Supporting Information

Total Synthesis of (+)-CC-1065 Utilizing Ring Expansion Reaction of Benzocyclobutenone Oxime Sulfonate

Taku Imaizumi, Yumi Yamashita, Yuki Nakazawa, Kentaro Okano, Juri Sakata, Hidetoshi Tokuyama*

Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578, Japan

* tokuyama@mail.pharm.tohoku.ac.jp

Table of Contents

General Remarks S-2
Experimental Procedures S-3
${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectra \quad S-21

General Remarks

All moisture or air sensitive reactions were carried out under a positive atmosphere of argon in oven-dried glassware. Commercial reagents were obtained from commercial suppliers and used without further purification unless otherwise mentioned. Toluene, DMF, DMSO, pyridine, and $\mathrm{Et}_{3} \mathrm{~N}$ were distilled from CaH_{2}. Anhydrous THF, $\mathrm{Et}_{2} \mathrm{O}, \mathrm{MeCN}$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were purchased from KANTO CHEMICAL CO., INC. Flash column chromatography was performed on Silica Gel 60N (neutral, $40-50 \mu \mathrm{~m}$) using the indicated eluent. Preparative TLC and analytical TLC were performed on Merck $60 \mathrm{~F}_{254}$ glass plates precoated with a 0.25 mm thickness of silica gel. NMR spectra were recorded on a JNM-AL400 spectrometer. Chemical shifts are expressed in parts per million (ppm) downfield from internal standard (tetramethylsilane, 0.00 ppm), and coupling constants (J) are reported as hertz (Hz). Splitting patterns are indicated as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. IR spectra were measured on a SHIMADZU FTIR8300 spectrometer. High-resolution mass spectra (HRMS) were measured on a Bruker micrOTOF II (ESI). Optical rotations were measured on a JASCO P-2200. Melting point determinations were performed by using a Yanaco MP-500 instrument.

Oxime S2

To a solution of ketone $\mathbf{S 1}^{1}$ ($721 \mathrm{mg}, 3.22 \mathrm{mmol}$) in pyridine (6.4 mL) was added hydroxylamine hydrochloride ($557 \mathrm{mg}, 8.02 \mathrm{mmol}$) at room temperature. After stirring at $70{ }^{\circ} \mathrm{C}$ for 5 h , the reaction was quenched with 2 M aqueous HCl , and the mixture was extracted with EtOAc three times. The combined organic extracts were washed with 2 M aqueous HCl and brine, dried over anhydrous sodium sulfate, and filtered. The organic solvents were removed under reduced pressure to give a crude material, which was purified by trituration (hexanes) to afford oxime $\mathbf{S 2}$ ($687 \mathrm{mg}, 2.87 \mathrm{mmol}, 86 \%$). A yellow solid; mp 135-137 ${ }^{\circ} \mathrm{C}$ (hexanes-EtOAc, colorless prisms); IR (film): 3308, 1583, 1480, 1455, 1384, 1267, 1166, 1064, 977, 922, 784, 765, 723, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.43(\mathrm{~d}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}$), $7.40-7.18(\mathrm{~m}, 4 \mathrm{H}), 6.90-6.78(\mathrm{~m}, 2 \mathrm{H}), 5.42$ (s, 2H), $3.86(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.2,151.7,145.1,136.9,133.4,128.4$, 127.9, 127.6, 125.3, 116.1, 115.5, 72.0, 38.0; HRMS (ESI) $m / z:$ calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NO}_{2} 240.1019$ $\left[\mathrm{M}+\mathrm{H}^{+}\right]$found 240.1029.

Sulfonate 22a

To a solution of oxime $\mathbf{S} 2(27.8 \mathrm{mg}, 116 \mu \mathrm{~mol})$ and $\mathrm{MsCl}(22.5 \mu \mathrm{~L}, 290 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(0.58 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(97.0 \mu \mathrm{~L}, 697 \mu \mathrm{~mol})$ at room temperature. After stirring at room temperature for 1 h , the reaction was quenched with 1 M aqueous HCl , and the mixture was extracted with EtOAc three times. The combined organic extracts were washed with 1 M aqueous HCl and brine, dried over anhydrous sodium sulfate, and filtered. The organic solvents were removed under reduced pressure to give a crude material, which was purified by preparative TLC (hexanes-EtOAc $=3: 1$) to afford sulfonate $\mathbf{2 2 a}(35.7 \mathrm{mg}, 112 \mu \mathrm{~mol}, 97 \%)$. A yellow amorphous; IR (film): 2917, 2849, 1598, 1480, 1367, 1278, 1183, 837, $747 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.44-7.31(\mathrm{~m}, 6 \mathrm{H}), 6.19-6.88(\mathrm{~m}, 2 \mathrm{H}), 5.43$ (s, 2H), 3.98 (s, 2H), 3.17 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.0,145.2,136.4,136.2,128.6,128.2,127.5,122.3,116.9,115.7,114.2,72.1$, 39.6, 36.4; HRMS (ESI) m / z : calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NNaO}_{4} \mathrm{~S} 340.0614$ [M+Na+] found 340.0599.

Sulfonate 22b

To a solution of oxime $\mathbf{S} 2(15.0 \mathrm{mg}, 62.7 \mu \mathrm{~mol})$ and $\mathrm{TsCl}(30.0 \mathrm{mg}, 157 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2.0 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(100 \mu \mathrm{~L}, 700 \mu \mathrm{~mol})$ at room temperature. After stirring at room
temperature for 1 h , the reaction was quenched with 1 M aqueous HCl , and the mixture was extracted with EtOAc three times. The combined organic extracts were washed with 1 M aqueous HCl and brine, dried over anhydrous sodium sulfate, and filtered. The organic solvents were removed under reduced pressure to give a crude material, which was purified by preparative TLC (hexanes-EtOAc $=3: 1$) to afford sulfonate $\mathbf{2 2 b}(23.9 \mathrm{mg}, 61.2 \mu \mathrm{~mol}, 98 \%)$. A colorless amorphous; IR (film): 1595, 1478, 1373, 1277, 1456, 1376, 1157, 1094, 833, 750, $664 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.86(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.37-7.22(\mathrm{~m}, 8 \mathrm{H}), 6.85-6.82(\mathrm{~m}, 2 \mathrm{H}), 5.30(\mathrm{~s}, 2 \mathrm{H}), 3.91$ (s, 2H), $2.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.9,152.8,145.0,136.5,135.8,132.5$, $129.5,129.0,128.5,128.1,127.6,127.0,122.4,117.3,115.5,72.3,39.4,21.6$; HRMS (ESI) $\mathrm{m} / \mathrm{z}:$ calcd. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{NO}_{4} \mathrm{~S} 394.1108\left[\mathrm{M}+\mathrm{H}^{+}\right]$found 394.1124.

Sulfonate 22c

S2

90\%

22c

To a solution of oxime $\mathbf{S 2}(102 \mathrm{mg}, 424 \mu \mathrm{~mol})$ and $p-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{Cl}(229 \mathrm{mg}, 1.08 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.2 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(360 \mu \mathrm{~L}, 2.55 \mathrm{mmol})$ at room temperature. After stirring at room temperature for 22 h , the reaction was quenched with 1 M aqueous HCl , and the mixture was extracted with EtOAc three times. The combined organic extracts were washed with 1 M aqueous HCl and brine, dried over anhydrous sodium sulfate, and filtered. The organic solvents were removed under reduced pressure to give a crude material, which was purified by silica gel column chromatography (hexanes $-\mathrm{CH}_{2} \mathrm{Cl}_{2}=2: 3$) to afford sulfonate 22c ($158 \mathrm{mg}, 382 \mu \mathrm{~mol}, 90 \%$). A colorless solid; mp $97-99^{\circ} \mathrm{C}$ (hexanes-EtOAc, colorless prisms); IR (film): 1586, 1558, 1475, 1456, $1376,1279,1191,830,757,615,549 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.89(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}$), 7.42-7.27 (m, 8H), 6.87-6.78 (m, 2H), $5.28(\mathrm{~s}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $160.3,152.8,145.0,140.7,136.2,136.0,133.8,130.4,129.2,128.5,128.2,127.5,122.1,117.1$, 115.5, 72.2, 39.4; HRMS (ESI) $m / z:$ calcd. for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{ClNO}_{4} \mathrm{~S} 414.0561\left[\mathrm{M}+\mathrm{H}^{+}\right]$found 414.0551 .

Sulfonate 22d

To a solution of oxime $\mathbf{S} 2(99.4 \mathrm{mg}, 415 \mu \mathrm{~mol})$ and $p-\mathrm{NsCl}(110 \mathrm{mg}, 496 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(4.2 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(160 \mu \mathrm{~L}, 1.18 \mathrm{mmol})$ at $-20^{\circ} \mathrm{C}$. After stirring at $-20^{\circ} \mathrm{C}$ for 15 min , the reaction was quenched with 1 M aqueous HCl , and the mixture was extracted with EtOAc three times. The combined organic extracts were washed with 1 M aqueous HCl and brine, dried over anhydrous sodium sulfate, and filtered. The organic solvents were removed under reduced pressure to give a crude material, which was purified by flash silica gel column chromatography (hexanes $-\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 1$) to afford sulfonate 22d ($138 \mathrm{mg}, 324 \mu \mathrm{~mol}, 78 \%$). A colorless solid; mp $156-157^{\circ} \mathrm{C}$ (hexanes-EtOAc, colorless prisms); IR (film): 1535, 1382, 1348, 1192, 1173, 854, 737,
$678,594,563 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.25(\mathrm{~d}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 8.14(\mathrm{~d}, 2 \mathrm{H}, J=6.8$ $\mathrm{Hz}), 7.40-7.30(\mathrm{~m}, 6 \mathrm{H}), 6.88(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 6.85(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 5.26(\mathrm{~s}, 2 \mathrm{H}), 3.95(\mathrm{~s}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.0,153.0,150.8,145.0,141.1,136.4,136.1,130.4,128.7$, $128.5,127.5,124.0,121.9,117.0,115.7,72.2,39.6$; HRMS (ESI) $m / z:$ calcd. for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NaO}_{6} \mathrm{~S}$ $447.0621\left[\mathrm{M}+\mathrm{Na}^{+}\right]$found 447.0623 .

