Supporting Information

Comprehensive evaluation of surface potential characteristics on mesenchymal stem cells' osteogenic differentiation

Fei Jia¹, Suya Lin¹, Xuzhao He¹, Jiamin Zhang¹, Shuxian Shen¹, Zhiying Wang¹, Bolin Tang^{1,2}, Cheng Li¹, Yongjun Wu¹, Lingqing Dong^{1,3}, Kui Cheng¹, Wenjian Weng^{1,*}

¹School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.

²College of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, China.

³The Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.

*Correspondence and requests for materials should be addressed to: wengwj@zju.edu.cn (W. Weng)

Table S1. The positive and negative potential surfaces of the materials promoted the osteogenic differentiation of the cells (positive potential surface (P), negative potential surface (N))

Material	Potential	Potential	Cell	Best	Reference
	properties	strength /	types	effect	
		charge density			
НА	P / N	5.2 μC/cm	mMSC	P > N	Key Engineering
					Materials
					2012, 529-530,
					357-360
НА	P / N	$0.05~\mu C/cm^2$.	Wistar	N > P	Journal of
			rats		Biomedical
					Materials Research
					Part A 2010, 79A (3),
					627-634
BiFeO ₃	P / N	75 mV (KFM)	MSCs	P > N	Advanced
					Functional
					Materials 2017, 27
					(47)
LiNbO ₃	P / N	78 μC/cm ²	MSCs	P > N	Advanced
					Healthcare
					Materials 2015,4
					(7), 998-1003
PVDF	P / N	d33=32 pc/N	hMSCs	N > P	Journal of
					Biomedical
					Materials Research
					Part A 2015, 103 (3),
					919-928

From these results, it could be seen that the relative strength of positive potential and negative potential promoting osteoblastic differentiation of cells is controversial.

Figure S1. The schematic diagram of magnetoelectric coupling of TD/P (VDF-TrFE) magnetoelectric film. Under the magnetic field drive, the TD particles undergo magnetostriction, squeeze the piezoelectric phase PVDF matrix, and generate magnetoelectric coupling to change the surface potential of the films.

Table S2 Piezoelectric coefficient of 13 % TD/P (VDF-TrFE) magnetoelectric film under different electric field strength. The films could be stable poled under the electric field strength of 52 V/μm, but when the electric field improved to 60 V/μm, the films were at risk of breakdown.

Electric field strength (V/μm)	0	45	52	60
Positive potential film d ₃₃ (pc/N)	0	+10	+12	+14
Negative potential film d ₃₃ (pc/N)	0	- 10	- 12	- 14

Figure S2. The magnetoelectric properties of poled TD/P (VDF-TrFE) magnetoelectric film with different TD weight percentage content. The $/\phi_{ME}/$ of 13% and 15% film were similar, but the 15 % film was difficult to be polarized, so the 13 % film was the best in magnetoelectric properties in a film that can be stably polarized.

Figure S3. The surface average roughness (Ra) of non-poled film (A), positive potential film (P-film) and negative potential film (N-film) (B, C) were determined to 117 ± 10 nm 112 ± 15 nm and 119 ± 13 nm, respectively.

Figure S4. C 1s XPS spectra of non-poled film (A), P-film and N-film (B, C), respectively

Table S3. Summary of C 1s XPS spectra of 13 % TD/P (VDF-TrFE) magnetoelectric film.

	Bind energy(eV)				Ratio
Sample	-CF ₂ -	-CFH-	-СН ₂ -	Organic	-CH ₂ -/-CH ₂ -
				contaminant	
Non-poled film	290.86	288.73	286.36	284.52	0.81
Positive potential film	290.40	288.29	285.85	283.93	0.83
Negative potential film	290.24	288.12	285.71	283.79	0.78

Table S4. The correlation of thickness of NdFeB magnet with magnetic field intensity generated in PMMA support

Thickness of the magnet (mm)	Approximate magnetic field intensity (Oe)
0	0
10	1400
14	2100
20	2800
25	3200

Figure S5. The adhesion (A), proliferation (B) and ALP activity (C) of MSCs cultured on non-poled film, P-film and N-film.

Figure S6. Cellular morphology of MSCs on P-film and N-film. The CLSM images of MSCs culture for 7 day

Figure S7. Adsorption density of FN protein on non-poled film, P-film and N-film.

Table S5. Primers Used for RT-PCR.

Gene	forward primer sequence (5'-3')	reverse primer sequence (5'-3')
α5	AGACATCCACTCCCTCTACAA	AGTAGGTCATCTAGCCCATCTC
β1	ATCCCAATTGTAGCAGGCGTGGTT	GACCACAGTTGTCACGGCACTC
Runx-2	CCTGAACTCTGCACCAAGTCCT	TCATCTGGCTCAGATAGGAGGG
OCN	GCAATAAGGTAGTGAACAGACTCC	CCATAGATGCGTTTGTAGGCGG
β-actin	AATGTGGCTGAGGACTTTG	GGGACTTCCTGTAACCACTTATT

Figure S8. High-voltage polarization device.

Figure S9. Home-mode equipments for cell culture under magnetic field.