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S1. HAMILTONIAN CONSTRUCTION

Here we give a more pedagogical summary of the Hamiltonian construction summarized

in the main text. The procedure involves these three transformations: {~qA, ~pA} → { ~QA, ~PA}

→ { ~QB, ~PB} → {~qB, ~pB}. Mass-weighted position and moment operators, ~Qs and ~Ps respec-

tively, are [Huh11]

~Qs = Ω−1s ~qs (S1)

~Ps = Ωs ~ps (S2)

with the M ×M matrix

Ωs = diag([ωs1, ..., ωsM ])
1
2 (S3)

where {ωsk} are the scalar harmonic oscillator frequencies of normal mode k on PES s.
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Because the Duschinsky transformation is not dimensionless, its direct application is

appropriate only to the vector of mass-weighted position and momentum operators:

~QB = S ~QA + d (S4)

~PB = S~PA. (S5)

Then the following are used to obtain the final dimensionless operators:

~qB = ΩB
~QB (S6)

~pB = Ω−1B
~PB. (S7)

Combining these steps leads to equations the following formulas from the main text

~qB = ΩBSΩ−1A ~qA + ΩB
~d (S8)

~pB = Ω−1B SΩA~pA, (S9)

An alternative route for expressing HB in terms of the operators of PES A (the one

taken in references [MF98, HGP+15]) first transforms the ladder operators directly using

the transformation

~b† =
1

2
(J − (J t)−1)~a+

1

2
(J + (J t)−1)~a† +

1√
2
~δ (S10)

where {â†i} and {b̂†i} are respectively creation operators for states of PES A and B, and

J = ΩBSΩ−1A . Eq. S10 is then used to construct the Hamiltonian HB =
∑

i ωBi(b
†
ibi + 1

2
).

It is important to note that there are oftentimes only one or a few electronic transitions

that are relevant for a chemist, often the transition between the ground and first excited

state. The potential energy surface (PES) of two electronic states must be calculated be-

forehand, with one of several electronic structure algorithms. For most organic molecules,

density functional theory calculations (which roughly speaking often have cubic scaling in
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the number of electrons) typically provide electronic PESs that are accurate enough to pro-

duce vibronic spectra that match experiment. For other classes of molecules, substantially

more expensive methods may be required for obtaining the PES [HJO14].

S2. QHO TO QUBIT MAPPINGS

To implement the algorithm within the standard quantum circuit model, one requires

a mapping of quantum harmonic oscillators to a set of qubits. Several mappings from

bosonic DOFs to qubits have been proposed in the past [Som05, MSAH18b, MSAH18a,

MMS+18]. Here, we outline what are perhaps the two most straightforward mappings for

the QHO, which in this work we will call the standard binary and the unary mappings. It

is worth mentioning that we would not expect an approach based on the Holstein-Primakoff

transformation [HP40] to be particularly promising, since it would require first mapping

a bosonic system to a spin-s system, after which one would need the additional step of

mapping to spin-half qubits using Clebsch-Gordon coefficients.

Here we summarize how one would convert the operators of HB into quantum gates of

the standard circuit model. The mappings are used to represents operators ã†i and ãi in

qubits.

The standard binary mapping represents each level as a binary number such that any

integer is represented as
∑pmax−1

p=0 xp2
p, where p is the qubit id. The state [|0〉, |1〉, |2〉, |3〉,

|4〉, ...]T is isomorphic to [|000〉, |001〉, |010〉, |011〉, |100〉, ...]T , where a mapping to 3 qubits

was used in this example. Hence each QHO eigenlevel l is a string of 0s and 1s. Any single-

mode operator used in constructing Hamiltonian HB can be expressed in terms of elements

|l〉〈l′|, where l and l′ denote two vibrational levels. In qubit space this leads to operators of

the form |x0...xpmax〉〈x′0...x′pmax
| where each xp is a binary value and pmax is the number of

qubits used in the mapping for a particular mode. As |x0...xpmax〉〈x′0...x′pmax
| is equivalent

to |x0〉〈x′0|⊗ . . .⊗|xpmax〉〈x′pmax
|, in the latter expression one of four operators is substituted

for each single-qubit operator:

|0〉〈1| = 1

2
(X + iY )[= σ−] (S11)

|1〉〈0| = 1

2
(X − iY )[= σ+] (S12)
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|0〉〈0| = 1

2
(1 + Z) (S13)

|1〉〈1| = 1

2
(1− Z) (S14)

where {X, Y, Z} are the Pauli operators, and 1 is the identity operator. In the standard

binary mapping, every term |l′〉〈l| leads to a qubit-space operator that operates on all pmax

qubits.

