	H	1.966029	4.581383	-2.225681
H	-1.379954	-0.165992	-3.946139	H	0.221349	4.640276	-2.634728
H	-1.896788	-1.703173	-4.684362	H	0.999624	6.030322	-1.872455
C	-0.164651	-1.859985	-3.415418	O	-0.974677	2.235590	-4.154848
C	0.925074	-1.044419	-3.099916	N	-0.934260	2.432789	-2.930809
H	0.798936	0.040902	-3.116299	C	-1.863277	3.280121	-2.351673
C	2.145310	-1.608706	-2.742163	O	-0.077389	1.875213	-2.210036
H	2.988234	-0.958167	-2.502846	C	-1.943785	3.364713	-0.963624

H	-2.531126	3.758979	-3.061576	O	-5.723164	3.150770	2.485064
C	-3.196486	3.826111	-0.320136	O	2.283687	-5.330302	-1.829912
H	-1.410639	2.581599	-0.427144	O	-4.731047	0.305161	-3.922
C	-3.620669	3.164907	0.838918	C	1.790021	-3.431109	2.553789
C	-3.984360	4.861202	-0.838689	C	3.160531	-3.154847	2.596035
C	-4.820787	3.510537	1.455551	H	3.560929	-2.634041	3.466132
H	-2.996190	2.365251	1.243566	C	3.984731	-3.534984	1.539882
C	-5.177890	5.215849	-0.215087	H	5.049931	-3.304966	1.569340
H	-3.659434	5.399557	-1.731520	C	3.439250	-4.173685	0.428963
C	-5.602546	4.538910	0.929966	H	4.058770	-4.462133	-0.419498
H	-5.151347	2.974680	2.347394	C	2.069201	-4.441091	0.367217
H	-5.783239	6.025469	-0.626410	C	1.257374	-4.094336	1.447915
H	-6.541607	4.814674	1.412573	H	0.199066	-4.341121	1.431352
H	6.651399	2.258502	-1.410219	C	0.940986	-2.954600	3.701469
H	0.290370	-6.732163	0.029409	C	-1.321634	-2.523730	4.53983
H	4.865832	0.756828	-2.346460	H	-0.802118	-2.567409	5.505302
				H	-2.189500	-3.195798	4.584059
Enamine-rotaxane 6c' plus nitrostyrene				C	-1.771354	-1.110423	4.240
(Re-attack) : TS $\mathbf{6 c}^{\text {'Re8 }}$				C	-0.870175	-0.044939	4.343966
O	0.597388	1.130608	1.153766	H	0.150621	-0.240616	4.681
C	-0.641786	0.798345	0.780076	C	-1.265702	1.251016	4.016070
O	-1.402008	1.684797	0.449588	H	-0.546421	2.070292	4.089926
C	-1.026378	-0.633897	0.823001	C	-2.569661	1.513623	3.588012
H	-0.513819	-1.302128	1.514078	C	-3.469770	0.448211	3.491230
C	-1.990036	-1.124013	0.044401	H	-4.494176	0.635686	3.161386
H	-2.505471	-0.493483	-0.683729	C	-3.073996	-0.847771	3.810724
C	-2.373771	-2.560723	0.152351	H	-3.789457	-1.668920	3.721467
O	-1.743781	-3.370025	0.853423	C	-3.009227	2.914391	3.209636
N	-3.468812	-2.908016	-0.533103	H	-3.801000	3.266726	3.884215
H	-3.878204	-2.232388	-1.166930	H	-2.161647	3.609730	3.287280
C	-3.985012	-4.260431	-0.531328	C	-4.877598	2.945439	1.616477
H	-3.884452	-4.685679	0.474762	C	-5.290811	2.663081	0.195003
H	-3.432956	-4.899636	-1.237972	C	-6.581667	3.039875	-0.184637
N	-0.402082	-3.029175	3.532798	H	-7.209973	3.552133	0.544370
H	-0.803208	-3.235441	2.617901	C	-7.051811	2.749084	-1.462122
N	-3.546532	2.959458	1.863180	H	-8.058717	3.049616	-1.755406
H	-2.894071	2.707585	1.127666	C	-6.242731	2.058121	-2.358944
N	0.171173	-5.050802	-1.035888	H	-6.602648	1.795816	-3.353866
H	-0.389971	-4.586916	-0.324757	C	-4.947172	1.676950	-1.994296
N	-2.803105	0.907446	-2.903407	C	-4.474722	1.981126	-0.714671
H	-2.332006	1.491833	-2.220221	H	-3.482274	1.647173	-0.407090
O	1.460904	-2.503481	4.720795	C	-4.155174	0.904161	-3.015210