Indole 23

To a solution of sulfonate $\mathbf{2 2 c}(20.7 \mathrm{mg}, 50.0 \mu \mathrm{~mol})$ in THF $(0.4 \mathrm{~mL})$ and t-BuOH $(0.1 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(18.7 \mathrm{mg}, 494 \mu \mathrm{~mol})$ at room temperature. After stirring at $50^{\circ} \mathrm{C}$ for 11 h , the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the mixture was extracted with EtOAc three times. The combined organic extracts were washed with brine, dried over anhydrous sodium sulfate, and filtered. The organic solvents were removed under reduced pressure to give a crude material, which was purified by preparative TLC (hexanes- $\mathrm{CHCl}_{3}=1: 1$) to afford indole $23(7.90 \mathrm{mg}, 35.3 \mu \mathrm{~mol}$, 71%). A colorless solid; mp 58-60 ${ }^{\circ} \mathrm{C}$ (hexanes-EtOAc, colorless prisms); IR (film): 3432, 1578, 1490, 1415, 1339, 1288, 1253, 1067, 783, $724 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.35$ (br s, 1H), $7.46(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 7.43-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.27(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.12(\mathrm{dd}, 1 \mathrm{H}, J=2.4,2.4 \mathrm{~Hz})$, $7.01(\mathrm{dd}, 1 \mathrm{H}, J=7.6,7.6 \mathrm{~Hz}), 6.70(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 6.52(\mathrm{dd}, 1 \mathrm{H}, J=2.4,2.4 \mathrm{~Hz}), 5.18(\mathrm{~s}, 2 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.4,137.1,129.3,128.6,128.1,127.8,126.5,123.7,120.1,113.6$, 102.9, 102.8, 70.1; HRMS (ESI) m / z : calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NO} 224.1070\left[\mathrm{M}+\mathrm{H}^{+}\right]$found 224.1073. Spectroscopic data were identical with those previously reporetd. ${ }^{2}$

Benzonitrile 24

Mp 118-120 ${ }^{\circ} \mathrm{C}$ (hexanes-EtOAc, colorless prisms); IR (film): 2222, 1597, 1580, 1473, 1453, $1289,1092,1065,776,736 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.47$ (d, $2 \mathrm{H}, J=7.6 \mathrm{~Hz}$), $7.41-$ $-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{~d}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 6.87(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 6.81(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 5.20(\mathrm{~s}$, 2 H), $2.52(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.6,144.0,135.8,133.4,128.7,128.1,126.9$, 122.3, 115.6, 109.8, 103.0, 70.5, 20.5; HRMS (EI) m / z : calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO} 223.0997$ [$\left.\mathrm{M}^{+}\right]$found 223.0981 .

Indole 25

To a solution of sulfonate $\mathbf{2 2 c}(22.2 \mathrm{mg}, 53.6 \mu \mathrm{~mol})$ in DMSO $(0.40 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.13$ mL) was added potassium cyanide ($34.9 \mathrm{mg}, 536 \mu \mathrm{~mol}$) at $0{ }^{\circ} \mathrm{C}$. After stirring at $0{ }^{\circ} \mathrm{C}$ for 1 h , the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the mixture was extracted with EtOAc three times. The combined organic extracts were washed with brine, dried over anhydrous sodium sulfate, and filtered. The organic solvents were removed under reduced pressure to give a crude material, which was purified by preparative TLC (hexanes-EtOAc $=3: 1$) to afford indole $25(12.7 \mathrm{mg}, 51.1 \mu \mathrm{~mol}$, 95%). A colorless solid; mp 110-112 ${ }^{\circ} \mathrm{C}$ (hexanes-EtOAc, colorless prisms); IR (film): 3308, 2227, 1582, 1530, 1497, 1406, 1326, 1259, 1238, 1089, 812, 735, 696, 645, $583 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.90(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.46-7.33(\mathrm{~m}, 5 \mathrm{H}), 7.24(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.11(\mathrm{~d}, 1 \mathrm{H}, J=2.4$ $\mathrm{Hz}), 7.09(\mathrm{dd}, 1 \mathrm{H}, J=8.4,8.4 \mathrm{~Hz}), 6.82(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 5.18(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 145.3,136.3,128.8,128.5,128.3,127.9,127.5,122.3,114.46,114.45,113.9,106.2$, 106.0, 70.5; HRMS (ESI) m / z : calcd. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{NaO} 271.0842\left[\mathrm{M}+\mathrm{Na}^{+}\right]$found 271.0845 .

Bis-acetal 27

To a solution of $\mathbf{2 6}^{3}(1.30 \mathrm{~g}, 4.40 \mathrm{mmol})$ and ketene dimethyl acetal $\mathbf{1 2}^{4}(2.09 \mathrm{~mL}, 22.0$ $\mathrm{mmol})$ in THF (13 mL) was added sodium amide ($684 \mathrm{mg}, 17.5 \mathrm{mmol}$) at room temperature. After stirring at reflux for 45 h , the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the mixture was extracted with EtOAc three times. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over anhydrous sodium sulfate, and filtered. The organic solvents were removed under reduced pressure to give a crude material, which was purified by silica gel column chromatography (EtOAc) to afford bis-acetal 27 ($1.21 \mathrm{~g}, 3.90 \mathrm{mmol}, 89 \%$). A colorless oil; IR (film): 2937, 2832, 1474, 1414, 1278, 1177, 1167, 1138, 1071, 1053, 1036, $852 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.96$ (s, 6H), 3.42 (s, $12 \mathrm{H}), 3.22(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.7,135.7,129.4,105.6,60.2,52.0,39.0$; HRMS (ESI) m / z : calcd. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NaO}_{6} 333.1309\left[\mathrm{M}+\mathrm{Na}^{+}\right]$found 333.1293.

Sulfonate 29

To a solution of bis-acetal $27(115 \mathrm{mg}, 370 \mu \mathrm{~mol})$ in acetone (1.1 mL) and $\mathrm{CHCl}_{3}(1.1 \mathrm{~mL})$ was added 6 M aqueous $\mathrm{HCl}(0.37 \mathrm{~mL})$ at room temperature. After stirring at room temperature for 2 h , acetone (1.1 mL) and 6 M aqueous $\mathrm{HCl}(0.37 \mathrm{~mL})$ were added, and the mixture was stirred at room temperature for 10.5 h . All organic solvents were removed under reduced pressure, and the mixture was extracted with EtOAc three times. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over anhydrous sodium sulfate, and filtered. The organic solvents were removed under reduced pressure to give a crude 11, which was used to the next reaction without further purification. To a solution of the crude $\mathbf{1 1}$ in pyridine (3.7 mL) was added hydroxylamine hydrochloride ($257 \mathrm{mg}, 3.70 \mathrm{mmol}$) at room temperature. After stirring at $70^{\circ} \mathrm{C}$ for 22 h , pyridine was removed under reduced pressure. To the residue was added $\mathrm{H}_{2} \mathrm{O}$, and the mixture was extracted with EtOAc six times. The combined organic extracts were dried over anhydrous sodium sulfate, and filtered. The organic solvents were removed under reduced pressure to give a crude $\mathbf{2 8}$, which was used to the next reaction without further purification. To a solution of the crude 28 and $\mathrm{Et}_{3} \mathrm{~N}$ ($155 \mu \mathrm{~L}, 1.11 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.7 \mathrm{~mL})$ was added $p-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{Cl}(196 \mathrm{mg}, 929 \mathrm{mmol})$ at room temperature. After stirring at room temperature for 3.5 h , precipitates were collected by filtration and purified by trituration $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford sulfonate $29(118 \mathrm{mg}, 197 \mu \mathrm{~mol}, 53 \%, 3$ steps $)$. A colorless solid; mp 197-198 ${ }^{\circ} \mathrm{C}$, decomposition, (hexanes-THF, colorless prisms); IR (film): 1494, 1385, 1292, 1240, 1190, 1095, 1084, 1015, 840, 812, 791, 754, 666, 616, 556, $544 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 7.90(\mathrm{~d}, 4 \mathrm{H}, J=8.8 \mathrm{~Hz}$), $7.53(\mathrm{~d}, 4 \mathrm{H}, J=8.8 \mathrm{~Hz}$), 4.06 (s, 6H), 3.83 (s, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): $\delta 160.3,144.2,140.0,133.1,130.5,129.8,128.6,127.2$, 59.3, 38.0; HRMS (ESI) m / z : calcd. for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{2} 596.9954\left[\mathrm{M}+\mathrm{H}^{+}\right]$found 596.9937.