The less compact unary encoding (for which the earliest reference we are aware of is

[Som05]) maps [|0〉, |1〉, |2〉, |3〉, |4〉, ...]T to [|00001〉, |00010〉, |00100〉, |01000〉, ...], requiring

more qubits but fewer gates to implement an operator. There are Lmax + 1 qubits in

this mapping, as one qubit is reserved for the vacuum state. Though the standard binary

mapping utilizes the full Hilbert space, the unary code uses only a small subspace of it. As a

result, individual terms of the number operator, i.e. l|l〉〈l|, are represented by a single qubit

operator using Eq. S14; nearest-level terms like |l + 1〉〈l| can be represented by two-qubit

operators σ−l σ
+
l+1.

In real-world implementations, the choice of mapping is likely to depend on a given

hardware’s qubit count and connectivity. In near-term devices without error correction, the

coherence time will have to be considered as well, as different mappings produce circuits

of differing depths. Detailed analysis of the cost of each mapping, for a given Lmax, is

deferred to future work, as this requires detailed consideration of circuit optimization, gate

cancellations, and qubit connectivity constraints.

The quantum circuit model requires us to set a finite cutoff for the maximum occupation

number of each QHO. For vibronic transitions in real molecules, the number lj of vibrational

quanta in the jth mode does not exceed some maximum value Lmax,j (assuming some finite

precision) [JSB07]. In practice, on a future real-world quantum computer, the simplest

solution is to increase Lmax,j values for all modes until convergence is reached.

S3. FINITE TEMPERATURE ALGORITHM

Finite temperature effects can be included by appending additional steps before and after

the zero temperature algorithm, in line with previous work [HY17]. The idea is to begin with

a purification of the mixed state of the Bolzmann distribution, by having each independent
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mode be represented by two subspaces in a purified Fock state. It is necessary to introduce

the scalar function EA(n), defined as the energy of a Fock state in PES A:

EA(n) = EA([n0, ..., nM ]) =
∑
i

ωi(ni +
1

2
), (S15)

where ni is the occupation number of the ith mode.

First we add an additional register, I (for ‘initial state’), of ancilla qubits. Registers I

and S must have the same size, and we prepare a pure state |ΨIS〉 =
∑
|φ〉I |ψ〉S such that

ρth = TrI(|ΨIS〉〈ΨIS|) is the desired Gibbs thermal state in the initial PES. Before running

the QPE routine, we need the pure state

|ΨIS〉 =
∑
n

κn|n〉I ⊗ |n〉S =
∑
n

√
〈n|ρth|n〉|n〉I ⊗ |n〉S (S16)

where |n〉 = |n0, ..., nM〉. To prepare |ΨIS〉 = V̂ (β)|0〉I |0〉S, one implements the unitary

operator

V̂ (β) =
M⊗
i

exp(θi(α
†
ia
†
i − αiai)/2) (S17)

where α†i and αi are ladder operators for the ith vibrational mode of register I. The inverse

temperature is β = 1/kBT , where kB is the Boltzman constant and T is temperature. Angle

θi is defined by tanh(θi/2) = exp(−β~ωi/2) =
√
ni/(ni + 1) and ni is the mean quantum

number for mode i [MRN+89, HY17]. This operator can be applied using the previously

discussed procedure to map arbitrary bosonic operators to qubit operators (Section S2).

After this initial state preparation step, the remainder of the algorithm proceeds as before,

but with the following additional elements. After the QPE circuit is applied using registers

S and E as before, registers I and E are both measured. The measured state |nI〉 in register

I effectively acts as a label, indicating the vibrational eigenstate (Fock state) in the initial

PES from which the measured transition occurred. Finally, the contribution to the vibronic

spectrum is ε̃i − EA(nI), instead of just ε̃i, because the measured transition “began” in

vibrational state |nI〉 in the A basis. An outline of the procedure is given in Appendix S4

and a quantum circuit diagram is shown in Fig. 2 (main text). For anharmonic PESs, a

similar procedure would be used, with an appropriate anharmonic preparation step used in

place of Eq. S17 [Chr04, PW09].
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S4. OUTLINE OF ALGORITHMS

What follows is an outline of the zero- and finite-temperature algorithms for calculating

molecular vibronic spectra.

