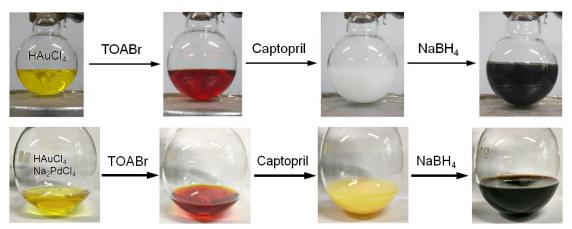
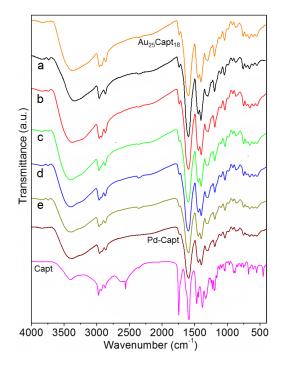
Supplementary Information

Ultrafine AuPd Nanoclusters on Layered Double Hydroxides by the Capt-Capped AuPd Cluster Precursor Method: Synergistic Effect for Highly Efficient Aerobic Oxidation of Alcohols


Jin Li, Yang Xu, Shuai Wang, and Hui Zhang*

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 98, Beijing 100029, China


*Email: huizhang67@gst21.com, zhanghui@mail.buct.edu.cn Fax: +8610-6442 5385 Tel.: +8610-6442 5872

Preparation of Au₂₅Capt₁₈ NCs

The water-soluble, captopril-capped Au₂₅ NCs were prepared by a size-focusing synthetic methodology according to a previous report by Jin et al.¹ Typically, 8.23 mL of 10 mg/mL HAuCl₄·4H₂O methanol solution was added into a 25 mL flask containing 1.77 mL of methanol under vigorously magnetic stirring at 25 °C. Then, 126.8 mg of TOABr (0.23 mmol) was added to the solution, and the solution color changed from yellow to deep red. After 20 min, captopril solution (1 mmol, dissolved in 5 mL of methanol) was rapidly injected into above mixture under vigorous stirring. The solution became white. After 30 min, an aqueous solution of NaBH₄ (2 mmol, dissolved in 5 mL of ice-cold water) was added rapidly to the mixture under vigorous stirring and the solution immediately turned brown-blackish (photos shown in Figure S1). The reaction was allowed to proceed for 8 h and the reaction mixture was centrifuged (5000 rpm, 20 min) to remove unreacted, insoluble Au(I):SR intermediate complexes. The supernatant was collected and the solvent was removed by rotary evaporation (30 °C, 20 min) followed by adding ethanol (20 mL) and standing overnight to obtain a brown-blackish precipitate, which was dried in vacuum at 30 °C giving a raw product. Then, the raw product was extracted with minimum amount of methanol several times followed by adding ethanol (30 mL) and centrifuging (3000 rpm) for 10 min to obtain a purified brown-black precipitate, which was dried at 30 °C in vacuum overnight giving a purified brown-black product $Au_{25}Capt_{18}$ NCs.

Figure S1. The color changes during the preparation of Au₂₅Capt₁₈ (upper) and AuPd NCs (bottom).

Figure S2. The FTIR spectra of Au₉₆Pd₄-Capt (a), Au₉₁Pd₉-Capt (b), Au₈₇Pd₁₃-Capt (c), Au₆₉Pd₃₁-Capt (d), and Au₆₁Pd₃₉-Capt (e) compared with Au₂₅Capt₁₈, Pd-Capt and Capt.