Indole 30

To a solution of sulfonate $29(500 \mathrm{mg}, 837 \mu \mathrm{~mol})$ in THF (15 mL) and t-BuOH (1.5 mL) was added $\mathrm{NaBH}_{4}(95.0 \mathrm{mg}, 2.51 \mathrm{mmol})$ at room temperature. After stirring at $50{ }^{\circ} \mathrm{C}$ for 7 h , the
reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the mixture was extracted with EtOAc three times. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over anhydrous sodium sulfate, and filtered. The organic solvents were removed under reduced pressure to give a crude material, which was purified by flash silica gel column chromatography (toluene-EtOAc $=5: 1$) to afford indole 30 ($206 \mathrm{mg}, 506 \mu \mathrm{~mol}, 60 \%$). A colorless amorphous; IR (film): 3398, 2360, 1606, 1498, 1397, 1370, 1332, 1260, 1189, 1164, 839, 819, 754, 670, 616, 551, $545 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 8.51(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.52(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 6.41(\mathrm{~s}$, $1 \mathrm{H}), 4.05(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): $\delta 160.7$, 140.3, 139.6, 135.7, 135.3, 133.7, 131.9, 130.4, 129.7, 127.7, 119.6, 116.1, 100.3, 60.8, 59.1, 37.8; HRMS (ESI) m / z : calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{ClN}_{2} \mathrm{O}_{5} \mathrm{~S} 407.0463\left[\mathrm{M}+\mathrm{H}^{+}\right]$found 407.0452.

Pyrroloindole 9

To a solution of sulfonate $\mathbf{3 0}(517 \mathrm{mg}, 1.27 \mathrm{mmol})$ in $\mathrm{DMSO}(9.5 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.2 \mathrm{~mL})$ was added potassium cyanide ($827 \mathrm{mg}, 12.7 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. After stirring at $0^{\circ} \mathrm{C}$ for 29 h , the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over anhydrous sodium sulfate, and filtered. The organic solvents were removed under reduced pressure to give a crude material, which was purified by flash silica gel column chromatography (hexanes-EtOAc $=1: 1$) to afford pyrroloindole 9 ($225 \mathrm{mg}, 932 \mu \mathrm{~mol}, 73 \%$). A colorless solid; mp $186-187{ }^{\circ} \mathrm{C}$ (hexanes-EtOAc, colorless prisms); IR (film): 3325, 2220, 1521, 1370, 1353, 1288, 1252, 1150, 1130, 1074, 1053, 956, 772, $733 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.87$ (br s, 1H), 8.53 (br s, 1H), 7.34 (d, 1H, J = $2.4 \mathrm{~Hz}), 7.22(\mathrm{dd}, 1 \mathrm{H}, J=2.4,2.4 \mathrm{~Hz}), 6.73(\mathrm{dd}, 1 \mathrm{H}, J=2.4,2.4 \mathrm{~Hz}), 4.11(\mathrm{~s}, 3 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 137.8,133.1,128.3,125.7,122.7,116.5,115.6,115.0,113.2,103.4$, 102.0, 61.4, 61.2; HRMS (ESI) m / z : calcd. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{2} 242.0924\left[\mathrm{M}+\mathrm{H}^{+}\right]$found 242.0917.

Aldehyde 31

To a solution of nitrile $9(100 \mathrm{mg}, 415 \mu \mathrm{~mol})$ in toluene (1.3 mL) was added DIBALH (1.00 M in toluene, $1.25 \mathrm{~mL}, 1.25 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. After stirring at $-78^{\circ} \mathrm{C}$ for 2.5 h , the reaction was quenched with saturated aqueous Rochelle salt, and the mixture was stirred for 20 h . The mixture was extracted with EtOAc three times. The combined organic extracts were washed with saturated aqueous Rochelle salt, $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over anhydrous sodium sulfate, and filtered. The
organic solvents were removed under reduced pressure to give a crude material, which was purified by flash silica gel column chromatography (toluene- $\mathrm{EtOAc}=5: 1$) to afford aldehyde $\mathbf{3 1}$ (63.4 mg , $260 \mu \mathrm{~mol}, 63 \%$). A yellow oil; IR (film): 3308, 2360, 2340, 1652, 1615, 1519, 1288, 1130, 1098, $1074,1055 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.74(\mathrm{~s}, 1 \mathrm{H}), 9.22(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.57(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.43$ (d, 1H, $J=2.0 \mathrm{~Hz}$), 7.22 (dd, 1H, $J=2.8,2.8 \mathrm{~Hz}$), $6.77(\mathrm{dd}, 1 \mathrm{H}, J=2.8,2.8 \mathrm{~Hz}), 4.14(\mathrm{~s}, 3 \mathrm{H}), 4.01$ (s, 3 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 180.4,139.1,134.5,133.1,130.4,125.4,122.6,117.5$, 117.1, 113.9, 102.2, 61.4, 61.1; HRMS (ESI) m / z : calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3} 245.0921\left[\mathrm{M}+\mathrm{H}^{+}\right]$found 245.0924.

Methyl ester 33

To a solution of aldehyde $31(250 \mathrm{mg}, 1.02 \mathrm{mmol})$ and DMAP ($12.5 \mathrm{mg}, 0.102 \mathrm{mmol}$) in $\mathrm{MeCN}(10 \mathrm{~mL})$ was added $\mathrm{Boc}_{2} \mathrm{O}(1.12 \mathrm{~g}, 5.11 \mathrm{mmol})$ at room temperature. After stirring at room temperature for $1 \mathrm{~h}, \mathrm{MeCN}$ was removed under reduced pressure. The residue was purified by passing through a silica gel short column chromatography (toluene-EtOAc $=3: 1$) to afford Boc carbamate $\mathbf{S 3}$ as a mixture containing an unidentified byproduct, which was used to the next reaction without further purification. To a solution of the crude $\mathbf{S 3}$ in t - $\mathrm{BuOH}(2.0 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(8.0$ mL), and THF (8.0 mL) were added $\mathrm{NaH}_{2} \mathrm{PO}_{4}(957 \mathrm{mg}, 6.13 \mathrm{mmol})$, 2-methyl-2-butene (2.17 ml , 20.4 mmol), and $\mathrm{NaClO}_{2}(277 \mathrm{mg}, 3.07 \mu \mathrm{~mol})$ at room temperature. After stirring at room temperature for 12 h , the mixture was diluted by $\mathrm{H}_{2} \mathrm{O}$, and the mixture was extracted with EtOAc three times. The combined organic extracts were dried over anhydrous sodium sulfate, and filtered. The organic solvents were removed under reduced pressure to give a crude 32, which was used to the next reaction without further purification. To a solution of the crude $\mathbf{3 2}$ and $\mathrm{NaHCO}_{3}(171 \mathrm{mg}$, $2.04 \mathrm{mmol})$ in DMF (10.0 ml) was added MeI ($127 \mu \mathrm{~L}, 2.04 \mathrm{mmol}$) at room temperature. After stirring at room temperature for 2.5 h , the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ five times. The combined organic extracts were dried over anhydrous sodium sulfate, and filtered. The organic solvents were removed under reduced pressure to give a crude $\mathbf{S 4}$, which was used to the next reaction without further purification. A solution of the crude $\mathbf{S 4}$ in o-dichlorobenzene (10 ml) was stirred at $185^{\circ} \mathrm{C}$ for 7.5 h , and the mixture was directly applied to silica gel short column chromatography (100% hexanes to $100 \% \mathrm{EtOAc}$) to give a crude material. The crude material was purified by flash silica gel column chromatography (toluene-EtOAc $=7: 1$)
to afford methyl ester 33 ($224 \mathrm{mg}, 818 \mu \mathrm{~mol}, 80 \%, 4$ steps). A yellow solid; mp $189-190{ }^{\circ} \mathrm{C}$ (hexanes-EtOAc, colorless prisms); IR (film): 3335, 2939, 1693, 1518, 1443, 1379, 1288, 1265, $1202,1169,1148,1053 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.56(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.41$ (br s, 1 H), 7.17 (br s, 1 H), $6.73(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.08(\mathrm{~s}, 3 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 162.4,137.4,133.5,128.3,125.4,124.9,122.3,117.2,116.9,108.0,101.9,61.3$, 61.1, 51.7; HRMS (ESI) $m / z:$ calcd. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{4} 275.1026\left[\mathrm{M}+\mathrm{H}^{+}\right]$found 275.1014. Spectroscopic data were identical with those previously reporetd. ${ }^{5}$