Some conceptual clarifications are worth noting. In both the zero- and finite-temperature

algorithms, the procedure is to produce a histogram with an arbitrary energy resolution,

determined by the number of bits used in quantum register E. Quantum superposition is

the key to the algorithm; it removes the need to consider each state explicitly. Even in

the finite temperature case, one does not explicitly consider every non-negligible state of the

Boltzmann distribution—one prepares a superposition all the possibilities for initial and final

states, and then samples their energies. The problem is effectively reduced to sampling from

a one-dimensional probability distribution corresponding to the (zero- or finite-temperature)

vibronic energy spectrum.

Zero-temperature algorithm:

1. Initialize state |0〉S|0〉E.

2. Run QPE using Hamiltonian HB, expressed in the A basis: |0〉|0〉 →
∑

i ci|ψi〉|ε̃i〉.

3. Measure register E to obtain eigenenergy ε̃i:
∑

i ci|ψi〉|ε̃i〉 → Aj

∑
k∈Dj

ck|ψk〉|ε̃j〉,

where Aj is a renormalization constant.

4. If desired, perform additional analysis on the preserved state Aj

∑
k∈Dj

ck|ψk〉 in regis-

ter S, as discussed in the main text. For example, perform a SWAP test with another

state, or resolve one of the Fock states in Dj.

5. Repeat these steps to obtain a histogram of ε̃i values.

Finite-temperature algorithm:

1. Initialize state |0〉I |0〉S|0〉E.

2. Prepare the thermal state by acting on registers I and S: V̂ (β)|0〉|0〉|0〉 →
∑

n κn|n〉|n〉|0〉.

3. Apply QPE withHB, on registers S and E:
∑

n κn|n〉|n〉|0〉 →
∑

n κn|n〉
∑

i(cn,i|ψi〉|ε̃i〉).

4. Measure both registers E and I: → |nI〉(Aj,nI

∑
k∈Dj

cnI ,k|ψk〉)|ε̃j〉.
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5. Perform optional analysis on register S, as previously mentioned.

6. The contribution to the histogram is then ε̃j − EA(nI). (Contrast this with the zero-

temperature case, where EA(nI) is omitted.)

S5. COMPUTATIONAL SCALING

Below we assume the parameters S, ~δ, ΩA, and ΩB are given. Setting aside more advanced

linear algebra approaches, both the q-p construction (HB = 1
2

∑M
k ωBk(q2Bk + p2Bk)) and the

ladder operator construction (HB =
∑

i ωBi[b
†
ibi + 1

2
]) require O(M2) classical preparation

steps, since all transformations involve only matrix-vector multiplications or diagonal-dense

matrix multiplications. For comparison, VBS requires O(M3) classical steps because it

uses the singular value decomposition. As described in the main text, one element of our

algorithm uses Hamiltonian simulation to implement HB for use in the quantum phase

estimation (QPE) algorithm. An essential consideration, especially for near- and mid-term

hardware, is the computational cost of implementing one Trotter step of the Hamiltonian’s

propagator.

Each operator bi is a linear combination of terms in {a†i} and {ai}. The operator HB,

after summing the number operators in {b†ibi} and grouping terms, is a linear combination

of terms in {aiaj},{a†iaj}, {aia
†
j}, and {a†ia

†
j}. Hence in the worst case, the number of terms

in HB scales as O(M2), meaning the number of operations in a Trotter step is O(M2) as

well.

The circuit depth of a Trotter step scales as O(M), i.e. linear-depth. To see this, consider

placing two-boson operators (each corresponding to an interaction term such as a†iaj) on all

boson pairs i, j that satisfy (i− j) = w mod Nq, where w ∈ {1, 2, ..., Nq − 1}. For a single

value of w, this gate placement has constant depth. Iterating through all values of w yields

a circuit with linear depth O(M), and single-boson terms do not change this scaling. The

same argument applies to the method based on q̂ and p̂ operators. Note that the finite-

temperature algorithm scales no worse than the zero-temperature procedure, since the state

preparation takes O(M) operations with O(1) depth.

When anharmonic effects are included, the complexity of implementing a Trotter step

will be O(Mk), where k is the highest-order term in the Taylor expansion of the anharmonic

Hamiltonian. It is possible that there will be methods for reducing this complexity in the
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anharmonic case, for example by using other other classes of functions in the expansion, e.g.

the Morse potential.