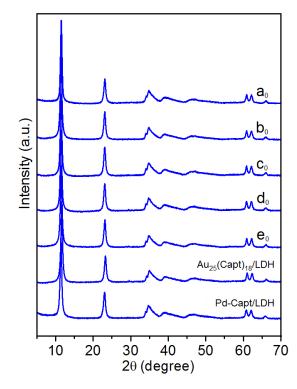
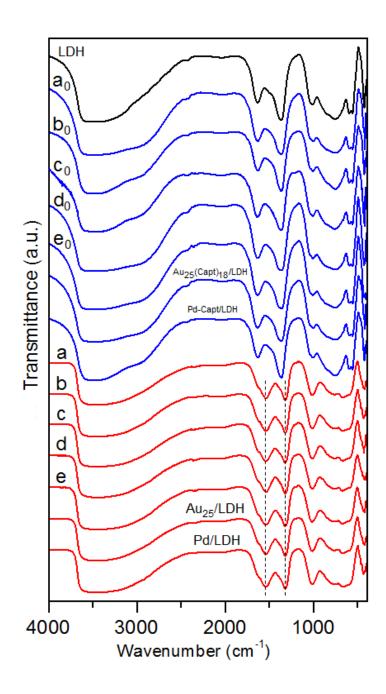
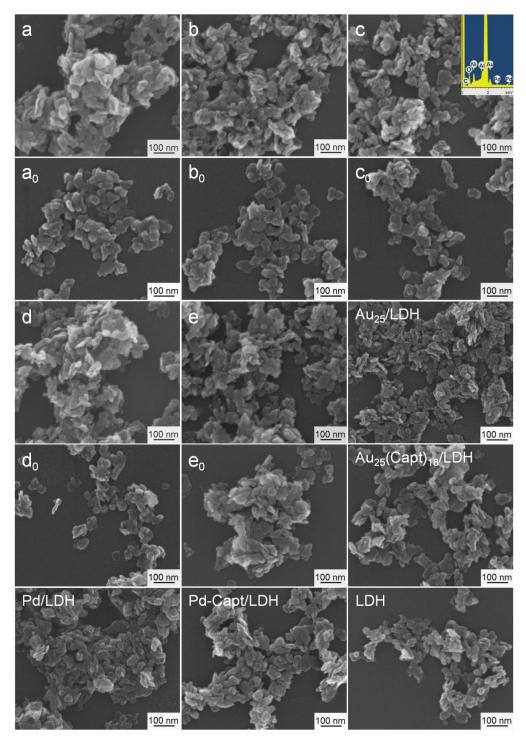
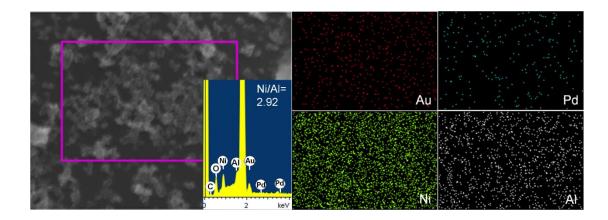
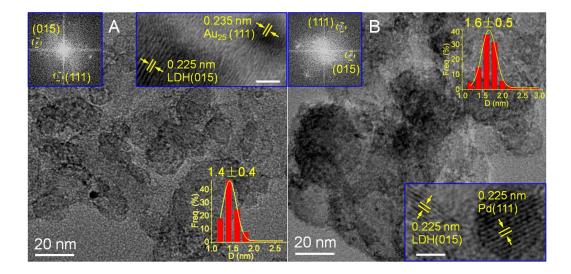
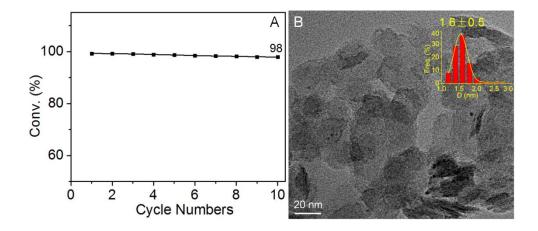




Figure S3. XRD patterns of the catalyst precursors $Au_{96}Pd_4$ -Capt/LDH (a_0), $Au_{91}Pd_9$ -Capt/LDH (b_0), $Au_{87}Pd_{13}$ -Capt/LDH (c_0), $Au_{69}Pd_{31}$ -Capt/LDH (d_0), and $Au_{61}Pd_{39}$ -Capt/LDH (e_0) compared with $Au_{25}(Capt)_{18}$ /LDH and Pd-Capt/LDH.

Figure S4. FTIR spectra of Au₉₆Pd₄/LDH (a), Au₉₁Pd₉/LDH (b), Au₈₇Pd₁₃/LDH (c), Au₆₉Pd₃₁/LDH (d), and Au₆₁Pd₃₉/LDH (e) compared with Au₂₅/LDH, Pd/LDH, corresponding precursors (a₀-e₀), Au₂₅(Capt)₁₈/LDH, Pd-Capt/LDH and LDH support.