Benzyl ester 34

To a solution of aldehyde $31(159 \mathrm{mg}, 0.651 \mathrm{mmol})$ and DMAP ($8.0 \mathrm{mg}, 65.2 \mu \mathrm{~mol}$) in $\mathrm{MeCN}(6.5 \mathrm{~mL})$ was added $\mathrm{Boc}_{2} \mathrm{O}(711 \mathrm{mg}, 3.26 \mathrm{mmol})$ at room temperature. After stirring at room temperature for $50 \mathrm{~min}, \mathrm{MeCN}$ was removed under reduced pressure. The residue was purified by passing through a silica gel short column chromatography (toluene-EtOAc $=3: 1$) to afford Boc carbamate $\mathbf{S 3}$ as a mixture containing an unidentified byproduct, which was used to the next reaction without further purification. To a solution of the crude $\mathbf{S 3}$ in $t-\mathrm{BuOH}(1.3 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(5.2$ mL), and THF (5.2 mL) were added $\mathrm{NaH}_{2} \mathrm{PO}_{4}(610 \mathrm{mg}, 3.91 \mathrm{mmol})$, 2-methyl-2-butene $(1.39 \mathrm{ml}$, $13.0 \mathrm{mmol})$, and $\mathrm{NaClO}_{2}(177 \mathrm{mg}, 1.96 \mathrm{mmol})$ at room temperature. After stirring at room temperature for 20 h , the reaction was diluted by $\mathrm{H}_{2} \mathrm{O}$, and the mixture was extracted with EtOAc three times. The combined organic extracts were dried over anhydrous sodium sulfate, and filtered. The organic solvents were removed under reduced pressure to give a crude 32, which was used to the next reaction without further purification. To a solution of the crude $\mathbf{3 2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.2 \mathrm{ml})$ were added $\mathrm{BnOH}(80.0 \mu \mathrm{~L}, 0.781 \mathrm{mmol})$, DCC ($136 \mathrm{mg}, 0.658 \mathrm{mmol}$), and DMAP ($15.9 \mathrm{mg}, 0.130$ mmol) at room temperature. After stirring at room temperature for 8 h , the mixture was filtered through a pad of Celite ${ }^{\circledR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, and the filtrate was concentrated under reduced pressure. The residue was diluted by EtOAc and washed with brine. The combined organic solvents were dried over anhydrous sodium sulfate, and filtered. The organic solvents were removed under reduced pressure to give a crude $\mathbf{S 5}$, which was purified by flash silica gel column chromatography (hexanes-EtOAc $=6: 1$) to afford $\mathbf{S 5}$ as a mixture containing unidentified byproduct. A solution of the crude $\mathbf{S 5}$ in o-dichlorobenzene (6.5 ml) was stirred at $185{ }^{\circ} \mathrm{C}$ for 8.5 h , and the mixture was directly applied to silica gel short column chromatography (100% hexane to $100 \% \mathrm{EtOAc}$) to give a
crude material. The crude material was purified by flash silica gel column chromatography (hexanes-EtOAc $=2: 1$) to afford benzyl ester $\mathbf{3 4}(183 \mathrm{mg}, 0.522 \mathrm{mmol}, 80 \%, 4$ steps). A colorless amorphous; IR (film): 3431, 3338, 3032, 3006, 2937, 1690, 1518, 1454, 1389, 1351, 1287, 1262, 1195, 1168, 1074, 1053, 758, 697, $569 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.06$ (br s, 1 H), 8.47 (br s, 1H), 7.49-7.35 (m, 6H), 7.18 (dd, 1H, $J=2.4,2.4 \mathrm{~Hz}$), $6.72(\mathrm{dd}, 1 \mathrm{H}, J=2.4,2.4 \mathrm{~Hz}$), $5.40(\mathrm{~s}$, 2 H), 4.09 ($\mathrm{s}, 3 \mathrm{H}$), $4.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.8,137.5,136.1,133.5,128.6$, 128.4, 128.3, 128.2, 125.5, 124.8, 122.2, 117.2, 116.9, 108.4, 102.0, 66.3, 61.4, 61.1; HRMS (ESI) m / z : calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4} 351.1339\left[\mathrm{M}+\mathrm{H}^{+}\right]$found 351.1351.

Carbamate 36

To a solution of $\mathbf{3 4}(105 \mathrm{mg}, 300 \mu \mathrm{~mol})$ in $\mathrm{AcOH}(0.8 \mathrm{~mL})$ was added $\mathrm{NaBH}_{3} \mathrm{CN}(94.3 \mathrm{mg}$, 1.50 mmol) at room temperature. After stirring at room temperature for 10 h , the reaction was quenched with saturated aqueous NaHCO_{3}, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic extracts were washed with saturated aqueous NaHCO_{3} and brine, dried over anhydrous sodium sulfate, and filtered. The organic solvents were removed under reduced pressure to give a crude 35 , which was used to the next reaction without further purification. To a solution of the crude 35 and $\mathrm{NaHCO}_{3}(75.6 \mathrm{mg}, 900 \mu \mathrm{~mol})$ in THF (1.5 mL) and $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ was added $\mathrm{FmocCl}(85.4 \mathrm{mg}, 330 \mu \mathrm{~mol})$ at room temperature. After stirring at room temperature for 20 min , the mixture was extracted with EtOAc three times. The combined organic extracts were washed with brine, dried over anhydrous sodium sulfate, and filtered. The organic solvents were removed under reduced pressure to give a crude material, which was purified by flash silica gel column chromatography (hexanes-EtOAc $=3: 1$) to afford $36(142 \mathrm{mg}, 406 \mu \mathrm{~mol}, 82 \%, 2$ steps). A yellow amorphous; IR (film): 3447, 3314, 2944, 2897, 2848, 1707, 1532, 1506, 1450, 1415, 1326, 1286, 1253, 1209, 1191, 1156, 757, 739, $698 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.97$ (br s, 1H), 7.74 $(\mathrm{d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.57(\mathrm{~d}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.47-7.36(\mathrm{~m}, 7 \mathrm{H}), 7.27(\mathrm{dd}, 2 \mathrm{H}, J=7.2,7.2 \mathrm{~Hz})$, $7.10(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 5.39(\mathrm{~s}, 2 \mathrm{H}), 4.56(\mathrm{~d}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 4.31(\mathrm{t}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 4.17(\mathrm{t}, 2 \mathrm{H}$, $J=8.0 \mathrm{~Hz}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{t}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $161.4,155.1,144.0,142.2,141.3,137.6,135.7,130.9,130.1,128.7,128.43,128.36,127.66,127.63$, 127.0, 125.1, 121.8, 120.5, 119.9, 107.4, 67.6, 66.7, 61.1, 60.3, 51.8, 47.4, 28.6; HRMS (ESI) $\mathrm{m} / \mathrm{z}:$ calcd. for $\mathrm{C}_{35} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{6} 575.2177\left[\mathrm{M}+\mathrm{H}^{+}\right]$found 575.2160.

Phenol 37

To a solution of $\mathbf{3 6}(142 \mathrm{mg}, 247 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.7 \mathrm{~mL})$ was added $\mathrm{BCl}_{3}(1.0 \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 247 \mu \mathrm{~L}, 247 \mu \mathrm{~mol}$) at $0{ }^{\circ} \mathrm{C}$. After stirring at $0{ }^{\circ} \mathrm{C}$ for 20 min , additional amount of BCl_{3} (1.0 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 130 \mu \mathrm{~L}, 130 \mu \mathrm{~mol}$) was added to the reaction mixture at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 20 min . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ four times. The combined organic extracts were washed with brine, dried over anhydrous sodium sulfate, and filtered. The organic solvents were removed under reduced pressure to give a crude material, which was purified by flash silica gel column chromatography (hexanes-EtOAc-acetone $=4: 1: 1$) to afford phenol $37(92.5 \mathrm{mg}, 165 \mu \mathrm{~mol}, 67 \%)$. A colorless amorphous; IR (film): 3453, 3319, 3065, 3016, 2937, 2835, 1696, 1663, 1469, 1452, 1337, 1289, 1255, 1152, 750, 697, $541 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 11.21(\mathrm{~s}, 1 \mathrm{H}), 8.82(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.62(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.45-7.34(\mathrm{~m}, 9 \mathrm{H}), 7.06(\mathrm{~d}, 1 \mathrm{H}, J=2.0$ $\mathrm{Hz}), 5.37(\mathrm{~s}, 2 \mathrm{H}), 4.60(\mathrm{~d}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 4.33(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 4.09(\mathrm{t}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 4.01(\mathrm{~s}$, 3 H), 3.19 (t, 2H, $J=8.6 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.3$, 155.1, 143.4, 141.3, 138.1, 135.8, 132.77, 132.76, 130.6, 128.6, 128.3, 127.8, 127.1, 126.7, 125.7, 124.8, 120.0, 119.4, 117.6, 107.4, 68.7, 66.5, 60.6, 49.2, 47.0, 26.6; HRMS (ESI) $m / z:$ calcd. for $\mathrm{C}_{34} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{6} 561.2020$ $\left[\mathrm{M}+\mathrm{H}^{+}\right]$found 561.2001.

Middle segment 38

A solution of $\mathbf{3 7}(92.5 \mathrm{mg}, 165 \mu \mathrm{~mol})$ and 10% palladium on activated carbon $(17.6 \mathrm{mg}, 16.5$ $\mu \mathrm{mol}$) in a mixture of $\mathrm{EtOAc}(0.8 \mathrm{~mL})$ and $\mathrm{EtOH}(0.8 \mathrm{~mL})$ was stirred under a hydrogen atmosphere (1 atm) at room temperature for 17 h . The reaction mixture was filtered through a pad of Celite ${ }^{\circledR}$ and the filtrate was concentrated under reduced pressure to give the middle segment 38 (77.6 mg , quant). A colorless amorphous; IR (film): 2938, 2907, 2834, 1660, 1468, 1446, 1337, 1291, 1266, 1159, 1138, $739 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 11,3(\mathrm{~s}, 1 \mathrm{H}), 8.86(\mathrm{~s}, 1 \mathrm{H}), 7.80$ (d, 2H, $J=7.2 \mathrm{~Hz}$), $7.62(\mathrm{~d}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.43(\mathrm{dd}, 2 \mathrm{H}, J=7.2,7.6 \mathrm{~Hz}), 7.35(\mathrm{dd}, 2 \mathrm{H}, J=7.2$, $7.6 \mathrm{~Hz}), 7.13(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 4.60(\mathrm{~d}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 4.33(\mathrm{t}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 4.11(\mathrm{t}, 2 \mathrm{H}, J=$ $8.8 \mathrm{~Hz}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=8.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.3,155.3,143.5$, 141.4, 138.6, 132.8, 131.1, 128.0, 127.2, 126.1, 125.8, 124.9, 120.2, 119.7, 117.7, 109.0, 68.9, 60.8, 49.4, 47.1, 26.8; HRMS (ESI-) m/z: calcd. for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{6} 469.1405$ [M-H ${ }^{+}$] found 469.1385 .