S6. MOLECULAR DATA

The four simulated molecules, all of the C2v point group, have three vibrational modes:

a bending mode, a symmetric stretch, and an anti-symmetric stretch. Due to symmetry,

the first two modes are decopuled from the anti-symmetric mode, assuming the harmonic

approximation. We consider only the two coupled modes in the harmonic analyses.

For all molecules other than NO2, we are effectively calculating the photoelectron spec-

trum, as we are considering an ionization process. Additionally, because of the experimental

difficulty in photon counting for higher occupation numbers, in the future it is possible that

these molecules might be more easily simulated on a universal quantum computer than a pho-

tonic device [CRE+18, SLZ+18]. The electronic transitions are SO−2 →SO2+e− [LYKC09],

H2O(D2O)→H2O
+(D2O

+)+e− [Cha08], and NO2’s ground to excited state transition 2A1 →
2B2 [Ruh94].

The following parameters were used, taken from the literature. S and δ are dimensionless;

energies of ~ω are in wavenumbers, cm−1.

SO−2 → SO2 + e− [LYKC09]:

SSO2 =

 0.9979 0.0646

−0.0646 0.9979

 (S18)

δSO2 =

−1.8830

0.4551


~ωSO−2

=

943.3

464.7


~ωSO2 =

1178.1

518.8


H2O → H2O

+ + e− [Cha08]:

SH2O =

0.9884 −0.1523

0.1523 0.9884

 (S19)
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δH2O =

0.5453

4.2388


~ωH2O =

3862

1649


~ωH2O+ =

2633

1620


D2O → D2O

+ + e− [Cha08]:

SD2O =

0.9848 −0.1737

0.1737 0.9848

 (S20)

δD2O =

0.7175

4.8987


~ωD2O =

2785

1207


~ωD2O+ =

1915

1175


NO2(

2A1 → 2B2) [Ruh94]:

SNO2 =

0.938 −0.346

0.346 0.938

 (S21)

δNO2 =

−4.0419

5.3185


~ωNO2(gr) =

1358

757


~ωNO2(ex) =

1461

739


For our anharmonic simulation, we used the same Duschinsky matrix as before [LYKC09],

but used the anharmonic PES for the electrically neutral SO2 from Smith et al. [SLN84].
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We use a harmonic potential energy surface only for the initial PES SO2
−, which is a good

approximation because the initial vibrational state is in the ground state (Fock vacuum state)

of SO2
−, i.e. the initial state is at the bottom of the PES, where the harmonic approximation

is valid. Additionally, the third vibrational mode can no longer be considered decoupled

when anharmonic effects are included, making this a simulation of all three vibrational

modes. Hence, for the anharmonic spectrum, the following parameters are taken from Lee

et al. [LYKC09]:

SSO−2 →SO2
=


0.9979 0.0646 0

−0.0646 0.9979 0

0 0 1

 (S22)

δSO−2 →SO2
=


−1.8830

0.4551

0

 (S23)

~ωSO−2
=


943.3

464.7

1138.6

 (S24)

And from Smith et al. [SLN84]:

~ωanharm
SO2

=


1171

525

1378

 (S25)

We then include the third- and fourth-order terms in the Taylor expansion (Eq. 8 in the

main text). Table I gives the coefficients for the anharmonic terms q1q1q1, q1q1q2, q1q2q2,

q1q3q3, q2q2q2, q2q3q3, q1q1q1q1, q1q1q2q2, q1q1q3q3, q2q2q2q2, q2q2q3q3, and q3q3q3q3. All of these

operators may be mapped to qubit-based Pauli operators using exactly the same procedure

that was outlined before (Section S2).

S7. ERROR ANALYSIS

We studied truncation errors, i.e. those due to insufficiently large Lmax, primarily because

this type of error is not present in standard classical vibronic simulations, which are not based
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k111 k112 k122 k133 k222 k233 k1111 k1122 k1133 k2222 k2233 k3333

44 -19 -12 159 -7.0 4.7 1.8 -3.1 15 -1.4 -6.5 3.0

TABLE I. Higher-order terms used in the anharmonic potential energy surface of the neutral SO2

molecule [SLN84]. All values are in units of cm−1.

