Supporting Information

Rhodium Porphyrin Catalyzed Regioselective Transfer Hydrogenolysis of $\mathrm{C}-\mathrm{C} \sigma$-Bonds in Cyclopropanes with ${ }^{i} \mathrm{PrOH}$
Chen Chen, Shiyu Feng and Kin Shing Chan*
Department of Chemistry, The Chinese University of Hong Kong, Shatin, New
Territories, Hong Kong, People's Republic of China
Email: ksc@cuhk.edu.hk

Table of Contents

1. Attempted Transfer Hydrogenolysis of Cyclopropylbenzene with $\mathbf{H}_{2} \mathrm{O}$

2. Reaction Conditions Optimization

Table S1 Reaction Conditions Optimization

	$>-\mathrm{Ph}$ 50 mM 1a			$\begin{aligned} & \frac{\mathrm{Rh}(\mathrm{ttp}) \mathrm{Me}(\mathrm{n} \text { mol } \%}{\mathrm{C}_{6} \mathrm{D}_{6}, 200^{\circ} \mathrm{C}, \text { time }} \\ & \text { sealed NMR tube } \end{aligned}$	2a		 3a	
Entry ${ }^{a}$	n	m	time	19 Recovery\%	2a Yield\%	3a Yield\%	$\begin{gathered} (\mathbf{1 a}+\mathbf{2 a}+\mathbf{3 a}) \\ \text { Yield } \% \end{gathered}$	Acetone Yield\%
1	0	50	5 d	100	0	0	100	0
2	10	50	5 d	36	24	38	98	40
3	20	50	12 h	0	100	0	100	99
4	20	25	24 h	0	100	0	100	92

${ }^{a}$ NMR yield.
3. Thermal decarboxylation and transesterification of diethyl ethylmalonate (2e)

4. Reaction Time Profile for the Hydrogenolysis of $\mathbf{R h}(\mathbf{t t p}) \mathbf{C H}_{2} \mathbf{C H}_{2} \mathbf{C H}_{2} \mathbf{P h}$ with ${ }^{i}$ PrOH at $180{ }^{\circ} \mathrm{C}$

Figure S1 Reaction Time Profile for the Reduction of $\mathrm{Rh}(\mathrm{ttp}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$ with ${ }^{i} \mathrm{PrOH}$ at $180^{\circ} \mathrm{C}(\mathrm{eq} \mathrm{S} 3)$.

5. Computed B.D.E of Cyclopropane Ring C-C σ-Bond

The bond dissociation energy (B.D.E) of ring $\mathrm{C}-\mathrm{C} \sigma$-bonds in cyclopropanes is estimated based on the method employed by Jones. ${ }^{1} \Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}$ calculated with HF/6-31G*/T1 method using Spartan 2018.

Table S2 Calculated B.D.E of Ring C-C σ-Bonds of Monosubstituted Cyclopropanes

	$F G \stackrel{\substack{\hat{s} \\ i}}{\substack{i \\ i}}$	
$\mathrm{Ph}(19)$	44.6	55.6
$\mathrm{C}(\mathrm{O}) \mathrm{Ph}(1 \mathrm{~b})$	53.8	58.8
COOEt (1c)	55.9	65.4
CN (1d)	49.6	50.8
$(\mathrm{COOEt})_{2}(\mathbf{1 e})$	53.6	58.3

Table S3 Calculated B.D.E of Ring C-C σ-Bonds of 1,2-Disubstituted Cyclopropanes

CG			
Ph (trans) (trans-1f)	32.4	43.1	43.1
$\mathrm{C}(\mathrm{O}) \mathrm{Ph}$ (trans) (trans-1g)	43.5	46.5	54.6
COOEt (trans) (trans-1h)	45.6	45.7	56.7
CN (trans) (trans-1i)	41.0	41.6	52.9

Table S4 Calculated B.D.E of Ring C-C σ-Bonds of 1,2,3-Trisubstituted Cyclopropanes

COOEt (cis,trans) (1k)	34.2	43.0
C(O)Ph (trans,trans) (1j)	38.1	43.4

Calculation Process

Monosubstituted Cyclopropanes

$\Delta \operatorname{Hrxn} 2=\mathrm{BDE}($ bond $\mathbf{1})+\mathrm{BDE}($ bond 2)

$$
\begin{aligned}
& =\Delta \mathrm{H}_{\mathrm{f}}{ }^{0} 2+2 \times \Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}(\mathrm{H} \cdot)-\Delta \mathrm{H}_{\mathrm{f}}{ }^{0} 3 \\
& =\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}} 2+2 \times(52.1)-\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}{ }_{3}
\end{aligned}
$$

$\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}{ }_{2}=\mathrm{BDE}($ bond $\mathbf{1})+\mathrm{BDE}($ bond $\mathbf{2})+\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}{ }_{3}-104.2$
$\operatorname{BDE}(\mathrm{C}-\mathrm{C})=\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}} 2-\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}{ }_{1}$

$$
=\mathrm{BDE}(\text { bond } \mathbf{1})+\mathrm{BDE}(\text { bond } \mathbf{2})+\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}} 3-\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}{ }_{1}-104.2
$$

Table S5 Calculations on B.D.E of Proximal Ring C-C σ-Bonds of Monosubstituted Cyclopropanes