Carbamate 40

To a solution of $\mathbf{3 9}^{6}(22.7 \mathrm{~g}, 46.3 \mathrm{mmol})$ in THF (116 mL) was added tri- n-butylphosphine $(12.9 \mathrm{~mL}, 51.6 \mathrm{mmol})$ at room temperature. After stirring at room temperature for $20 \mathrm{~min}, \mathrm{H}_{2} \mathrm{O}(46$ mL) was added to the mixture, and the resulting solution was stirred for 30 min at room temperature. To the pale-yellow solution was added $\mathrm{Boc}_{2} \mathrm{O}(11.8 \mathrm{~g}, 54.1 \mathrm{mmol})$ at room temperature. After stirring at room temperature for 20 min , to the mixture was added $\mathrm{H}_{2} \mathrm{O}$, and the mixture was extracted with EtOAc three times. The combined organic extracts were washed with brine, dried over anhydrous sodium sulfate, and filtered. The organic solvents were removed under reduced pressure to give a crude material, which was purified by silica gel column chromatography (hexanes-EtOAc $=6: 1$) to afford N-Boc carbamate $40(26.5 \mathrm{~g}, 42.0 \mathrm{mmol}, 91 \%)$. A colorless oil; $[\alpha]_{\mathrm{D}}{ }^{27}-16.5$ (c $0.81, \mathrm{CHCl}_{3}$); IR (film): 2953, 2929, 1715, 1594, 1543, 1499, 1470, 1453, 1365, 1253, 1171, 1107, 836, $776 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40-7.33(\mathrm{~m}, 5 \mathrm{H}), 7.17(\mathrm{~s}, 2 \mathrm{H})$, $5.00(\mathrm{~s}, 2 \mathrm{H}), 4.82(\mathrm{br}, 1 \mathrm{H}), 4.25-4.21(\mathrm{~m}, 1 \mathrm{H}), 3.23-3.17(\mathrm{~m}, 3 \mathrm{H}), 3.02(\mathrm{dd}, 1 \mathrm{H}, J=13.6,6.0 \mathrm{~Hz})$, $1.44(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}),-0.02(\mathrm{~s}, 3 \mathrm{H}),-0.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 157.6$, 156.0, 135.9, 129.7, 128.7, 128.3, 127.5, 126.0, 119.2, 79.1, 70.5, 70.0, 46.0, 40.6, 28.4, 25.8, 17.9, $-4.9,-5.0$; HRMS (ESI) $m / z:$ calcd. for $\mathrm{C}_{2} 7 \mathrm{H}_{39}{ }^{79} \mathrm{Br}_{2} \mathrm{NNaO}_{4} \mathrm{Si} 650.0907\left[\mathrm{M}+\mathrm{Na}^{+}\right]$found 650.0897.

Tetrahydroquinoline 41

To a solution of carbamate $40(26.4 \mathrm{~g}, 41.9 \mathrm{mmol})$ in THF (720 mL) was added LiTMP (1.00 M in n-hexane and THF, $210 \mathrm{~mL}, 210 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. After stirring at $-78^{\circ} \mathrm{C}$ for 10 min , the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with EtOAc three times. The combined organic extracts were washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and brine, dried over anhydrous sodium sulfate, and filtered. The organic solvents were removed under reduced pressure to give a crude material, which was purified by silica gel column chromatography (hexanes $-\mathrm{CH}_{2} \mathrm{Cl}_{2}=2: 1$) to afford tetrahydroquinoline 41 ($13.9 \mathrm{~g}, 25.4 \mathrm{mmol}, 61 \%$). A colorless solid; $[\alpha]_{\mathrm{D}}{ }^{27}+23.7$ (c $0.81, \mathrm{CHCl}_{3}$); mp $66-69^{\circ} \mathrm{C}$ (hexanes-EtOAc, colorless prisms); IR (film): 1705, 1604, 1472, 1464, 1455, 1366, 1315, 1252, 1223, 1154, 1118, 1098, 837, $775 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.43-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.00(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 5.01(\mathrm{~s}, 2 \mathrm{H}), 4.13-4.04(\mathrm{~m}, 1 \mathrm{H})$, $3.89(\mathrm{dd}, 1 \mathrm{H}, J=12.0,3.2 \mathrm{~Hz}), 3.35(\mathrm{dd}, 1 \mathrm{H}, J=12.0,8.0 \mathrm{~Hz}), 2.99(\mathrm{dd}, 1 \mathrm{H}, J=16.8,6.0 \mathrm{~Hz})$, $2.61(\mathrm{dd}, 1 \mathrm{H}, J=16.8,6.8 \mathrm{~Hz}), 1.52(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz ,
$\left.\mathrm{CDCl}_{3}\right): \delta 156.8,153.4,140.1,136.6,128.6,128.0,127.5,124.7,120.1,115.2,110.2,81.3,70.3$, 65.6, 49.9, 38.2, 28.3, 25.9, 18.2, -4.7, -4.8; HRMS (ESI) m / z : calcd. for $\mathrm{C}_{2} 7 \mathrm{H}_{38}{ }^{79} \mathrm{BrNNaO} 4 \mathrm{Si}$ $570.1646\left[\mathrm{M}+\mathrm{Na}^{+}\right]$found 570.1638 .

Oxime 44

To a solution of bromide $41(190 \mathrm{mg}, 346 \mu \mathrm{~mol})$ and ketene silyl acetal $\mathbf{4 2}(437 \mu \mathrm{~L}, 1.73$ mmol , freshly prepared form propanoic acid ethyl ester) ${ }^{7}$ in THF (1.4 mL) was added LiTMP (0.500 M in n-hexane and THF, $2.08 \mathrm{~mL}, 1.04 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. After stirring at $-78^{\circ} \mathrm{C}$ for 15 min , the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$ at $-78{ }^{\circ} \mathrm{C}$, and the mixture was extracted with EtOAc three times. The combined organic extracts were washed with brine, dried over anhydrous sodium sulfate, and filtered. The organic solvents were removed under reduced pressure to give a crude $\mathbf{4 3}$, which was used to the next reaction without further purification. To a solution of the crude 43 in THF $(0.34 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.34 \mathrm{~mL})$ was added $\mathrm{AcOH}(1.0 \mathrm{~mL})$ at room temperature. After stirring at $50{ }^{\circ} \mathrm{C}$ for 1.5 h , the reaction was quenched with saturated aqueous NaHCO_{3}, and the mixture was extracted with EtOAc three times. The combined organic extracts were washed with saturated aqueous NaHCO_{3} and brine, dried over anhydrous sodium sulfate, and filtered. The organic solvents were removed under reduced pressure to give a crude S6, which was used to the next reaction without further purification. To a solution of the crude $\mathbf{S 6}$ in pyridine (3.5 mL) was added hydroxylamine hydrochloride ($63.4 \mathrm{mg}, 912 \mu \mathrm{~mol}$) at room temperature. After stirring at $70{ }^{\circ} \mathrm{C}$ for 8 h , the reaction was quenched with 1 M aqueous HCl , and the mixture was extracted with EtOAc three times. The combined organic extracts were washed with 1 M aqueous HCl and brine, dried over anhydrous sodium sulfate, and filtered. The organic solvents were removed under reduced pressure to give a crude material, which was purified by flash silica gel column chromatography (hexanes-EtAOc $=5: 1$) to afford oxime $44(102 \mathrm{mg}, 189 \mu \mathrm{~mol}, 54 \%, 3$ steps). A colorless solid; $[\alpha]_{\mathrm{D}}{ }^{27}+36.9\left(c 1.73, \mathrm{CHCl}_{3}\right) ; \mathrm{mp} 147-148{ }^{\circ} \mathrm{C}$ (hexanes-EtOAc, colorless prisms); IR (film): 3393, 2956, 2929, 1714, 1699, 1684, 1488, 1367, 1154, $754 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.43(\mathrm{~d}$, $2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.38-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.35(\mathrm{~s}, 2 \mathrm{H}), 4.24-$ $4.15(\mathrm{~m}, 1 \mathrm{H}), 4.14-4.03(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{dd}, 0.5 \mathrm{H}, J=12.8,2.8 \mathrm{~Hz}), 3.92(\mathrm{dd}, 0.5 \mathrm{H}, J=12.4,2.4$ Hz), 3.40 (dd, $0.5 \mathrm{H}, J=12.8,8.4 \mathrm{~Hz}$), 3.32 (dd, $0.5 \mathrm{H}, J=12.4,8.4 \mathrm{~Hz}$), $2.91(\mathrm{dd}, 0.5 \mathrm{H}, J=4.4,4.4$ $\mathrm{Hz}), 2.87(\mathrm{dd}, 0.5 \mathrm{H}, J=4.8,4.8 \mathrm{~Hz}), 2.58(\mathrm{dd}, 1 \mathrm{H}, J=6.8,6.8 \mathrm{~Hz}), 2.54(\mathrm{dd}, 1 \mathrm{H}, J=6.8,6.8 \mathrm{~Hz})$, $1.57(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.51(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 4.5 \mathrm{H}), 0.90(\mathrm{~s}, 4.5 \mathrm{H}), 0.121(\mathrm{~s}, 3 \mathrm{H}), 0.115(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 156.2,153.4,150.4,148.5,142.50,142.47,137.2,128.4,127.8$, $46.5,46.4,32.75,32.65,28.3,25.8,18.2,15.9,15.8,-4.70,-4.73,-4.81,-4.83$; HRMS (ESI) $m / z:$ calcd. for $\mathrm{C}_{30} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Si} 539.2936\left[\mathrm{M}+\mathrm{H}^{+}\right]$, found 539.2935.