FIG. 1. L1-norm errors between exact and approximate vibronic spectra, for molecules SO2, H2O,

D2O, and NO2 (where D is deuterium), where each eigenvalue was broadened with a Gaussian

of width 100 cm−1 to make error analysis possible (broadening is performed after the histogram

is constructed). H2O, D2O, and NO2 were chosen because they have particularly high phonon

occupation numbers, necessitating a large QHO cutoff Lmax. In general a larger displacement δ

leads to a larger required cutoff. In this simulation, the mode with a smaller δ was assigned a

converged Lmax; hence we isolated the effects of the variable of the more significant (larger δ)

mode by varying its Lmax.

on diagonalizing HB [RR00, JSB07, BBBS09, Huh11]. All results are obtained by creating

HB with truncated ladder operators, diagonalizing the Hamiltonian, calculating FCFs, and

binning the results in bins of width 1 cm−1.

To make our error analysis method possible, the spectra in this work were broadened

with a Gaussian of width 100 cm−1, a width that represents . 1% of the spectral range
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for these four molecules. The broadening is a distinct separate step, and is performed after

formation of the histogram. Errors were calculated using the L1 norm between the exact

and approximate spectra (both broadened),

εL1 =

∫
|FCPexact(ω)− FCPapprox(ω)|dω. (S26)

Because FCF profiles have unit norm, the worst case of two spectra with zero overlap yields

εL1 = 2.

The exact and approximate Hamiltonians were constructed using equation S10, varying

ladder operator size to reflect Lmax. The numerically exact results were considered converged

when the L1 norm between two subsequent Lmax values was below 10−4. We validated

our method’s numerically exact results by demonstrating that our results for SO2 were

identical to those produced by the software program hotFCHT [BFK98], which uses an

entirely different algorithmic approach based on recurrence formulas.

For all simulations, the mode that required a smaller cutoff was set to a high converged

value, so that we isolated the effect of Lmax for the mode requiring a larger cutoff. This is

the mode that is more shifted, i.e. the one with larger |δ|. Hence for SO2 we varied the cutoff

for the first mode, while for the other three molecules we varied the cutoff for the second

mode. We plotted the approximate spectra (dotted lines, Fig. 3) in order to demonstrate the

qualitative effect of an insufficient cutoff. The approximate spectra in Fig. 3 were arbitrarily

chosen such that εL1 lies between 0.2 and 0.25. For these illustrative approximate spectra,

εL1 and Lmax are {0.208, 0.231, 0.228, 0.241} and {10, 45, 57, 61} for SO2, H2O, D2O, and

NO2, respectively.

Qualitatively, the effect of a too-low cutoff number is to preferentially blue shift the

higher energy peaks (Fig. 3 in main text). This numerical artifact results from the fact that

the Lmax cutoff effectively introduces anharmonicity to the problem; operators constructed

from exact (infinite) ladder operators will not have the same spectrum as those constructed

from truncated operators. As Lmax is increased, the low energy peaks are converged much

sooner than the high energy peaks are. For instance, in the approximate H2O spectrum

shown, there is an effectively perfect match below ∼15,000 cm−1, but the blue-shift errors

become even larger than ∼100 cm−1 for eigenvalues above ∼23,000 cm−1. Being aware of

this consistent qualitative error behavior can provide guidance when interpreting results

from an implementation of our quantum algorithm. Additional results on convergence with
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increasing Lmax are shown in Section S7. When using a future quantum computer, one

would need to run the algorithm with increasing Lmax until the spectrum is converged.

Fig. 1 shows εL1 as a function of Lmax, again for the mode with larger δ. The approximate

Lmax cutoffs at which the error can be considered converged are [12, 51, 64, 69] respectively

for SO2, H2O, D2O, and NO2. For this small set, the Lmax order matches the order of

increasing δ, which is the expected approximate trend. Using the standard binary mapping

for QHO levels (which requires dlog2 Lmaxe for a given mode) would mean that the number

of qubits required for the larger-δ mode are 4, 6, 6, and 7 qubits, respectively.

Counter-intuitively, Lmax must be substantially larger than the highest QHO level at

which appreciable intensity exists. For example, one may naively expect that Lmax=8 would

be sufficient for SO2, since the FC factor
∑

n′1
|〈0|n′0 = 8〉|2 is a near-negligible value of ∼

1.6× 10−3 (just 0.6% of the largest FCF). But Lmax=13 is required for eigenvalue positions

and the L1-norm error to converge. This is despite the fact that transitions to levels 12 and

13 are very small, with
∑

n′1
|〈0|n′0 = 12〉|2 ≈ 5.2×10−5 and

∑
n′1
|〈0|n′0 = 13〉|2 ≈ 1.5×10−5.

The truncation values are not expected to depend explicitly on M because the intensities

of a given mode’s vibronic progression is known to approximately follow the rapidly-decaying

Poisson distribution [MK08].
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