FG	$\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{O}}{ }_{1}$ ($\mathrm{kcal} / \mathrm{mol}$)	$\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{O}}{ }_{3}$ ($\mathrm{kcal} / \mathrm{mol}$)	Bond $1(\mathrm{kcal} / \mathrm{mol})^{2}$		Bond $2(\mathrm{kcal} / \mathrm{mol})^{2}$		BDE (C-C) $/ \mathrm{kcal} / \mathrm{mol}$
Ph (1a)	37.00	0.43		86.7		98.7	44.6
$\mathrm{C}(\mathrm{O}) \mathrm{Ph}$ (1b)	2.79	-30.93	 or	93		98.8	53.88
COOEt (1c)	-80.94	-115.19		95.6		98.8	55.95
CN (1d)	45.29	8.81		94		96.3	49.62

$(\mathrm{COOEt})_{2}$ (1e)	-172.74	-205.20		91.5		98.8	53.64

$\operatorname{BDE}(\mathrm{C}-\mathrm{C})=\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{O}} 2-\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{O}}{ }_{1}$

$$
=\mathrm{BDE}(\text { bond } \mathbf{1})+\mathrm{BDE}(\text { bond } \mathbf{2})+\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}{ }_{3}-\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}{ }_{1}-104.2
$$

Table S6 Calculations on B.D.E of Distal Ring C-C σ-Bonds of Monosubstituted Cyclopropanes

FG	$\begin{gathered} \Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}} \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$	$\begin{gathered} \Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{3}} \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$	Bond $1(\mathrm{kcal} / \mathrm{mol})^{2}$		Bond $2(\mathrm{kcal} / \mathrm{mol})^{2}$		BDE (C-C) $/ \mathrm{kcal} / \mathrm{mol}$
$\mathrm{Ph}(1 \mathbf{a})$	37.00	-0.57		98.7		98.7	55.63
$\mathrm{C}(\mathrm{O}) \mathrm{Ph}$ (1b)	2.79	-31.78		98.8		98.8	58.83
COOEt (1c)	-80.94	-108.93		98.8		98.8	65.41
CN (1d)	45.29	7.78		96.3		96.3	50.89
$(\mathrm{COOEt})_{2}$ (1e)	-172.74	-207.77		98.8		98.8	58.37

1,2-Disubstituted Cyclopropanes

$\operatorname{BDE}(\mathrm{C}-\mathrm{C})=\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}} 2-\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{O}}{ }_{1}$

$$
=\mathrm{BDE}(\text { bond } \mathbf{1})+\mathrm{BDE}(\text { bond } \mathbf{2})+\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}{ }_{3}-\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}{ }^{1}-104.2
$$

Table S7 Calculations on B.D.E of Bond i of 1,2-Disubstituted Cyclopropanes

FG	$\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}{ }_{1}$ (kcal/mol)	$\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}{ }_{3}$ (kcal/mol)	$\begin{gathered} \text { Bond } 1 \\ (\mathrm{kcal} / \mathrm{mol})^{2} \end{gathered}$		Bond $2(\mathrm{kcal} / \mathrm{mol})^{2}$		BDE (C-C) /kcal/mol
$\begin{gathered} \mathrm{Ph} \\ (\text { trans-1f) } \end{gathered}$	59.89	25.7		85.4		85.4	32.41
$\begin{gathered} (\mathrm{CO}) \mathrm{Ph} \\ (\text { trans- } \mathbf{1 g}) \end{gathered}$	25.67	-5.03		85.4	 or	93	43.5
$\begin{gathered} \text { COOEt } \\ (\text { trans- } \mathbf{1 h}) \end{gathered}$	-58.74	-89.88		85.4		95.6	45.66
$\begin{gathered} \mathrm{CN} \\ (\text { trans-1i) } \end{gathered}$	68.69	34.49		85.4		94	41

1,2-Disubstituted Cyclopropanes

$\operatorname{BDE}(\mathrm{C}-\mathrm{C})=\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}{ }_{2}-\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}{ }_{1}$

$$
=\mathrm{BDE}(\text { bond } \mathbf{1})+\mathrm{BDE}(\text { bond } \mathbf{2})+\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}{ }_{3}-\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}{ }_{1}-104.2
$$

Table S8 Calculations on B.D.E of Bond ii of 1,2-Disubstituted Cyclopropanes

FG	$\begin{gathered} \Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}} \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$	$\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}{ }_{3}$ ($\mathrm{kcal} / \mathrm{mol}$)	Bond $1(\mathrm{kcal} / \mathrm{mol})^{2}$		Bond $2(\mathrm{kcal} / \mathrm{mol})^{2}$		BDE (C-C) /kcal/mol
$\begin{gathered} \mathrm{Ph} \\ (\text { trans-1f) } \end{gathered}$	59.89	23.15		98.7		85.4	43.16
$\begin{gathered} (\mathrm{CO}) \mathrm{Ph} \\ \text { (trans- } \mathbf{1 g} \text {) } \end{gathered}$	25.67	-7.82		98.8		85.4	46.51
$\begin{gathered} \text { COOEt } \\ \text { (trans- } \mathbf{1 h} \text {) } \end{gathered}$	-58.74	-92.97		98.8		85.4	45.77
$\begin{gathered} \mathrm{CN} \\ (\text { trans-1i) } \end{gathered}$	68.69	32.79		96.3		85.4	41.6

1,2-Disubstituted Cyclopropanes

$\operatorname{BDE}(\mathrm{C}-\mathrm{C})=\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}{ }_{2}-\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{O}}{ }_{1}$

$$
=\mathrm{BDE}(\text { bond } \mathbf{1})+\mathrm{BDE}(\text { bond } \mathbf{2})+\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}{ }_{3}-\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}{ }_{1}-104.2
$$