Sulfonate 45

To a solution of oxime $44(201 \mathrm{mg}, 373 \mu \mathrm{~mol})$ and $p-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{Cl}(118 \mathrm{mg}, 560 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.7 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(104 \mu \mathrm{~L}, 746 \mu \mathrm{~mol})$ at $0{ }^{\circ} \mathrm{C}$. After stirring at $0{ }^{\circ} \mathrm{C}$ for 1.5 h , the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over anhydrous sodium sulfate, and filtered. The organic solvents were removed under reduced pressure to give a crude material, which was purified by flash silica gel column chromatography (petroleum ether-acetone $=30: 1$) to afford sulfonate 45 ($242 \mathrm{mg}, 339 \mu \mathrm{~mol}, 91 \%$). A yellow solid; $[\alpha]_{\mathrm{D}}{ }^{27}+12.8\left(c 1.69, \mathrm{CHCl}_{3}\right) ; \mathrm{mp}$ $59-60{ }^{\circ} \mathrm{C}$ (hexanes-EtOAc, colorless prisms); IR (film): 1707, 1488, 1370, 1313, 1253, 1228, 1191, $1173,1153,1097,836,819,775,761 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.89(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz})$, $7.45-7.30(\mathrm{~m}, 8 \mathrm{H}), 5.21(\mathrm{~s}, 2 \mathrm{H}), 4.28-4.20(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{dd}, 0.5 \mathrm{H}, J=13.2$, $2.8 \mathrm{~Hz}), 3.84(\mathrm{dd}, 0.5 \mathrm{H}, J=12.8,3.2 \mathrm{~Hz}), 3.46(\mathrm{dd}, 0.5 \mathrm{H}, J=12.4,7.6 \mathrm{~Hz}), 3.38(\mathrm{dd}, 0.5 \mathrm{H}, J=$ $12.4,8.0 \mathrm{~Hz}), 2.83-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{dd}, 1 \mathrm{H}, J=6.4,6.4 \mathrm{~Hz}), 2.50(\mathrm{dd}, 1 \mathrm{H}, J=6.4,6.4 \mathrm{~Hz})$, $1.57(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.50(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 4.5 \mathrm{H}), 0.88(\mathrm{~s}, 4.5 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.2,153.2,153.1151 .6,148.5,145.2,145.1,140.6,136.6,134.0$, $130.4,129.2,128.5,128.1,127.5,115.54,115.46,115.1,115.0,112.7,112.6,81.81,81.78,72.1$, 64.6, 64.5, 50.5, 50.4, 47.8, 32.5, 32.4, 28.2, 25.8, 18.1, 16.0, 15.9, -4.76, -4.85; HRMS (ESI) $\mathrm{m} / \mathrm{z}:$ calcd. for $\mathrm{C}_{36} \mathrm{H}_{46} \mathrm{ClN}_{2} \mathrm{O}_{7} \mathrm{SSi} 713.2478\left[\mathrm{M}+\mathrm{H}^{+}\right]$found 713.2475 .

Indole 46

To a solution of sulfonate $\mathbf{4 5}(20.5 \mathrm{mg}, 28.7 \mu \mathrm{~mol})$ in DMSO $(0.2 \mathrm{~mL})$ and $t-\mathrm{BuOH}(0.6 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(10.9 \mathrm{mg}, 288 \mu \mathrm{~mol})$ at room temperature. After stirring at $70{ }^{\circ} \mathrm{C}$ for 2 h , the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$ at room temperature, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over anhydrous sodium sulfate, and filtered. The organic solvents were removed under reduced pressure to give a crude material, which was purified by preparative TLC (toluene) to afford indole $\mathbf{4 6}$ ($11.4 \mathrm{mg}, 21.8$
$\mu \mathrm{mol}, 76 \%$). A colorless solid; $[\alpha]_{\mathrm{D}}{ }^{26}+41.7$ (c $3.87, \mathrm{CHCl}_{3}$); mp $144-145{ }^{\circ} \mathrm{C}$ (hexanes-EtOAc, colorless prisms); IR (film): 2953, 2928, 1698, 1685, 1507, 1457, 1363, 1253, 1189, 1157, 1095, $837 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.05$ (br s, 1 H), 7.47 (d, 2H, $J=6.8 \mathrm{~Hz}$), 7.42-7.32 (m, $3 \mathrm{H}), 6.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 5.16(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}), 5.11(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}), 4.20-4.05$ $(\mathrm{m}, 2 \mathrm{H}), 3.56(\mathrm{dd}, 1 \mathrm{H}, J=16.8,6.8 \mathrm{~Hz}), 3.30-3.22(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{dd}, 1 \mathrm{H}, J=16.8,8.0 \mathrm{~Hz}), 2.45(\mathrm{~s}$, $3 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.16(\mathrm{~s}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 154.2$, 142.8, 137.1 130.2, 128.6, 128.0, 127.9, 126.0, 124.8, 122.0, 113.8, 112.9, 101.9, 80.3, 70.3, 66.5, $50.5,35.3,28.5,25.9,18.3,13.0,-4.6,-4.7$; HRMS (ESI) m / z : calcd. for $\mathrm{C}_{30} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si} 523.2987$ $\left[\mathrm{M}+\mathrm{H}^{+}\right]$found 523.2980.

Pyrrolotetrahydroquinoline 47

To a solution of carbamate $46(53.8 \mathrm{mg}, 103 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was added TMSI $(22.0 \mu \mathrm{~L}, 155 \mu \mathrm{~mol})$ at $0{ }^{\circ} \mathrm{C}$. After stirring at $0{ }^{\circ} \mathrm{C}$ for 25 min , the reaction was quenched with saturated aqueous NaHCO_{3}, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic extracts were washed with brine, dried over anhydrous sodium sulfate, and filtered. The organic solvents were removed under reduced pressure to give a crude material, which was purified by flash silica gel column chromatography (hexanes-EtOAc =3:1) to afford left segment 47 (41.9 $\mathrm{mg}, 98.9 \mathrm{mmol}, 96 \%$). A brown amorphous; $[\alpha]_{\mathrm{D}}{ }^{27}+56.1$ (c $2.97, \mathrm{CHCl}_{3}$); mp $141-143{ }^{\circ} \mathrm{C}$ (hexanes-EtOAc, colorless prisms); IR (film): 2952, 2928, 2856, 1593, 1454, 1147, 1109, 873, 836, $776 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.89(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.44-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 6.05(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 5.09(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.20-4.15(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{dd}, 1 \mathrm{H}, \mathrm{d}, 1 \mathrm{H}, J=16.8,5.6 \mathrm{~Hz}), 3.28(\mathrm{br}, 1 \mathrm{H})$, 3.09-3.00 (m, 2H), $2.44(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.2$, $137.2,136.3128 .5,127.9,127.8,127.6,122.2,111.9,104.6,95.3,70.1,66.8,49.6,34.5,25.9,18.2$, $12.8,-4.5,-4.6$ (One signal is missing due to overlap.); HRMS (ESI) m / z : calcd. for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}$ $423.2462\left[\mathrm{M}+\mathrm{H}^{+}\right]$, found 423.2450 .

Amide 48

To a solution of left segment 47 ($50.4 \mathrm{mg}, 119 \mu \mathrm{~mol}$), and the carboxylic acid $38(67.3 \mathrm{mg}$, $143 \mu \mathrm{~mol})$ in THF (1.2 mL) was added WSCD $\cdot \mathrm{HCl}(91.4 \mathrm{mg}, 477 \mu \mathrm{~mol})$ at room temperature.

After stirring at room temperature for 10 h , the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with EtOAc three times. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over anhydrous sodium sulfate, and filtered. The organic solvents were removed under reduced pressure to give a crude material, which was purified by flash silica gel column chromatography (hexanes-EtOAc $=2: 1$) to afford amide $48(94.8 \mathrm{mg}, 108$ $\mu \mathrm{mol}, 91 \%$). A pale yellow solid; $[\alpha]_{\mathrm{D}}{ }^{24}+16.2\left(c 1.28, \mathrm{CHCl}_{3}\right) ; \mathrm{mp} 139-142{ }^{\circ} \mathrm{C}$ (hexanes-EtOAc, colorless prisms); IR (film): 3456, 3005, 2952, 2928, 2898, 2855, 1663, 1604, 1452, 1353, 1331, $1251,773,757,741 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 11.03(\mathrm{~s}, 1 \mathrm{H}), 8.83(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H})$, 7.79 (d, 2H, $J=7.2 \mathrm{~Hz}), 7.61(\mathrm{~d}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.42(\mathrm{dd}, 2 \mathrm{H}, J=7.2,7.2 \mathrm{~Hz}), 7.35(\mathrm{dd}, 2 \mathrm{H}, J=$ $7.2,7.2 \mathrm{~Hz}), 7.25-7.15(\mathrm{~m}, 5 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 2 \mathrm{H}), 4.58(\mathrm{~d}, 2 \mathrm{H}, J$ $=7.2 \mathrm{~Hz}), 4.38-4.28(\mathrm{~m}, 2 \mathrm{H}), 4.18-4.08(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{t}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.98-3.87$ $(\mathrm{m}, 1 \mathrm{H}), 3.56(\mathrm{dd}, 1 \mathrm{H}, J=16.0,6.4 \mathrm{~Hz}) 3.17(\mathrm{dd}, 1 \mathrm{H}, J=16.0,6.0 \mathrm{~Hz}), 2.98(\mathrm{t}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz})$, $2.52(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.6,155.1$, $143.5142 .8,141.3,137.2,136.6,132.8,130.5,130.4,129.2,128.3,127.9,127.3,127.2,126.5$, $125.8,125.2,124.9,122.5,120.1,119.1,117.7,114.9,113.0,106.0,102.7,70.4,68.7,67.3,60.6$, $51.6,49.3,47.1,34.4,26.8,25.7,18.0,13.0,-4.7,-4.8$ (One signal is missing due to overlap.); HRMS (ESI) m / z : calcd. for $\mathrm{C}_{52} \mathrm{H}_{55} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{Si} 875.3835\left[\mathrm{M}+\mathrm{H}^{+}\right]$found 875.3806 .

