Supporting Information

Bi(OH)₃/PdBi Composite Nanochains as Highly Active and Durable Electrocatalysts for Ethanol Oxidation

Xiaolei Yuan,^{†,‡} Yong Zhang,^{†,‡} Muhan Cao,^{†,‡} Tong Zhou,[§] Xiaojing Jiang,[†] Jinxing Chen,^{†,†}

Fenglei Lyu,[†] Yong Xu,[†] Jun Luo,[§] Qiao Zhang,^{†,*} and Yadong Yin^{I,*}

[†]Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, SWC for Synchrotron Radiation Research, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, People's Republic of China

[§]Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China.

¹Department of Chemistry, University of California, Riverside, Riverside, California 92521,

USA.

E-mail: <u>qiaozhang@suda.edu.cn</u> (Q.Z.); <u>yadongy@ucr.edu</u> (Y.Y.)

Author Contributions

X.Y., Y.Z. and M.C. contributed equally to this work.

Figure S1. TEM image of PdBi-Bi(OH)₃ nanochains.

Figure S2. (a) EDS elemental mapping images of $PdBi-Bi(OH)_3$ nanochains showing the elemental distribution of Pd, Bi and overlapped elements. (b) EDS spectrum obtained from the EDS mapping results.

Figure S3. (a, b) XRD patterns of PdBi-Bi(OH)₃ nanocrystals.

Figure S4. (a) XPS spectrum of PdBi-Bi(OH)₃ nanochains at O 1s. (b) Derivative function curves based on Pd K_3 edge in XANES spectra of PdBi-Bi(OH)₃ nanochains.

Figure S5. XRD patterns of PdBi-Bi(OH)₃ nanocrystals with different feeding Pd:Bi ratios. The sample with a feeding ratio of 1:1 was denoted as PdBi-Bi(OH)₃ nanochains in our work.

Figure S6. TEM images of PdBi-Bi(OH)₃ nanocrystals with different Pd:Bi feeding ratios: (a) 2:1, (b) 1:2 and (c) 1:3.

Figure S7. CV curves of different samples measured in N_2 -saturated (a) 1 M NaOH and (b) 1 M NaOH containing 1 M ethanol solution at a scan of 50 mV s⁻¹. (c) Mass activities of different samples in N_2 -saturated 1 M NaOH solution containing 1 M ethanol. (d) CA curves of different samples measured in N_2 -saturated 1 M NaOH solution containing 1 M ethanol, recorded at 0.86 V vs. RHE.

Figure S8. (a) TEM image and (b) XRD pattern of commercial Bi(OH)₃ nanocrystals.

Figure S9. (a) CV curves of physically mixed commercial Pd/C and commercial $Bi(OH)_3$ in N₂-saturated 1 M NaOH containing 1 M ethanol. (b) CA tests of mixture of commercial Pd/C and commercial $Bi(OH)_3$ in N₂-saturated 1 M NaOH containing 1 M ethanol at 0.86 V.

Figure S10. TEM images of PdBi nanochains obtained from acid treatment.

Figure S11. (a) CV curves of PdBi-Bi(OH)₃ nanochains before and after acid treatment in N₂-saturated 1 M NaOH containing 1 M ethanol. (b) CA tests of PdBi-Bi(OH)₃ nanochains before and after acid treatment in N₂-saturated 1 M NaOH containing 1 M ethanol at 0.86 V.

Figure S12. Structural characterizations of PdBi-Bi(OH)₃ nanochains after CA test for 200,000 s. (a) TEM image; (b) HRTEM image; (c) SAED pattern; (d) EDS mappings of Pd and Bi element; (e) EDS spectrum obtained from the EDS mapping result; (f) EDS line scans along the line in the inset.

Figure S13. TEM images of commercial Pd/C (a) before and (b) after 80,000 s durability test.

Figure S14. CV curves of (a, b) PdBi-Bi(OH)₃ nanochains and (c, d) commercial Pd/C as indicated (black) before and (red) after 80,000 s CA measurements in N_2 -saturated (a, c) 1 M NaOH containing 1 M ethanol and (b, d) 1 M NaOH solution.