Figure S5. SEM images of Au₉₆Pd₄/LDH (a), Au₉₁Pd₉/LDH (b), Au₈₇Pd₁₃/LDH (c), Au₆₉Pd₃₁/LDH (d), and Au₆₁Pd₃₉/LDH (e) compared with Au₂₅/LDH, Pd/LDH, corresponding precursors (a₀-e₀), Au₂₅(Capt)₁₈/LDH, Pd-Capt/LDH and LDH support.


Figure S6. SEM, EDS and metal element mapping images of typical Au₈₇Pd₁₃/LDH.

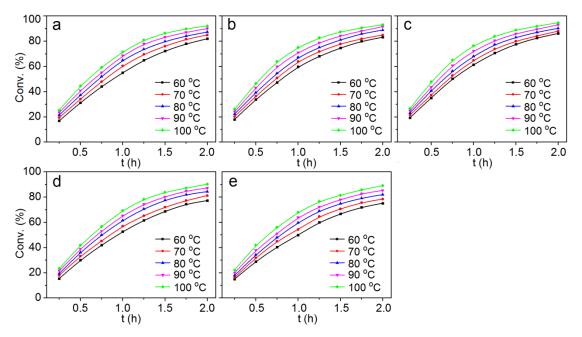

Figure S7. N₂ adsorption-desorption isotherms and pore size distribution curves of Au₉₆Pd₄/LDH (a), Au₉₁Pd₉/LDH (b), Au₈₇Pd₁₃/LDH (c), Au₆₉Pd₃₁/LDH (d) and Au₆₁Pd₃₉/LDH (e) compared with LDH support.

Figure S8. HRTEM images of monometallic Au₂₅/LDH (A) and Pd/LDH (B) (insets: FFT, histogram of particle size distribution and the high-magnification HRTEM (scale bar: 1 nm)).

Figure S9. Recycling tests (A) over the Au₈₇Pd₁₃/LDH and HRTEM image (B) of the recovered Au₈₇Pd₁₃/LDH. Reaction conditions: 1-Phenylethanol (10 mmol), catalyst Au₈₇Pd₁₃/LDH (Au: 0.015 mol%), toluene (10 mL), O₂ (20 mL/min), 1 h.

Figure S10. Conversion versus time plots for the oxidation of 1-phenylethanol over the series of catalysts Au_xPd_y/LDH (x/y = 96/4 (a), 91/9 (b), 87/13 (c), 69/31 (d) and 61/39 (e)) at varied reaction temperatures.

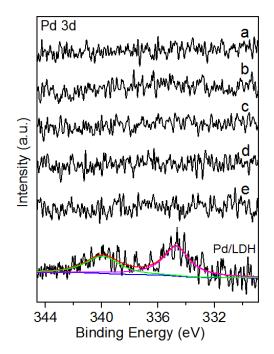
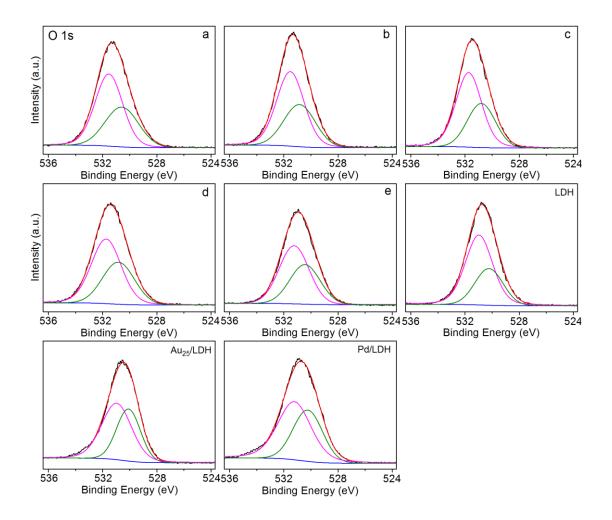



Figure S11. Pd 3d XPS spectra of Au₉₆Pd₄/LDH (a), Au₉₁Pd₉/LDH (b), Au₈₇Pd₁₃/LDH (c), Au₆₉Pd₃₁/LDH (d), and Au₆₁Pd₃₉/LDH (e) compared with Pd/LDH.

Figure S12. Ni 2p XPS spectra of $Au_{96}Pd_4/LDH$ (a), $Au_{91}Pd_9/LDH$ (b), $Au_{87}Pd_{13}/LDH$ (c), $Au_{69}Pd_{31}/LDH$ (d), and $Au_{61}Pd_{39}/LDH$ (e) compared with Au_{25}/LDH , Pd/LDH and LDH support.