Table S9 Calculations on B.D.E of Bond iii of 1,2-Disubstituted Cyclopropanes

FG	$\Delta \mathrm{H}_{\mathrm{f}}{ }^{0}{ }_{1}$ (kcal/mol)	$\begin{gathered} \Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{B}} \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$	$\begin{gathered} \text { Bond } 1 \\ (\mathrm{kcal} / \mathrm{mol})^{2} \end{gathered}$		Bond $2(\mathrm{kcal} / \mathrm{mol})^{2}$		BDE (C-C) /kcal/mol
$\begin{gathered} \mathrm{Ph} \\ (\text { trans-1f) } \end{gathered}$	59.89	23.15		98.7		85.4	43.16
$\begin{gathered} (\mathrm{CO}) \mathrm{Ph} \\ (\text { trans- } \mathbf{1 g}) \end{gathered}$	25.67	-7.18		98.7	 or	93	54.65
$\begin{aligned} & \text { COOEt } \\ & (\text { trans- } \mathbf{1 h} \text {) } \end{aligned}$	-58.74	-92.09		98.7		95.6	56.75
$\begin{gathered} \mathrm{CN} \\ (\text { trans- } \mathbf{1 i}) \end{gathered}$	68.69	33.18		98.7		94	52.99

1,2,3-Trisubstituted Cyclopropanes

$\operatorname{BDE}(\mathrm{C}-\mathrm{C})=\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}} 2-\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{O}}{ }_{1}$

$$
=\mathrm{BDE}(\text { bond } \mathbf{1})+\mathrm{BDE}(\text { bond } \mathbf{2})+\Delta \mathrm{H}_{\mathrm{f}}{ }^{0}{ }_{3}-\Delta \mathrm{H}_{\mathrm{f}}{ }^{0}{ }_{1}-104.2
$$

Table S10 Calculations on B.D.E of Bond i of 1,2,3-Trisubstituted Cyclopropanes

FG	$\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}{ }_{1}$ ($\mathrm{kcal} / \mathrm{mol}$)	$\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}{ }_{3}$ ($\mathrm{kcal} / \mathrm{mol}$)	Bond 1 ($\mathrm{kcal} / \mathrm{mol}$)		Bond 2 ($\mathrm{kcal} / \mathrm{mol}$)		BDE (C-C) /kcal/mol
COOEt (1j)	-34.95	-63.41		85.4		85.4	38.14
(CO)Ph (1k)	47.02	14.71		85.4		85.4	34.29

1,2,3-Trisubstituted Cyclopropanes

Table S11 Calculations on B.D.E of Bond ii of 1,2,3-Trisubstituted Cyclopropanes

FG	$\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{O}}$ ($\mathrm{kcal} / \mathrm{mol}$)	$\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}{ }_{3}$ ($\mathrm{kcal} / \mathrm{mol}$)	Bond 1 ($\mathrm{kcal} / \mathrm{mol}$)		Bond 2 (kcal/mol)		BDE (C-C) /kcal/mol
COOEt (1j)	-34.95	-68.29		85.4		95.6	43.46
(CO)Ph (1k)	47.02	15.85		85.4			43.03

6. Experimental Section

General Procedures

Unless otherwise noted, all reagents were purchased from commercial suppliers and directly used without further purification. Hexane for chromatography was distilled from anhydrous calcium chloride. Benzene was distilled over sodium under nitrogen. Thinlayer chromatography was performed on precoated silica gel $60 \mathrm{~F}_{254}$ plates. Silica gel (Merck, 70-230 and 230-400 mesh) was used in column chromatography to isolate. Neutral alumina (Merck, 90 active neutral, 70-230 mesh)/ $\mathrm{H}_{2} \mathrm{O}(\sim 10: 1 \mathrm{v} / \mathrm{v})$ was used in column chromatography to isolate. For the reaction conducted in a sealed NMR tube, the mixture was degassed by three freeze (77 K)-pump (0.005 mmg)-thaw cycles, and then flame-sealed under vacuum, heated in oven in dark and wrapped with alumina foil to protect from exposure to room light before ${ }^{1} \mathrm{H}$ NMR measurements. The NMR yields were calculated using benzene residue or excess ${ }^{i} \mathrm{PrOH}$ as internal standard. trans-1,2Diphenyl cyclopropane (trans-1f), ${ }^{3}$ trans-1-benzoyl-2-phenylcyclopropane (trans-1g), ${ }^{4}$ 2-phenyl-cyclopropanecarboxylic acid ethyl ester (1h), ${ }^{5}$ trans-2-phenylcyclopropanecarbonitrile (trans-1i), ${ }^{6}$ trans,cis-2,3-diphenyl-1-cyclopropanecarboxylic acid ethyl ester ($\mathbf{1} \mathbf{j})^{7}$ and trans,trans-2,3-diphenyl-1-benzoylcyclopropane $(\mathbf{1 k})^{8}$ have been characterized and were prepared according to the literature process.
${ }^{1} \mathrm{H}$ NMR spectra was recorded on a Bruker AV-400 instrument at 400 MHz . Chemical shifts were referenced with the residual solvent protons in $\mathrm{CDCl}_{3}(\delta 7.26 \mathrm{ppm}), \mathrm{C}_{6} \mathrm{D}_{6}$ (δ 7.15 ppm). Chemical shifts (δ) are reported as parts per million (ppm) in δ scale downfield from TMS. Coupling constants (J) are reported in Hertz (Hz). High-resolution mass spectrometry (HRMS) was performed on Bruker Autoflex speed MALDI-TOF instrument using a trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB) matrix and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the solvent. GC-MS analyses were conducted on a GCMS-QP2010 Plus system using an Rtx-5MS column ($30 \mathrm{~m} \times 0.25 \mathrm{~mm}$). Details of the GC program are as follows. The column oven temperature and injection temperature were 100 and $250{ }^{\circ} \mathrm{C}$. Helium was used as the carrier gas. The flow control mode was chosen as linear velocity ($36.3 \mathrm{~cm} \mathrm{~s}^{-1}$) with a pressure of 68.8 kPa . The total flow, column flow, and purge flow were $13.5,0.95$, and $3.0 \mathrm{~mL} \mathrm{~min}^{-1}$, respectively. Split
mode injection with a split ratio of 10.0 was applied. After injection, the column oven temperature was kept at $100{ }^{\circ} \mathrm{C}$ for 2 min and was then elevated at a rate of $30^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$ for 5 min until $250^{\circ} \mathrm{C}$. The temperature of $250^{\circ} \mathrm{C}$ was kept for 4 min . The retention time and mass spectrum of organic products obtained were identical with those of commercially available authentic samples.