Amide 49

To a solution of 48 ($34.1 \mathrm{mg}, 39.0 \mu \mathrm{~mol}$) in THF (0.35 mL) was added TBAF (1.0 M in THF, $30 \mu \mathrm{~L}, 30 \mu \mathrm{~mol}, 30 \mu \mathrm{~L}, 30 \mu \mathrm{~mol}, 10 \mu \mathrm{~L}, 10 \mu \mathrm{~mol}, 5 \mu \mathrm{~L}, 5 \mu \mathrm{~mol}$, addition to every 10 min) at room temperature. Then, WSCD $\cdot \mathrm{HCl}(29.9 \mathrm{mg}, 156 \mu \mathrm{~mol}), \mathbf{3}(11.4 \mathrm{mg}, 39.0 \mu \mathrm{~mol})$ and DMF (0.7 mL) were added to the mixture at room temperature, and the resulting solution was stirred for 4 h at room temperature. To the mixture was added $\mathrm{HOBt}(21.0 \mathrm{mg}, 156 \mu \mathrm{~mol})$ at room temperature. After stirring at room temperature for 1 h , the reaction was quenched with saturated aqueous NaHCO_{3}, and the mixture was extracted with EtOAc three times. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}$ twice and brine, dried over anhydrous sodium sulfate, and filtered. The organic solvents were removed under reduced pressure to give a crude material, which was purified by preparative TLC (EtOAc-MeOH-10\% aqueous ammonium hydroxide $=10: 1: 1$) to afford 49 ($22.7 \mathrm{mg}, 24.5$ $\mu \mathrm{mol}, 63 \%$). A yellow solid; $[\alpha]_{\mathrm{D}}{ }^{27}+18$ (c 0.65, DMF); mp 172-174 ${ }^{\circ} \mathrm{C}$ (hexanes-EtOAc, colorless prisms); IR (film): 3344, 2952, 2931, 1733, 1652, 1645, 1634, 1614, 1575, 1568, 1515, 1463, 1456, 1443, 1421, 1331, 1250, $547 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , acetone- d_{6}): $\delta 12.82(\mathrm{~s}, 1 \mathrm{H}), 10.92$ (br s, $1 \mathrm{H}), 10.28(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 10.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 10.04(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.36-7.16(\mathrm{~m}, 5 \mathrm{H}), 7.05-7.00(\mathrm{~m}, 2 \mathrm{H})$, $6.53(\mathrm{~s}, 1 \mathrm{H}), 6.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.25(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.83(\mathrm{~s}, 2 \mathrm{H}), 4.65(\mathrm{t}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 4.47-4.38(\mathrm{~m}$,
$1 \mathrm{H}), 4.16(\mathrm{t}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 4.09(\mathrm{dd}, 1 \mathrm{H}, J=11.2,2.8 \mathrm{~Hz}), 4.00-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.88$ (s, 3H), $3.60(\mathrm{dd}, 1 \mathrm{H}, J=16.8,6.0 \mathrm{~Hz}$), $3.29(\mathrm{t}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 3.20-3.10(\mathrm{~m}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H})$, $0.85(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , acetone $-d_{6}$): $\delta 163.3,161.3,158.5$, 143.8, 139.7, 139.2, 138.2, 134.3, 133.5, 132.7, 131.3, 131.1, 130.6, 130.0, 129.0, 128.8, 128.4, $128.3,128.1,127.6,126.6,124.2,121.3$, 119.2, 118.62, 118.60, 114.9, 112.8, 106.9, 105.9, 103.2, $70.7,68.0,60.6,60.4,53.9,52.0,50.3,35.2,28.4,27.4,26.2,18.6,13.2,-4.5,-4.6$; HRMS (ESI) m / z : calcd. for $\mathrm{C}_{50} \mathrm{H}_{56} \mathrm{~N}_{7} \mathrm{O}_{9} \mathrm{Si} 926.3903\left[\mathrm{M}+\mathrm{H}^{+}\right]$found 926.3911 .

Mesylate 50

To a solution of $49(17.4 \mathrm{mg}, 18.8 \mu \mathrm{~mol})$ in THF (0.2 mL) was added TBAF (1.0 M in THF, $22.5 \mu \mathrm{~L}, 22.5 \mu \mathrm{~mol})$ at room temperature. After stirring at room temperature for 15 min , TBAF $(1.0$ M in THF, $22.5 \mu \mathrm{~L}, 22.5 \mu \mathrm{~mol}$) was added to the reaction mixture at room temperature, and the resulting mixture was stirred for 3 h at room temperature. THF was removed under reduced pressure, and the residue was dissolved in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$ and pyridine ($30.4 \mu \mathrm{~L}, 376$ $\mu \mathrm{mol})$. To the mixture was added $\mathrm{MsCl}(14.6 \mu \mathrm{~L}, 188 \mu \mathrm{~mol})$ at $0{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred for 40 min at room temperature. To the mixture were added pyridine ($30.4 \mu \mathrm{~L}, 376 \mu \mathrm{~mol}$) and $\mathrm{MsCl}(14.6 \mu \mathrm{~L}, 188 \mu \mathrm{~mol})$ at room temperature. After stirring at room temperature for 3.5 h , the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the mixture was extracted with EtOAc four times. The combined organic extracts were washed with brine, dried over anhydrous sodium sulfate, and filtered. The organic solvents were removed under reduced pressure to give a crude material, which was purified by preparative TLC (EtOAc-MeOH-10\% aqueous ammonium hydroxide $=10: 1: 1$) to afford $50(14.1 \mathrm{mg}, 15.8 \mu \mathrm{~mol}, 84 \%)$. A yellow solid; $[\alpha]_{\mathrm{D}}{ }^{26}-21\left(c 0.27\right.$, DMF); $\mathrm{mp} 219-220{ }^{\circ} \mathrm{C}$, decomposition, (hexanes-THF, colorless prisms); IR (film): 3353, 2917, 2848, 1634, 1417, 1328, 1171, 1154, 1123, $746 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , acetone- d_{6}): $\delta 12.81(\mathrm{~s}, 1 \mathrm{H}), 10.94(\mathrm{~s}, 1 \mathrm{H}), 10.25$ (br s, 1H), 10.23-10.13 (m, 2H), 7.30-7.10 (m, 5H), 7.10-7.00 (m, 2H), $6.54(\mathrm{~s}, 1 \mathrm{H}), 6.30-6.20(\mathrm{~m}$, $1 \mathrm{H}), 6.13(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 5.45-5.35(\mathrm{~m}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 2 \mathrm{H}), 4.65(\mathrm{t}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 4.42(\mathrm{dd}, 1 \mathrm{H}, J=$ $13.2,4.4 \mathrm{~Hz}$), $4.17(\mathrm{~m}, 3 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{dd}, 1 \mathrm{H}, J=17.2,6.0 \mathrm{~Hz}), 3.55(\mathrm{dd}, 1 \mathrm{H}$, $J=17.2,4.4 \mathrm{~Hz}), 3.31(\mathrm{t}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 3.16(\mathrm{~m}, 2 \mathrm{H}), 2.98(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , acetone $-d_{6}$): $\delta 163.3$, 161.4, 158.5, 144.2, 139.7, 139.4, 138.1, 134.3, 133.6, 132.1, 131.3, $130.6,130.0,129.0,128.8,128.5,128.4,128.1,127.4,126.8,124.5,121.4,119.2,118.6,113.3$, $112.7,106.9,106.2,103.0,77.1,70.7,60.6,60.4,53.9,50.3,49.2,43.4,38.4,31.6,28.4,27.5,13.0$ (One signal is missing due to overlap); HRMS (ESI) m / z : calcd. for $\mathrm{C}_{45} \mathrm{H}_{44} \mathrm{~N}_{7} \mathrm{O}_{11} \mathrm{~S} 890.2814$ $\left[\mathrm{M}+\mathrm{H}^{+}\right]$found 890.2786.