C	-1.973510	0.291364	-3.934673	C	3.639605	-1.863774	-2.521247
H	-1.072935	0.906761	-4.036902	H	2.795365	-1.169506	-2.465914
H	-2.542171	0.318396	-4.873267	H	4.106241	-1.742215	-3.510980
C	-1.579114	-1.130539	-3.599700	O	5.332800	-0.591446	0.418752
C	-0.326319	-1.387864	-3.035937	C	4.214295	2.284269	0.242197
H	0.358235	-0.552461	-2.879771	C	4.583718	2.620283	-1.055862
C	0.020707	-2.674654	-2.647360	C	4.566384	3.176537	1.391322
H	0.991452	-2.843905	-2.181189	H	4.513553	1.888808	-1.859960
C	-0.858489	-3.746606	-2.828449	H	5.349017	3.385818	-1.175901
C	-2.093084	-3.496571	-3.431244	H	5.077561	2.600882	2.177331
H	-2.794402	-4.319284	-3.593503	H	5.220783	3.989811	1.059273
C	-2.454662	-2.200600	-3.805947	H	3.664100	3.626931	1.834039
H	-3.435876	-2.008454	-4.245421	O	0.157383	1.506811	-1.972747
C	-0.461335	-5.128413	-2.342030	N	1.275621	2.026314	-2.166933
H	-1.339246	-5.787759	-2.290094	C	1.662282	3.073187	-1.365275
H	0.264963	-5.590073	-3.024348	O	2.044679	1.583311	-3.048061
C	1.525234	-5.000051	-0.921060	C	2.850399	3.759652	-1.624607
C	1.600631	0.124181	1.403381	H	0.972821	3.266797	-0.550606
C	2.854244	0.887460	1.783977	C	3.118515	5.069052	-0.980615
C	1.993686	-0.626895	0.123673	H	3.237955	3.649821	-2.638116
H	1.270161	-0.529420	2.220888	C	2.446504	5.491840	0.174806
H	3.549464	0.228744	2.328861	C	4.078151	5.921027	-1.546077
H	2.622763	1.765822	2.393934	C	2.734927	6.726664	0.751931
C	3.213681	0.138343	-0.443756	H	1.690095	4.856273	0.637782
H	1.168356	-0.643709	-0.598663	C	4.365793	7.155498	-0.971434
H	2.250656	-1.665685	0.365171	H	4.607119	5.607035	-2.449046
H	3.007841	0.526719	-1.446981	C	3.696331	7.561747	0.183789
N	3.406787	1.244084	0.485336	H	2.202537	7.038068	1.652217
C	4.491666	-0.726785	-0.464959	H	5.114861	7.804604	-1.428122
N	4.620780	-1.615785	-1.479949	H	3.920899	8.528494	0.637516
C	5.829831	-2.414768	-1.574121	H	5.575818	-3.482811	-1.653478
H	6.441481	-2.244613	-0.683206	H	-5.042017	-4.240784	-0.819539
H	6.402906	-2.131721	-2.471845	H	3.259035	-2.896158	-2.443291

10. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of synthesized compounds

2a (${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

2a (${ }^{13} \mathrm{C}$ NMR, $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

3a (${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, 298K)

3a (${ }^{13} \mathrm{C}$ NMR, $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, 298K)

2b (${ }^{1} \mathrm{H}$ NMR, $\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$

2b (${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

3b (${ }^{1} \mathrm{H}$ NMR, $\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$

3b (${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

5a (${ }^{13} \mathrm{C}$ NMR, $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, 298K)

5b (${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, 298K)

5b (${ }^{13} \mathrm{C}$ NMR, $\left.75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$
Яよ

$4 \mathbf{a}$ (${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

4a (${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, 298K)

4b (${ }^{1} \mathrm{H}$ NMR, $\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$
 4b (${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

ल	
N	
1	
1!	

6a (${ }^{1} \mathrm{H}$ NMR, $\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$

6 (${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, 298K)

∞	
$\stackrel{0}{ }$	
	-

6b (${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

\qquad

bb (${ }^{13} \mathrm{C}$ NMR, $\left.75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$

\boldsymbol{Z}-6a (${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

\boldsymbol{Z}-6a (${ }^{13} \mathrm{C}$ NMR, $101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

11. Copies of HPLC Traces of Synthesized Compounds

9a
Racemate

Employing thread 4b as catalyst
(S)-9a

Employing rotaxane 6b as catalyst

(R)-9a

9b
Racemate

Employing thread 4b as catalyst

Employing rotaxane 6b as catalyst

9c
Racemate

Employing thread 4b as catalyst
(1R,2S)-9c

Employing rotaxane 6b as catalyst

(1S,2R)-9c

[^0]: ${ }^{1}$ Chai, J.-D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008, 10, 6615.
 ${ }^{2}$ Dunning, T.H. J. Chem. Phys. 1989, 90, 1007.
 ${ }^{3}$ Martins, M. A. P.; Rodrigues, L. V.; Meyer, A. R.; Frizzo, C. P.; Hörner, M.; Zanatta, N.; Bonacorso, H. G.; Berná, J.; Alajarín, M. Cryst. Growth Des. 2017, 17, 5845.
 ${ }^{4}$ Tomasi, J.; Persico, M. Chem. Rev. 1994, 94, 2027.

[^1]: 5 Bauernschmitdd, R.; Ahlrichs, R. J. Chem. Phys. 1996, 104, 9047.
 ${ }^{6}$ Gaussian 09, Revision E.01, Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E. et al, Gaussian, Inc., Wallingford CT, 2013.