Preparation of Cyclopropane Substrates.

 trans-1,2-Diphenylcyclopropane (trans-1f) ${ }^{3}$

A solution of trifluoroacetic acid ($620 \mu \mathrm{~L}, 8 \mathrm{mmol}$) in 2 mL dry dichloromethane was added very slowly at $0{ }^{\circ} \mathrm{C}$ to a solution of diethyl zinc (1.0 M in hexane, $8 \mathrm{~mL}, 8 \mathrm{mmol}$) in 4 mL dry dichloromethane under N_{2}. The mixture was further stirred for 30 min to give solid attached on the side of flask. A solution of diiodomethane ($700 \mu \mathrm{~L}, 8 \mathrm{mmol}$) in 2 mL dry DCM was added to the reaction mixture at $0^{\circ} \mathrm{C}$ over 30 min and further stirred for 30 min . A solution of trans-stilbene ($365 \mathrm{mg}, 2 \mathrm{mmol}$) in 2 mL dry DCM was added to the reaction mixture at $0^{\circ} \mathrm{C}$ and was stirred at r.t. for 24 h . The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})(15 \mathrm{~mL})$ and extracted with $\mathrm{DCM}(3 \times 30 \mathrm{~mL})$. The organic layers were combined and washed with sat. $\mathrm{NaHCO}_{3}(\mathrm{aq})(2 \times 15 \mathrm{~mL})$, water $(15 \mathrm{~mL})$ and brine $(2 \times 15 \mathrm{~mL})$. The resulting organic layer was further dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated with rotary evaporator. The resulting yellow oil was dissolved in DCM (10 mL). m CPBA ($350 \mathrm{mg}, 2 \mathrm{mmol}$) was added to the reaction mixture and the resulted mixture was stirred at r.t. overnight. The reaction was quenched with sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})(20 \mathrm{~mL})$ and extracted with DCM $(2 \times 20 \mathrm{~mL})$. The organic layer was washed with sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})(2 \times 20 \mathrm{~mL})$ and brine (20 mL). The resulting organic layer was further dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated with rotary evaporator. The residue was purified with column chromatography on silica gel and using hexane as eluent to afford trans-1,2diphenylcyclopropane (trans-1f) as a colorless oil in 52% yield ($202 \mathrm{mg}, 1.01 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.45\left(\mathrm{t},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.17\left(\mathrm{t},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.4 \mathrm{~Hz}, 2 \mathrm{H}\right)$, 7.13-7.20 (m, 6 H), 7.27-7.31 (m, 4 H).

trans-1-Benzoyl-2-phenylcyclopropane (trans-1g) ${ }^{4}$

Trimethylsulfoxonium iodide ($893.6 \mathrm{mg}, 4.1 \mathrm{mmol}$) and $\mathrm{NaH}(492 \mathrm{mg}, 20.6 \mathrm{mmol})$ were added into a 25 mL two-necked round-bottom flask, refilled with N_{2} for 3 times. Dry DMF (4 mL) was added to the flask through syringe. A solution of (E)-chalcone (765.3 $\mathrm{mg}, 3.7 \mathrm{mmol})$ in dry DMF (1 mL) was added to the flask at $0^{\circ} \mathrm{C}$. The reaction mixture was warmed up to r.t. and stirred for 2 h , then further warmed up to $50^{\circ} \mathrm{C}$ and stirred for another 8 h . Water (10 mL) was added to quench the reaction and $\mathrm{DCM}(10 \times 3 \mathrm{~mL})$ was used to extract the product for 3 times. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude product was purified by column chromatography on silica gel using EA/hexane (v/v: $2 \% \sim 5 \%$) as eluent to get the target product in 53% yield ($429.1 \mathrm{mg}, 1.93 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.53-1.58$ (m, 1 H), 1.90-1.95 (m, 1 H$), 2.67-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.92(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.33(\mathrm{~m}, 5 \mathrm{H})$, 7.44-7.58 (m, 3 H), 7.98-8.00 (m, 2 H). Lit^{9} IR (neat) 2980, 1711, 1627, 1272, $1164 \mathrm{~cm}^{-1}$.

2-Phenyl-cyclopropanecarboxylic acid ethyl ester (1h) ${ }^{5}$

Styrene ($60 \mu \mathrm{~L}, 0.52 \mathrm{mmol}$), ethyl diazoacetate ($66 \mu \mathrm{~L}, 0.63 \mathrm{mmol}$), Co(tap) (8.0 mg , 0.010 mmol) and 2 mL benzene were added into a Teflon crew capped reaction tube. The mixture was degassed by three freeze-pump-thaw cycles and heated to $80^{\circ} \mathrm{C}$ for 8 h . The resulting mixture was concentrated and purified by column chromatography on silica gel to give the product in 95% yield (trans : cis $=2.8: 1 ; 94.5 \mathrm{mg}, 0.50 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) trans-isomer: $\delta 1.27\left(\mathrm{t},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.28-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.57-$ $1.62(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.92(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.54(\mathrm{~m}, 1 \mathrm{H}), 4.17\left(\mathrm{q},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.08-$ $7.29(\mathrm{~m}, 5 \mathrm{H})$. cis-isomer: $\delta 0.96\left(\mathrm{t},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.31-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.73$ $(\mathrm{m}, 1 \mathrm{H}), 2.04-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.58\left(\mathrm{q},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.86\left(\mathrm{q},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.1 \mathrm{~Hz}, 2 \mathrm{H}\right)$, 7.08-7.29 (m, 5 H). Lit ${ }^{9}$ IR (neat) 3060, 1662, 1600, 1283, 1223, $1012 \mathrm{~cm}^{-1}$ CAUTION!!!