Electrocatalyst	Electrolyte	Activity	CA stability	Ref.
PdBi-Bi(OH)₃ nanochains	1 M NaOH+1 M ethanol	5.30 A mg ⁻¹	76 % (2.12 A mg ⁻¹) activ retention after 3,600 s, 30 (1.00 A mg ⁻¹) activity retention after 20,000	ity ^{3 %} This work s
PdP ₂ /rGO	0.5 M KOH +0.5 M ethanol	1.60 A mg ⁻¹	~6% (0.05 A mg ⁻¹) activity retention after 10,000 s	Appl. Catal. B- Environ. 2019 , 242, 258-266.
$Pd-Ru/TiO_2$	1 M NaOH +1 M ethanol	2.70 A mg ⁻¹	~29% (0.38 A mg ⁻¹) activity retention after 10,000 s	<i>Nanoscale, 2019, 11, 3311-3317.</i>
Pd/Black Phosphorus−gr aphene	1 M NaOH +1 M ethanol	6.00 A mg ⁻¹	~12% (0.71 A mg ⁻¹) activity retention after 20,000 s	ACS Appl. Mater. Interfaces 2019 , <i>11</i> , 5136-5145.
PdAg Nanodendrites	1 M KOH +1 M ethanol	2.63 A mg ⁻¹	52% (0.78 A mg ⁻¹) activity retention after 10,000 s	Adv. Mater. 2018 , 30, 1706962.
Pd/TiO ₂ - nanosheets- black P	1 M NaOH +1 M ethanol	5.02 A mg ⁻¹	31% (0.87 A mg ⁻¹) activity retention after 3,600 s	Adv. Energy Mater. 2018 , 8, 1701799.
Pd/carbon nanocages	1 M KOH +1 M ethanol	2.41 A mg ⁻¹	~9% (~0.06 A mg ⁻¹) activity retention after 3,600 s	ACS Sustainable Chem. Eng. 2018 , 6, 7507-7514.
Pd-Ni-P	1 M NaOH +1 M ethanol	4.95 A mg ⁻¹	15% (0.22 A mg ⁻¹) activity retention after 2,000 s	Nat. Commun. 2017 , 8, 14136.
Au@Pd Nanorods	1 M NaOH +1 M ethanol	2.92 A mg ⁻¹	32% (0.96 A mg ⁻¹) activity retention after 1,200 s	<i>Adv. Mater.</i> 2017 , 29,1701331.
Pd/Ni(OH) ₂ /rGO	1 M KOH +1 M ethanol	1.55 A mg ⁻¹	76 % (0.61 A mg ⁻¹) activ retention after 3,600 s, 5 (0.44 A mg ⁻¹) activity retention after 20,000	ity Adv. Mater. 5 % 2017 , 29, 1703057.
PtPdBi Hollow Catalyst	1 M KOH +1 M ethanol	5.26 A mg ⁻¹	38% (~0.99 A mg ⁻¹) activity retention after 3,600 s	<i>Catalysts</i> 2017 , 7, 208.
PdAg/rGO	1 M KOH + 1 M ethanol	3.14 A mg ⁻¹	47% (~0.39 A mg ⁻¹) activity retention after 5,000 s	<i>Electrocatal.</i> 2017 , <i>8</i> , 430-441.
PdCu/rGO	0.5 M KOH + 0.5 M ethanol	2.42 A mg ⁻¹	33% (0.15 A mg ⁻¹) activity retention after 3,000 s	Nanoscale Res.Lett. 2017 , <i>12</i> , 521.
PdCu ₂	1 M KOH +1 M ethanol	1.60 A mg ⁻¹	43 % (0.28 A mg ⁻¹) activity retention after 1,000 s	ACS Appl. Mater. Interfaces 2016 , 8, 34497-34505.