Figure S13. O 1s XPS spectra of Au₉₆Pd₄/LDH (a), Au₉₁Pd₉/LDH (b), Au₈₇Pd₁₃/LDH (c), Au₆₉Pd₃₁/LDH (d), and Au₆₁Pd₃₉/LDH (e) compared with Au₂₅/LDH, Pd/LDH and LDH support.

Samples	Au (wt.%)	Pd (wt.%)	Au (at.%)	Pd (at.%)	Au/Pd (mol/mol) ^a
Au ₂₅ /LDH	0.1982	-	100	0	-
Au ₉₆ Pd ₄ /LDH	0.1918	0.0043	96.01	3.99	96/4
Au91Pd9/LDH	0.1834	0.0096	91.17	8.83	91/9
Au ₈₇ Pd ₁₃ /LDH	0.1824	0.0146	87.09	12.91	87/13
Au ₆₉ Pd ₃₁ LDH	0.1586	0.0384	69.04	30.96	69/31
Au ₆₁ Pd ₃₉ /LDH	0.1502	0.0521	60.92	39.08	61/39
Pd/LDH	-	0.1922	0	100	-
Clusters	Au (µmol/ml)	Pd (µmol/ml)	Au (at.%)	Pd (at.%)	Au/Pd (mol/mol) ^{a,b}
Au ₂₅ (Capt) ₁₈	0.7376	0	100	-	-
Au96Pd4-Capt/LDH	0.6608	0.0276	95.99	4.01	96/4 (24/1)
Au91Pd9-Capt/LDH	0.4994	0.0506	90.80	9.20	91/9 (23/2)
Au ₈₇ Pd ₁₃ -Capt /LDH	0.6474	0.0976	86.90	13.10	87/13 (22/3)
Au69Pd31-Capt LDH	0.5512	0.2484	68.94	31.06	69/31 (20/5)
Au61Pd39-Capt /LDH	0.5947	0.3809	60.96	39.04	61/39 (18/7)

Table S1. ICP data of the Au_xPd_y/LDH catalysts compared with the corresponding Au_xPd_y -Capt NCs.

^{*a*} Au/Pd ratios based on molar percentages of Au or Pd with respect to total metal (Au + Pd).

^b Data in brackets refer to theoretical Au/Pd molar ratios.

Samples	<i>d</i> ₀₀₃ (nm)	<i>d</i> ₁₁₀ (nm)	c(nm) ^a	a(nm) ^a	$D_{003}(nm)^{b}$	$D_{110}({\rm nm})^b$
Au ₂₅ /LDH	0.679	0.1504	2.037	0.3008	8.918	21.01
Au ₉₆ Pd ₄ /LDH	0.682	0.1506	2.046	0.3012	8.717	20.88
Au ₉₁ Pd ₉ /LDH	0.690	0.1508	2.070	0.3016	8.614	20.96
Au ₈₇ Pd ₁₃ /LDH	0.693	0.1512	2.079	0.3024	8.559	21.09
Au ₆₉ Pd ₃₁ /LDH	0.683	0.1513	2.049	0.3026	8.748	20.92
Au ₆₁ Pd ₃₉ /LDH	0.688	0.1510	2.064	0.3020	8.760	20.89
Pd/LDH	0.685	0.1511	2.055	0.3022	8.945	20.91
Au25Capt18/LDH	0.762	0.1520	2.286	0.3040	16.12	22.90
Au96Pd4-Capt/LDH	0.762	0.1522	2.286	0.3044	16.10	22.87
Au91Pd9-Capt/LDH	0.762	0.1522	2.286	0.3044	15.95	22.74
Au ₈₇ Pd ₁₃ -Capt/LDH	0.762	0.1523	2.286	0.3046	15.92	22.68
Au ₆₉ Pd ₃₁ -Capt/LDH	0.764	0.1520	2.292	0.3040	16.08	22.88
Au ₆₁ Pd ₃₉ -Capt/LDH	0.764	0.1518	2.292	0.3036	16.12	22.94
Pd-Capt/LDH	0.764	0.1518	2.292	0.3036	16.06	22.84
LDH	0.760	0.1519	2.280	0.3038	16.04	22.95

Table S2. XRD parameters of the series of Au_xPd_y/LDH catalysts compared with corresponding Au_xPd_y -Capt/LDH precursors and LDH support.