Diazo compounds are toxic and potentially explosive. They should be stored in refrigerator and handled with caution in a fume hood.
trans-2-Phenylcyclopropanecarbonitrile (trans-1i) ${ }^{6}$

Trimethylsulfoxonium iodide ($920.0 \mathrm{mg}, 4.2 \mathrm{mmol}$) and $\mathrm{NaH}(480 \mathrm{mg}, 20.0 \mathrm{mmol})$ were added in to a 25 mL two-necked round-bottom flask, refilled with N_{2} for 3 times. Dry DMF (4 mL) was added to the flask through syringe. A solution of (E)-cinnamonitrile $(480 \mu \mathrm{~L}, 3.8 \mathrm{mmol})$ in dry DMF (1 mL) was added to the flask at $0^{\circ} \mathrm{C}$. The reaction mixture was warmed up to r.t. and stirred for 19 h , then further warmed up to $50^{\circ} \mathrm{C}$ for another 8 h . Water was added to quench the reaction and DCM ($10 \times 3 \mathrm{~mL}$) was used to extract the product for 3 times. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude product was purified by column chromatography on silica gel using EA/hexane (v/v: $2 \% \sim 4 \%$) as eluent to get the target product in 5% yield ($28.3 \mathrm{mg}, 0.2 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.43-1.48(\mathrm{~m}, 1$ H), 1.53-1.58 (m, 1 H), 1.60-1.64 (m, 1 H), 2.61-2.66 (m, 1 H$), 7.09-7.33(\mathrm{~m}, 5 \mathrm{H})$.

trans, cis-2,3-Diphenyl-1-cyclopropanecarboxylic acid ethyl ester (1j) ${ }^{7}$

trans-Stilbene ($1.0 \mathrm{~g}, 5.5 \mathrm{mmol}$), $\mathrm{CuSO}_{4}(53 \mathrm{mg}, 0.33 \mathrm{mmol})$ and toluene (6 mL) were added to a dried 3-necked flask under N_{2}. The mixture was heated up to $75^{\circ} \mathrm{C}$ and a solution of ethyl diazoacetate ($1.46 \mathrm{~mL}, 13.8 \mathrm{mmol}$) in 4.5 mL toluene was added very slowly over a period of 5 h . The reaction mixture was further stirred for 24 h at $75{ }^{\circ} \mathrm{C}$. The resulting mixture was concentrated and purified by column chromatography on silica gel to give the desired product in 34% yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.05\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}\right.$ $=7.16 \mathrm{~Hz}, 3 \mathrm{H}), 2.41-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.93-2.97(\mathrm{~m}, 1 \mathrm{H}), 3.22-3.25(\mathrm{~m}, 1 \mathrm{H}), 3.93-4.01(\mathrm{~m}$, $2 \mathrm{H}), 7.23-7.37(\mathrm{~m}, 10 \mathrm{H}) .{ }^{7}$
trans, trans-2,3-Diphenyl-1-benzoylcyclopropane (1k) ${ }^{8}$

Preparation of 1-(benzylsulfonyl)-4-methylbenzene. p-Toluenesulfonyl chloride (1.0 g, $5.3 \mathrm{mmol})$, sodium sulfite $(1.3 \mathrm{~g}, 10.7 \mathrm{mmol}), \mathrm{NaHCO}_{3}(976 \mathrm{mg}, 11.6 \mathrm{mmol})$ and 50 mL water were added into a 100 mL round bottom flask. The reaction mixture was heated to reflux for 3 h . Benzyl bromide ($1.95 \mathrm{~mL}, 16.3 \mathrm{mmol}$) and ($n-\mathrm{Bu})_{4} \mathrm{NBr}(25.5 \mathrm{mg}, 0.08$ $\mathrm{mmol})$ were added to the reaction mixture. The reaction temperature was cooled to $70{ }^{\circ} \mathrm{C}$ and stirred overnight. The mixture was extracted with DCM $(20 \times 3 \mathrm{~mL})$. The organic layers were combined, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated with vacuo. The resulting residue was purified with column chromatography on silica gel using ethyl acetate/hexane ($\mathrm{v} / \mathrm{v}: 10 \%$) as eluent to get the target product as a white solid in 82% yield $(1.06 \mathrm{~g}, 4.3 \mathrm{mmol}) .{ }^{8 a}$