Table S1. The activity and stability of Pd-based EOR electrocatalysts in alkaline solution.

Pd₂Sn 0 Nanorods	.5 M KOH +0.5 M ethanol	50.0 mA cm ⁻²	56 % (10 mA cm ⁻²) activity retention after 7,200 s	J. Mater. Chem. A 2016, 4, 16706- 16713.
PdS _x /C	1 M KOH+1 M ethanol	1.62 A mg ⁻¹	Dropped to zero after 3,600 s	J. Power Sources 2016 , 336, 1-7.
Pd ₂ Ge 1 M	/ KOH+1 M ethanol	4.00 mA cm ⁻²	44 % (~1.8 mA cm ⁻²) activity retention after 1,000 s	Chem. Mater. 2015 , 27, 7459- 7467.
Pd/Carbon Black	1 M NaOH+ 1 M ethanol	5.00 A mg ⁻¹	20 % (0.70 mA mg ⁻¹) activity retention after 3,600 s	Int. J. Hydrogen Energy 2015 , 40, 12382-12391.
Pd-Ag Bimetalli Alloy Networks	c 1 M NaOH+ 1 M ethanol	2.00 A mg ⁻¹	40 % (~0.50 A mg ⁻¹) activity retention after 1,000 s	ACS Appl. Mater. Interfaces 2015 , 7, 13842-13848.
Pd-Co Films	2 M KOH + 10 <i>wt</i> % ethanol	23.0 mA cm ⁻²	60 % (~14 mA cm ⁻²) activity retention after 1,800 s	<i>J. Power Sources</i> 2015 , 293, 815-822.
Pd _x Cu _{100-x} networks	1 M KOH + 1 M ethanol	3.01 A mg ⁻¹	33 % (~0.65 A mg ⁻¹) activity retention after 7,200 s	<i>J. Mater. Chem. A</i> 2014 , <i>2</i> , 20933- 20938.
Pd-Au/C	1 M NaOH+ 1 M ethanol	25.0 mA cm ⁻²	Dropped to zero after 3,600 s	<i>Electrochim. Acta</i> 2014 , <i>144</i> , 50-55.
PtPd/GO	1 M KOH + 1 M ethanol	1.16 A mg ⁻¹	18 % (~0.10 A mg ⁻¹) activity retention after 3,600 s	ACS Appl. Mater. Interfaces 2014 , 6, 3607-3614.
Pd-MgO/C	1 M KOH + 1 M ethanol	85.0 mA cm-2	Dropped to zero after 1,800 s	Int. J. Hydrogen Energy 2014 , 39, 16015-16019.
Pd-Ag nanoparticles	1 M KOH + 1 M ethanol	1.60 A mg ⁻¹	55 % (~0.40 A mg ⁻¹) activity retention after 2,000 s	<i>J. Power Sources</i> 2014 , 263, 13-21.
Pd₃Ni	1 M KOH + 1 M ethanol	0.01 A mg ⁻¹	Dropped to zero after 14,400 s	Int. J. Hydrogen Energy 2013 , 38, 4474-4482.
Pt/PdCu	1 M KOH + 1 M ethanol	183 mA cm-2	36 % (~20 mA cm ⁻²) activity retention after 6,000 s	Adv. Mater. 2012 , 24, 5493-5498.
Au₃Pd	1 M KOH + 1 M ethanol	4.00 mA cm ⁻²	Dropped to zero after 500 s	<i>Electrochim. Acta</i> 2012 , <i>81</i> , 8-13.
PdBi/C	1 M KOH + 1 M ethanol	~0.02 A mg ⁻¹	78 % (0.01 A mg ⁻¹) activity retention after 1,800 s	Int. J. Hydrogen Energy 2011 , 36, 10522-10526.
Pd-CeO ₂	1 M KOH + 1 M ethanol	230 mA cm-2	66 % (~40 mA cm ⁻²) activity retention after 1,800 s	<i>J. Catal. Lett.</i> 2010 , <i>138</i> , 46-49.