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1 Classification

1.1 Performance of Scalar, Vector and Tensorial Components
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Figure S1: Atomic fingerprints of (a) Al, (b) C and (c) hafnia data sets illustrated using the first two
principal components. While important atomic environments are highlighted using large colored
symbols, thermal fluctuations in atomic configurations obtained from DFT-based MD simulations
are presented using small black symbols. The first three panels in each case demonstrate the
systematic improvement in the classification performance when moving from scalar (S), to scalar
and vector (S+V), and to finally, scalar, vector and tensorial components (S+V+T). Also, notice
the increase in the spread of the PCA space moving from S, to S+V, to S+V+T panels in each
case. All of the right-most panels demonstrate the systematic increase in the information captured
by the fingerprint on addition of more complex vector and tensorial components.
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1.2 Classification of Carbon Dataset
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Figure S2: Three graphene structures (#5, 6 and 26 in the main manuscript) identified from the
carbon data set using the structure fingerprint. Although physically they all resemble graphene, the
structures differ in the length of the vacuum region, resulting in different X-ray diffraction pattern
as shown in the right-most panel.
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Figure S3: Four C phases (# 0, 13, 28 and 36 in the main manuscript) with space group P63/mmc
identified to be structurally close using the structure fingerprint definition. Only subtle difference
in the bonding pattern is evident, in agreement with the findings based on the structure fingerprint.
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Figure S4: Three C phases (# 40, 41 and 49 in the main manuscript) with space group I4/mmm
identified to be structurally different using the structure fingerprint definition. Large variations in
the bonding pattern is evident, in agreement with the findings based on the structure fingerprint.
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2 Regression: Energy Model for Aluminum

2.1 Strategies for Mapping the Energy Model

B) Other Approach - Breaking total energy into atomic energies (EML = ∑εi)
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A) Our Approach - By-pass difficulties of atomic energies

Total energy

Fit quantity

ML modelStructural fingerprint

Atomic fingerprint

EDFTFconfig. EMLML

ML

ML

ML

ML

ε2

f1
f2
f3

fn

f1
f2
f3

fn

Figure S5: Two general strategies for building ML-based energy models. In (a), the atomic finger-
prints are combined in some fashion to arrive at a structure fingerprint, which is then fit to the
reference total energy (usually available from DFT computations). In (b), a common ML model is
applied to atomic fingerprints to obtain fictitious atomic energies, which are then summed to obtain
the total energy of the system. In this approach too, the ML predicted total energy, obtained from
summing over the atomic energies, is fit to the reference total energy.

2.2 Aluminum Energy Model: Overall Scheme

Fig. S6 displays the different stages involved in the construction of the Al energy model. Starting
from a diverse reference dataset of Al configurations and associated energies, generated using DFT-
based MD simulations, a pool of ∼ 100 low training error kernel ridge regression (KRR) based Al
models are built within step 1, 2 and 3. For this, the structure fingerprint definition is used to
numerically represent an Al configuration in step 2. In step 4, all of these energy models are
subjected to a series of pre-defined tests (e.g. vacancy formation energy), wherein the models
are evaluated for their prediction accuracy. Finally, the energy model that has the best overall
performance is selected.
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Figure S6: The overall scheme adopted to build the Al energy model using the structure fingerprint.
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2.3 Learning Curves

Figure S7: (a) Effect of for training set sampling methods (random and grid), and the number of
Gaussians (k) on the learning curves of Al energy models. (b) Parity plots comparing the effect of
random and grid sampling methods on the prediction accuracy of Al energy models.

Learning curves of the Al energy models presented in Fig. S7(a) show the similarity in the model
performance for (1) both the random and the grid sampling methods for training set selection,
and (2) using either 10 or 20 number of Gaussians (k) during fingerprinting. This suggests that
evaluating root mean square error (RMSE) alone may not be sufficient, and other errors metrics
should be employed to further evaluate these cases. Parity plots presented in Fig. S7(b) clearly
illustrate the superiority of the grid sampling approach over the random sampling. Notice how
both sampling methods result in models with similar test errors, further corroborating the problem
of relying on limited error metrics. Based on these results, grid sampling was used in this work to
construct Al energy model.
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2.4 Model Selection

Figure S8: Vacancy formation and (111) surface energy tests to evaluate the performance of Al
energy models built using different number of training examples.

As part of step 4 in the overall scheme, a pool of Al energy models are evaluated for various defect
formation energies. Fig. S8 presents the results for few of such tests for Al energy models built
using 1000, 3000 and 5000 training examples. The model with best overall performance is selected
based on these tests. As expected, models with 5000 training points can be seen to outperform the
other models.

2.5 Computation of Elastic Constants

Table 1: Performance of the Al energy model to capture various elastic constants, in comparison
to DFT. µ′ and µ′′ represent the two definitions of shear modulus.

Elastic constant DFT ML

c11 (GPa) 117.16 121.03
c12 (GPa) 60.44 60.17

µ′′ = c44 (GPa) 34.17 33.50
µ′ = (c11 − c12)/2 (GPa) 28.36 29.93
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Figure S9: Energy as a function of strain introduced in the Al unit cell. See text for the definition
of strain in each case.

In order to further test the energy model, elastic constants of Al in the fcc phase (Fm3m) were
determined. These were obtained by fitting following mechanical relations to the energy (evaluated
using the energy model) of the deformed unit cells, (i) 3(c11−c12)δ2, when e11 = e22 = δ, e33 = −2δ,
(ii) 3

2(c11 + 2c12)δ
2, when e11 = e22 = e33 = δ, and (iii) (c44δ

2)/2, when e12 = e21 = δ/2, where cij
are the elastic constants, and ei are the components of the strain tensor given in Voigt notation.
The theory behind these relations could be find elsewhere (Ding, Wen-Jiang, et al., Solid State
Sciences, 14.5, 555 (2012)).
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