Preparation of trans, trans-2,3-diphenyl-1-benzoylcyclopropane (1k). 1-(Benzylsulfonyl)-4-methylbenzene ($252.4 \mathrm{mg}, 1.02 \mathrm{mmol}$), (E)-chalcone ($215.6 \mathrm{mg}, 1.03$ $\mathrm{mmol})$, sodium hydride $(547.9 \mathrm{mg}, 22.9 \mathrm{mmol})$ and dried THF $(10 \mathrm{~mL})$ were added to a 25 mL round bottom flask under N_{2}. The reaction mixture was heated to reflux for 1 d .1 mL water was added to quench the reaction. Solvent THF was removed under reduced pressure. The residue was diluted with water and extracted with DCM $(10 \times 3 \mathrm{~mL})$. The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to afford crude product. Purification on silica gel using ethyl acetate/hexane ($\mathrm{v} / \mathrm{v}: 10 \%$) as eluent to get the target product as a white solid in 57% yield $(176.5 \mathrm{mg}, 0.59 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 3.31\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=5.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.54\left(\mathrm{t},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=5.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.00-7.02(\mathrm{~m}, 4 \mathrm{H})$, 7.12-7.18 (m, 6 H$), 7.50-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.62(\mathrm{~m}, 1 \mathrm{H}), 8.09-8.11(\mathrm{~m}, 2 \mathrm{H}) .{ }^{8 \mathrm{~b}} \mathrm{Lit}^{10} \mathrm{IR}$ (KBr) $1660,1600,1580,1500,1010,880 \mathrm{~cm}^{-1}$

Attempted Transfer Hydrogenolysis of Cyclopropylbenzene with $\mathbf{H}_{\mathbf{2}} \mathbf{O}$

Cyclopropylbenzene (1a; $3.1 \mu \mathrm{~L}, 0.025 \mathrm{mmol}$), $\mathrm{H}_{2} \mathrm{O}(25 \mu \mathrm{~L}, 1.38 \mathrm{mmol}), \mathrm{Rh}(\mathrm{ttp}) \mathrm{Me}(4.0$ $\mathrm{mg}, 0.005 \mathrm{mmol}$) and $415 \mu \mathrm{~L} \mathrm{C}_{6} \mathrm{D}_{6}$ were added into a Teflon crew head stoppered NMR tube, degassed by three freeze-pump-thaw cycles, and then flame-sealed under vacuum, heated in oven in dark at $200{ }^{\circ} \mathrm{C}$ for 48 h . The reaction was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy at particular time interval. 18% propylbenzene ($\mathbf{2 a} ; 0.004 \mathrm{mmol}$) and 81% trans- β-methylstyrene ($\mathbf{3 a} ; 0.02 \mathrm{mmol}$) were obtained. The yield was determined through GC-MS analysis using naphthalene as internal standard.

Reaction Conditions Optimization

Without Rh(ttp)Me catalyst in the presence of 50 equiv ${ }^{i} \mathrm{PrOH}$. Cyclopropylbenzene (1a; $3.1 \mu \mathrm{~L}, 0.025 \mathrm{mmol}),{ }^{i} \mathrm{PrOH}(95 \mu \mathrm{~L}, 1.24 \mathrm{mmol})$ and $400 \mu \mathrm{~L} \mathrm{C}_{6} \mathrm{D}_{6}$ were added into a Teflon screw head stoppered NMR tube, degassed by three freeze-pump-thaw cycles, and then flame-sealed under vacuum, heated in oven in dark at $200{ }^{\circ} \mathrm{C}$ for 5 d . The reaction was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy at particular time interval. Cyclopropylbenzene (1a) was recovered quantitatively.

With 10 mol\% Rh(ttp)Me catalyst in the presence of 50 equiv ${ }^{i} \mathrm{PrOH}$. Cyclopropylbenzene ($\mathbf{1 a} ; 3.1 \mu \mathrm{~L}, 0.025 \mathrm{mmol}$), ${ }^{i} \operatorname{PrOH}(95 \mu \mathrm{~L}, 1.24 \mathrm{mmol}), \mathrm{Rh}(\mathrm{ttp}) \mathrm{Me}(2.0 \mathrm{mg}$, 0.0025 mmol) and $400 \mu \mathrm{~L} \mathrm{C}_{6} \mathrm{D}_{6}$ were added into a Teflon screw head stoppered NMR tube, degassed by three freeze-pump-thaw cycles, and then flame-sealed under vacuum, heated in oven in dark at $200{ }^{\circ} \mathrm{C}$ for 5 d . The reaction was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy at particular time interval. 24\% of propylbenzene (2a; 0.006 mmol), 38\% of trans- β-methylstyrene ($\mathbf{3 a} ; 0.009 \mathrm{mmol}$), 40% of acetone were obtained with 36% of cyclopropylbenzene (1a) recovered.

With 20 mol\% Rh(ttp)Me catalyst in the presence of 25 equiv ${ }^{i} \mathrm{PrOH}$. Cyclopropylbenzene (1a; $3.1 \mu \mathrm{~L}, 0.025 \mathrm{mmol}$), ${ }^{i} \operatorname{PrOH}(48 \mu \mathrm{~L}, 0.63 \mathrm{mmol}), \mathrm{Rh}(\mathrm{ttp}) \mathrm{Me}(3.9 \mathrm{mg}, 0.005$ mmol) and $400 \mu \mathrm{~L} \mathrm{C}_{6} \mathrm{D}_{6}$ were added into a Teflon screw head stoppered NMR tube, degassed by three freeze-pump-thaw cycles, and then flame-sealed under vacuum, heated in oven in dark at $200{ }^{\circ} \mathrm{C}$ for 24 h . The reaction was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy at particular time interval. 100% of propylbenzene ($\mathbf{2 a} ; 0.025 \mathrm{mmol}$) and 92% of acetone were obtained.