^{*a*} Based on hexagonal crystal system, $a = 2d_{110}$, $c = 3d_{003}$.

^b Estimated by Scherrer equation $D_{\text{(hkl)}} = 0.89\lambda/\beta \cos\theta$ (λ is X-ray wavelength (Cu Kα: 0.15418 nm),

 β is half-height width of the diffraction peak in radian, θ is the Bragg diffraction angle in degree).

Catalysts		k (h ⁻¹) b					
	60 °C	70 °C	80 °C	90 °C	100 °C	-	
	0.8481	0.9912	1.137	1.312	1.524	15.0	
Au ₉₆ Pd ₄ /LDH	(0.9973)	(0.9964)	(0.9944)	(0.9917)	(0.9879)	(0.9985)	
Au91Pd9/LDH	0.9276	1.060	1.209	1.385	1.603	14.0	
	(0.9961)	(0.9945)	(0.9927)	(0.9903)	(0.9842)	(0.9963)	
	1.027	1.191	1.332	1.498	1.712	12.9	
Au ₈₇ Pd ₁₃ /LDH	(0.9941)	(0.9930)	(0.9919)	(0.9903)	(0.9876)	(0.9974)	
	0.760	0.903	1.043	1.197	1.417	15.8	
Au ₆₉ Pd ₃₁ /LDH	(0.9945)	(0.9912)	(0.9871)	(0.9854)	(0.9829)	(0.9973)	
Au ₆₁ Pd ₃₉ /LDH	0.7245	0.8789	1.017	1.170	1.388	16.4	
	(0.9965)	(0.9943)	(0.9916)	(0.9896)	(0.9864)	(0.9971)	

Table S3. Reaction rate constants of the aerobic oxidation of 1-phenylethanol over the series of catalysts Au_xPd_y/LDH . ^{*a*}

 a Reaction conditions: 1-phenylethanol (5 mmol), catalyst (Au: 0.01 mol%), toluene (5 mL), O₂ (20 mL/min), 1 h.

^{*b*} The data in parentheses represent the fitting determination coefficient R^2 .

^{*c*} According to Arrhenius equation: $k = \text{Aexp}(-\text{E}_a/\text{RT})$ (E_a is the apparent activation energy, kJ/mol, *k* is the reaction rate constant, h⁻¹, A is the pre-exponential factor, h⁻¹, R is the molar gas constant, 8.314 J·mol⁻¹·K⁻¹, and T is the absolute temperature, K).

Samples	Au 4f _{7/2} (eV)	ΔBE (eV) ^{<i>a</i>}	Pd 3d _{5/2} (eV)	Ni 2p _{3/2} (eV)	O 1s (eV) (-OH)	O 1s (eV) (O ²⁻)
Au ₉₆ Pd ₄ /LDH	83.10	0.34	n.d.	855.89	531.54	530.59
	82.07	0.47		955.06	(61.44%) 531.52	(38.56%) 530.84
Au ₉₁ Pd ₉ /LDH	82.97	0.47	n.d.	855.96	(62.37%) 531.73	(37.63%) 530.79
Au ₈₇ Pd ₁₃ /LDH	82.86	0.58	n.d.	856.53	(63.29%)	(36.71%)
Au ₆₉ Pd ₃₁ /LDH	83.20	0.24	n.d.	855.78	531.74 (60.64%)	530.83 (39.36%)
Au ₆₁ Pd ₃₉ /LDH	83.29	0.15	n.d.	855.70	531.24	530.43
		0110			(59.86%) 531.52	(40.14%) 530.18
Au ₂₅ /LDH	83.44	-	-	855.68	(59.42%)	(40.58%)
Pd/LDH	-	-	334.71	855.62	531.34 (59.36%)	530.32 (40.64%)
LDH	-	-	-	855.50	530.97	530.23
					(67.25%)	(32.75%)

Table S4. XPS data of the series of Au_xPd_y/LDH catalysts compared with the monometallic Au_{25}/LDH , Pd/LDH and LDH support.

^a Binding energy shift of Au 4f_{7/2} of the Au_xPd_y/LDH catalysts compared with the Au₂₅/LDH.

References

1. Kumar, S.; Jin, R. C. Water-Soluble Au₂₅(Capt)₁₈ Nanoclusters: Synthesis, Thermal Stability, and Optical Properties. *Nanoscale* **2012**, *4*, 4222–4227.