(+)-CC-1065 (1)

A solution of $\mathbf{5 0}(9.3 \mathrm{mg}, 10 \mu \mathrm{~mol})$ and palladium hydroxide on activated carbon ($\mathrm{Pd} 20 \%$, wetted with ca. $50 \% \mathrm{H}_{2} \mathrm{O}, 14.7 \mathrm{mg}$) in THF (0.2 mL) was stirred under hydrogen atmosphere (1 atm). After stirring at room temperature for $20 \mathrm{~min}, \mathrm{Et}_{3} \mathrm{~N}(22.5 \mu \mathrm{~L}, 161 \mu \mathrm{~mol})$ was added to the mixture at room temperature. After stirring at room temperature for 1 h , palladium hydroxide on activated carbon was removed by filtration through a pad of Celite ${ }^{\circledR}$, and filtrate was concentrated under reduced pressure to give a crude material, which was purified by preparative TLC ($\mathrm{EtOAc}-\mathrm{MeOH}-10 \%$ aqueous ammonium hydroxide $=10: 1: 1$) to afford $\mathbf{1}(2.4 \mathrm{mg}, 3.4 \mu \mathrm{~mol}, 34 \%)$. A yellow solid; $[\alpha]_{\mathrm{D}}{ }^{26}+85$ (c 0.10, DMF); mp $225-226{ }^{\circ} \mathrm{C}$, decomposition, (hexanes-THF, colorless prisms); IR (film): 3273, 2917, 2848, 1632, 1600, 1576, 1540, 1465, 1441, 1417, 1397, $1374,1302,1265,1120 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 12.9$ ($\mathrm{s}, 1 \mathrm{H}$), 11.7 (s, 1H), $11.5(\mathrm{~s}$, $1 \mathrm{H}), 11.4(\mathrm{~s}, 1 \mathrm{H}), 11.04(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{~m}, 3 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{t}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz})$, 4.43 (dd, 1H, $J=10.8,5.2 \mathrm{~Hz}), 4.33(\mathrm{~d}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}), 4.03(\mathrm{t}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 3.85(\mathrm{~s}, 3 \mathrm{H})$, $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.30-3.10(\mathrm{~m}, 5 \mathrm{H}), 1.99(\mathrm{~m}, 4 \mathrm{H}), 1.44(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta 176.4,161.2,160.7,160.3,157.5,138.4,138.0,133.0,132.3,130.7,130.4,129.5,129.0,128.8$, $127.5,127.3,123.5,121.3,118.2,117.7,117.3,113.0,110.6,106.3,105.9,60.3,60.0,54.8,53.4$, $49.4,31.5,27.6,26.5,21.2,20.9,9.6$ (One signal is missing due to overlap); HRMS (ESI) m / z : calcd. for $\mathrm{C}_{37} \mathrm{H}_{34} \mathrm{~N}_{7} \mathrm{O}_{8} 704.2463\left[\mathrm{M}+\mathrm{H}^{+}\right]$found 704.2433. Spectroscopic data were identical with those previously reporetd. ${ }^{8}$

Acidic or basic hydrolysis of Pyrroloindole 9

Hydrolysis of pyrroloindole 9 under basic ($\mathrm{KOH}, \mathrm{MeOH}, 80{ }^{\circ} \mathrm{C}$) or acidic (conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$, $\mathrm{AcOH}, \mathrm{H}_{2} \mathrm{O}$) condition caused decomposition. These results suggested that electron rich nature of unprotected pyrroloindole skeleton would contribute to oxidative degradation. In contrast, hydrolysis of 2-cyanoindole $\mathbf{S 8}$ possessing electron withdrawing Br group at C 4 position cleanly furnished carboxylic acid $\mathbf{S 9}$ in 95% yield.

References

1) Tsujiyama, S.; Suzuki, K. Org. Synth. 2007, 84, 272-284.
2) Ueda, H.; Satoh, H.; Matsumoto, K.; Sugimoto, K.; Fukuyama, T.; Tokuyama, H. Angew. Chem. Int. Ed. 2009, 48, 7600-7603.
3) Reynes, M.; Dautel, O. J.; Virieux, D.; Flot, D.; Moreau, J. J. E. CrystEngComm 2011, 13, 6050-6056.
4) McElvain, S. M.; Kundiger, D. Org. Synth. 1943, 23, 45-47.
5) Okano, K. Mitsuhashi, N. Tokuyama, H. Tetrahedron. 2013, 69, 10946-10954.
6) (a) Yamada, K.; Kurokawa, T.; Tokuyama, H.; Fukuyama, T. J. Am. Chem. Soc. 2003, 125, 6630-6631. (b) Okano, K.; Tokuyama, H.; Fukuyama, T. J. Am. Chem. Soc. 2006, 128, 71367137.
7) Hosoya, T.; Hasegawa, T.; Kuriyama, Y.; Matsumoto, T.; Suzuki, K. Synlett 1995, 177-179.
8) Boger, D. L.; Coleman, R. S. J. Am. Chem. Soc. 1988, 110, 1321-1323.

(
(६IOロコ ‘zHW 00t) yWN H ${ }_{\text {t }}$
5.433
\qquad
\qquad 3.168
\qquad

5.277

5.180

5.200

128.677
128.364
128.331
127.821
127.508
122.159
114.414
114.356
113.945
106.159
105.954

7.261
\qquad
3.221

N

$0.8 \quad 0.6 \quad 0.07$

2.00

\qquad
7.964
7.942 7.532
$-\quad 7.510$
$-\quad 7.258$
7.180

6.407
4.047
3.966
3.966
3.943
\qquad 0.000

100.282
0.831
9.077
40.126
39.912
39.706
39.500
39.286
39.080
38.874
37.812

102.176
$\underset{\sim}{\omega}$

(धІОО ‘zHW OOL) yWN $\mathrm{O}_{\varepsilon เ}$

\qquad
1.595

\qquad 161.416
155.095
143.977
142.215
142.215
141.327
141.327
137.574
137.574
135.705
130.940
130.940
130.092
128.652
130.092
128.652
128.430
128.652
128.430
128.356
128.356
127.656
127.632
127.632
127.014
125.064
125.064
121.805
121.805
120.488
119.912
107.353

\qquad

Wwaymand
©

 163.172
153.177
153.120
151.613
151.596
148.476
145.159
145.117
140.573
136.580
133.987
130.389
129.195
128.471
128.092
127.516
115.537
115.463
115.109
115.010
112.722
112.623
81.808
81.783
77.321
77.321
77.000
76.679
72.052
64.602
\qquad 4.511
50.515
50.433
47.766
\qquad 32.478
32.387
32.387
28.205
25.776
18.120
15.979
15.897

-4.742
-4.759
-4.759
-4.849

54.247
142.763
137.082
130.241
128.594
128.545
128.059
128.059
128.002
127.878
127.088
126.017
124.840
121.967
121.967
113.800
112.911
101.887
80.293
77.321
77.206
77.000
76.679
70.274
66.512
50.532

	35.334
	28.460
	28.361
	28.295
	25.933
-	25.858
-	25.793
-	18.268
	13.015

$\square \quad-4.603$
-4.718
0.60 .0 0. 0.0
$0 \cdot 8$

$-$

- -

- 6.052

"O
әW

5.03

$0 \cdot \varepsilon$
$0.0 \cdot \mathrm{~s}$

2.95

 \qquad 144.174
137.162
136.273
128.504
127.944
127.772
127.574
122.150
111.945
104.596
95.246
\qquad 77.321
77.000
76.679
70.128
66.795
49.586
34.492
25.916
18.204
12.822
$\square \quad \begin{aligned} & -4.544 \\ & -4.626\end{aligned}$
-4.626

$\left[\begin{array}{ll}{[-} & 0.73 \\ & \\ & \\ & 0.79 \\ - & 0.85 \\ - & 0.89\end{array}\right.$
.85

Pin

0.95
0.95 $=\quad 1.75$

$\stackrel{0}{6}$

$\rightleftharpoons-$

8.77
르=
3.13

[^0]

[^0]:

 10.102
 10.043
 $-\quad 7.339$
 $\begin{array}{r}7.339 \\ -\quad 7.256 \\ \hline\end{array}$
 $\begin{array}{r}7.256 \\ -\quad 7.239 \\ \hline\end{array}$
 $\begin{array}{r}7.220 \\ -\quad 7.215 \\ \hline\end{array}$
 7.210
 $-\quad 7.198$
 7.179
 7.171
 7.167
 7.167
 7.15
 7.154
 7.137
 7.137
 7.044
 7.038
 7.038
 7.023
 7.021
 6.528
 6.528
 6.295
 6.253
 6.253
 -4.828
 $\begin{array}{r}4.66 \\ -\quad 4.64 \\ \hline\end{array}$
 4.439
 $-\quad 4.430$
 4.424
 4.414
 4.178
 4.157
 4.157
 4.135
 4.135
 4.104
 4.095
 4.095
 4.074
 4.067
 4.050
 4.031
 3.970
 3.970
 3.954
 3.939
 3.939
 3.917
 3.917
 3.907
 3.901
 3.892
 3.892
 3.879
 3.627
 3.613
 3.586
 3.586
 3.571
 3.316
 $\begin{array}{r}3.316 \\ -\quad 3.293 \\ \hline 3.272\end{array}$
 $\begin{array}{r}3.272 \\ 3.200 \\ \hline 3.186\end{array}$
 3.186
 3.159
 3.145
 3.126
 3.126
 3.106
 2.877
 2.877
 2.879
 2.075
 2.062
 2.056
 2.056
 2.051
 2.045
 2.040
 2.040
 2.034
 2.034
 2.029
 0.869
 0.856
 0.849
 0.842
 0.842
 0.140
 0.133
 0.093
 0.079