Thermal Decarboxylation and Transesterification of Ethyl Diethylmalonate (2e)

Diethyl ethylmalonate ($\mathbf{2 e} ; 4.7 \mu \mathrm{~L}, 0.025 \mathrm{mmol}$), ${ }^{i} \operatorname{PrOH}(95 \mu \mathrm{~L}, 1.24 \mathrm{mmol})$ and $400 \mu \mathrm{~L}$ $\mathrm{C}_{6} \mathrm{D}_{6}$ were added into a Teflon screw head stoppered NMR tube, degassed by three freeze-pump-thaw cycles, and then flame-sealed under vacuum, heated in oven in dark at $200{ }^{\circ} \mathrm{C}$ for 2 d . The reaction was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy at particular time interval. 80% yield of isopropyl butyrate $(0.02 \mathrm{mmol})$ and 16% yield of recovered diethyl ethylmalonate were achieved after reaction.

7. References

1. Perthuisot, C.; Edelbach, B. L.; Zubris, D. L.; Simhai, N.; Iverson, C. N.; Müller, C.; Satoh, T.; Jones, W. D. Cleavage of the Carbon-Carbon Bond in Biphenylene using Transition Metals. J. Mol. Catal. A: Chem. 2002, 189, 157-168.
2. Luo, Y. R. Handbook of Bond Dissociation Energies in Organic Compounds, CRC Press: Boca Raton, FL, 2002.
3. Cahard, E.; Schoenebeck, F.; Garnier, J.; Cutulic, S. P. Y.; Zhou, S.; Murphy, J. A. Electron Transfer to Benzenes by Photoactivated Neutral Organic Electron Donor Molecules. Angew. Chem. Int. Ed. 2012, 51, 3673-3676.
4. Yusuke, A.; Ren, T.; Gaku, A.; Takashi, K.; Munetaka, A. Oxydifluoromethylation of Alkenes by Photoredox Catalysis: Simple Synthesis of $\mathrm{CF}_{2} \mathrm{H}$-Containing Alcohols. Chem. Eur. J. 2016, 22, 1262-1265.
5. Huang, L.; Chen, Y.; Gao, G.-Y.; Zhang, X. P. Diastereoselective and Enantioselective Cyclopropanation of Alkenes Catalyzed by Cobalt Porphyrins. J. Org. Chem. 2003, 68, 8179-8184.
6. Wang, M.-X.; Feng, G.-Q. A Novel Approach to Eantiopure Cyclopropane Compounds from Biotransformation of Nitriles. New J. Chem. 2002, 26, 15751583.
7. Scholz, S. O.; Farney, E. P.; Kim, S.; Bates, D. M.; Yoon, T. P. Spin-Selective Generation of Triplet Nitrenes: Olefin Aziridination through Visible-Light Photosensitization of Azidoformates. Angew. Chem. Int. Ed. 2016, 55, 2239-2242.
8. (a) Laha, J. K.; Jethava, K. P.; Dayal, N. Palladium-Catalyzed Intramolecular Oxidative Coupling Involving Double $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{H}$ Bonds for the Synthesis of Annulated Biaryl Sultams. J. Org. Chem. 2014, 79, 8010-8019. (b) Chang, M.-Y.; Chen, Y.-C.; Chan, C.-K. One-pot Synthesis of Multifunctionalized Cyclopropanes. Tetrahedron 2014, 70, 2257-2263.
9. Davi, M.; Lebel, H. One-pot Approach for the Synthesis of trans-Cyclopropyl Compounds from Aldehydes. Application to the Synthesis of GPR40 Receptor Agonists. Chem. Commun. 2008, 4974-4976.
10. Stahl, I.; Schomburg, S.; Kalinowski, H. O. Diastereomere Cyclopropane aus Benzylidensulfuranen und Chalkonen. Chem. Ber. 1984, 117, 2247-2260.

8. List of NMR Spectra

No.	Spectra	Page
1	${ }^{1} \mathrm{H}$ NMR spectrum of trans-1,2-diphenylcyclopropane (trans-1f)	S20
2	${ }^{1} \mathrm{H}$ NMR spectrum of trans-1-benzoyl-2-phenylcyclopropane (trans-1g)	S20
3	${ }^{1} \mathrm{H}$ NMR spectrum of 2-phenylcyclopropanecarboxylic acid ethyl ester (cis\&trans-1h)	S 21
4	${ }^{1} \mathrm{H}$ NMR spectrum of trans-2-phenylcyclopropanecarbonitrile (trans-1i)	S21
5	${ }^{1} \mathrm{H}$ NMR spectrum of trans, cis-2,3-diphenyl-1-cyclopropanecarboxylic acid ethyl ester (1j)	S 22
6	${ }^{1} \mathrm{H}$ NMR spectrum of trans, trans-2,3-diphenyl-1-benzoylcyclopropane (1k) $)$	S 22
7	${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{Rh}(\mathrm{ttp}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	S 23
8	${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{Rh}(\mathrm{ttp}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	S 23

Figure $\mathbf{S 2}{ }^{1} \mathrm{H}$ NMR spectrum of trans-1,2-diphenylcyclopropane (trans-1f) $\left(\mathrm{CDCl}_{3}\right.$, 400MHz, 295K)

Figure S3 ${ }^{1} \mathrm{H}$ NMR spectrum of trans-1-benzoyl-2-phenylcyclopropane (trans-1g) ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 296 \mathrm{~K}\right)$

Figure S4 ${ }^{1} \mathrm{H}$ NMR spectrum of 2-phenylcyclopropanecarboxylic acid ethyl ester (1h) ($\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}, 296 \mathrm{~K}$)

Figure $\mathbf{S 5}{ }^{1} \mathrm{H}$ NMR spectrum of trans-2-phenylcyclopropanecarbonitrile (trans-1i) ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 295 \mathrm{~K}\right)$

Figure S6 ${ }^{1} \mathrm{H}$ NMR spectrum of trans, cis-2,3-diphenyl-1-cyclopropanecarboxylic acid ethyl ester (1j) $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 297 \mathrm{~K}\right)$

Figure S7 ${ }^{1} \mathrm{H}$ NMR spectrum of trans, trans-2,3-diphenyl-1-benzoylcyclopropane ($\mathbf{1 k}$) ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 297 \mathrm{~K}\right)$

Figure $\mathbf{S 8}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{Rh}(\mathrm{ttp}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 295 \mathrm{~K}\right)$

Figure $\mathbf{S 9}{ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{Rh}(\mathrm{ttp}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, 295 \mathrm{~K}\right)$

9. GC-MS Chromatogram Spectra.

Figure S10 GC-MS Chromatogram Spectrum for trans-1,2-Diphenylcyclopropane (trans-1f) (trans-cis isomerization of $\mathbf{1 f}$ occurred at high temperature in GC oven)

Quantitative Result Table				
Name	ID\#	R.Time	m / z	Area
cis-1,2-Diphenylcyclopropane	1	6.963	115.00	91749
trans-1,2-Diphenylcyclopropane	2	7.327	115.00	1267615

Figure S11 GC-MS Chromatogram Spectrum of trans-1-Benzoyl-2-phenylcyclopropane (trans-1g)

Figure S12 GC-MS Chromatogram Spectrum of 2-Phenyl-cyclopropanecarboxylic Acid Ethyl Ester (1h)

Figure S13 GC-MS Chromatogram Spectrum of trans-2-Phenylcyclopropanecarbonitrile (trans-1i)

Quantitative Result Table

	ID\#	R.Time	m / z	Area
Name	1	5.751	115.00	3253753

Figure S14 GC-MS Chromatogram Spectrum of trans, cis-2,3-Diphenyl-1cyclopropanecarboxylic acid ethyl ester ($\mathbf{1 j}$)

Figure S15 GC-MS Chromatogram Spectrum of trans, trans-2,3-Diphenyl-1benzoylcyclopropane ($\mathbf{1 k}$)

10. X-ray Data

X-ray Crystallographic Data and Structure of $\mathrm{Rh}(\mathrm{ttp}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph} \cdot \mathrm{PhCH}_{3}$. Data were collected on a Bruker D8Venture diffractometer with a Mo K α microfocus source ($\lambda=$ $0.71073 \AA$) at 299 K , using phi scan mode with an increment of 0.5°. Unit cell parameters were obtained from 60 frames. The collected frames were integrated with the unit cell
parameters. Apex2 software was used for collecting frames of data, indexing reflections and determination of lattice constants; integration of intensity of reflections and scaling; and SHELXL for space group and structure determination, refinements, graphics, and structure reporting.

Figure S16 ORTEP presentation of the molecular structure with numbering scheme for $\mathrm{Rh}(\mathrm{ttp}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph} \cdot \mathrm{PhCH}_{3}$ with hydrogen atoms omitted for clarity (50% probability displacement ellipsoids). $\mathrm{Rh}(\mathrm{ttp}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph} \cdot \mathrm{PhCH}_{3}$ selected bond length (\AA): $\mathrm{Rh}(1)$ $\mathrm{N}(4): 2.018(7) ; \operatorname{Rh}(1)-\mathrm{C}(61): 2.081(10) ; \mathrm{N}(1)-\mathrm{C}(1): 1.357(12) ; \mathrm{C}(1)-\mathrm{C}(20): 1.408(12) ;$ $\mathrm{C}(1)-\mathrm{C}(2): 1.417(13)$. Bond angles $\left({ }^{\circ}\right): \mathrm{N}(4)-\mathrm{Rh}(1)-\mathrm{N}(2): 176.8(3) ; \mathrm{N}(4)-\mathrm{Rh}(1)-\mathrm{N}(3):$ 91.2(3); N(4)-Rh(1)-C(61):97.3(4).

Table S12 Crystal Data and Structure Refinement for $\mathbf{R h}(t t p) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathbf{P h} \cdot \mathbf{P h C H}_{3}$

Compound	$\mathrm{Rh}(\mathrm{ttp}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph} \cdot \mathrm{PhCH}_{3}$
Empirical formula	$\mathrm{C}_{64} \mathrm{H}_{55} \mathrm{~N}_{4} \mathrm{Rh}$
Formula weight	983.03
Temperature	$299(2) \mathrm{K}$
Wavelength	$0.71073 \AA$
Crystal system, space group	Triclinic
	$\mathrm{a}=11.288(2) \AA \quad \alpha=108.423(6)^{\circ}$. $\mathrm{b}=13.288(3) \AA \quad \beta=99.541(8)^{\circ}$. U $=20.809(5) \AA \quad \gamma=99.110(6)^{\circ}$. Unit cell dimensions
Volume	$2845.2(11) \AA \AA^{3}$

Z, Calculated density	$2,1.147 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.340 \mathrm{~mm}^{-1}$
$\mathrm{~F}(000)$	1024
Crystal size	$0.500 \times 0.400 \times 0.300 \mathrm{~mm}^{3}$
Theta range for data collection	2.207 to 25.247°.
Index ranges	$-13<=\mathrm{h}<=13,-15<=\mathrm{k}<=15,-24<=\mathrm{l}<=24$
Reflections collected / Independent reflections	$38133 / 10066[\mathrm{R}(\mathrm{int})=0.0817]$
Completeness to theta $=25.242$ deg	97.6%
Absorption correction	multi-scan
Max. and min. transmission	0.7456 and 0.4568
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	$10066 / 7 / 622$
Goodness-of-fit on F^{2}	1.068
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.1288, \mathrm{wR} 2=0.3074$
R indices (all data)	1.622 and -2.588 e. \AA^{-3}
Largest diff. peak and hole	

