Supporting Information

Receptor-Mediated Field Effect Transistor Biosensor for Real-Time Monitoring of Glutamate Release from Primary Hippocampal Neurons

Yu-Tao Li^{1,§}, Xin Jin^{1,§}, Lina Tang¹, Wen-Liang Lv², Meng-Meng Xiao³, Zhi-Yong Zhang³, Chuan Gao ^{1,*} and Guo-Jun Zhang^{1,*}

¹School of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan 430065, P.R. China

²Clinical School of Traditional Chinese Medicine, Hubei University of Chinese

Medicine, 1 Huangjia Lake West Road, Wuhan 430065, P.R. China

³Key Laboratory for the Physics and Chemistry of Nanodevices, Department of

Electronics, Peking University, 5 Yiheyuan Road, Beijing 100871, P.R. China

[§]These authors contributed equally to this work

*Corresponding author: Tel: +86-27-68890259, Fax: +86-27-68890259

E-mail: zhanggj@hbtcm.edu.cn; cgao@hbtcm.edu.cn

Table of contents:

Figure S-1. Coomassie Brilliant Blue staining of affinity purified mGluRs after running on a SDS-PAGE gel.

Figure S-2. Mass spectrometry and high performance liquid chromatography shows that 6-aminohexanoic acid fluoresce in isothiocyanate labeled glutamate

(FITC-Ahx-Glu) was successfully synthesized and the purity was above 98%.

Figure S-3. (a) Optical image of one FET biosensor chip. (b) Optical image of the 6 individual sensor arrays.

Figure S-4. (a) Stability test for the mGluR/RGO-FET immunoreacted with 10pM Glu in culture medium for one week. (b)The corresponding signal changes in the histogram. (c) $I_{ds}-V_{ds}$ output characteristics of the mGluR/RGO-FET sensors after 7 days of culturing neurons. The gate voltage is varied from -0.3 to 0.3 V with an interval of 0.1 V. (d) $I_{ds}-V_g$ output characteristics of the mGluR/RGO-FET sensors before and after 7 days of culturing neurons.

Figure S-5. Real time results of RGO-FET addition of a series concentration of glutamate without immobilization with mGluRs.

Table S-1. Comparison of various glutamate sensors

Figure S-1. Coomassie Brilliant Blue staining of affinity purified mGluRs after running on a SDS-PAGE gel.

Figure S-2. Mass spectrometry and high performance liquid chromatography shows that 6-aminohexanoic acid fluoresce in isothiocyanate labeled glutamate (FITC-Ahx-Glu) was successfully synthesized and the purity was above 98%.

Figure S-3. (a) Optical image of one FET biosensor chip. (b) Optical image of the 6 individual sensor arrays.

Figure S-4. (a) Stability test for the mGluR/RGO-FET immunoreacted with 10pM Glu in culture medium for one week. (b)The corresponding signal changes in the histogram. (c) $I_{ds}-V_{ds}$ output characteristics of the mGluR/RGO-FET sensors after 7 days of culturing neurons. The gate voltage is varied from -0.3 to 0.3 V with an interval of 0.1 V. (d) $I_{ds}-V_g$ output characteristics of the mGluR/RGO-FET sensors before and after 7 days of culturing neurons.

Figure S-5. Real time results of RGO-FET addition of a series concentration of glutamate without immobilization with mGluRs.

Method	Linear range	Detection	Response time	Ref.
Ceramic-based multisite	0.5-800 μM	0.5 µM	1 s	1
microelectrode	•			
(Enzyme-EC)				
Bienzyme Microelectrodes	0.5-50 μM	0.5 µM	35 s	2
(Enzyme-EC)				
Planar electrodes array	0.5-60 μM	0.5 μM	35 s	3
(Bienzyme-EC)				
Pt/GOx/PPD	N/A	20 nM	2 s	4
(Enzyme-EC)				
OECS	50-300 μM	4.5 μΜ	N/A	5
(Dual Enzyme-EC)				
GluOx/Pt/CFMDE	1-200 μM	0.87 μM	70 ms	6
(Enzyme-EC)				
Enzyme-immobilized	0.3-15µM	200 µM	N/A	7
CNT-FET				
Enzyme-modified	0.1 - 500 μM	100 nM	N/A	8
floating-gate FET				

Table S-1. Comparison of various glutamate sensors

PEDOT:PSS/Pt NPs OECTs	0.9-14 μM	5 μΜ	N/A	9
(Enzyme-OECT)				
Receptor-	1 fM-100 pM	1 fM	1.1 s	This
MediatedFET				work

EC: Pt/GOx/PPD: Pt/L-glutamateoxidase/poly-ortho-phenyl-Electrochemistry, enediamine, OECS: Online electrochemical system, GluOx/Pt/CFMDE: glutamate fiber micro-disk electrode, oxidase/Pt/carbon PEDOT:PSS/Pt NPsOECTs: poly(ethylene dioxythiophene) doped withpoly (styrene sulfonate)/Pt nanoparticles/organic electrochemical transistors.

Reference:

(1) Burmeister, J. J.; Pomerleau, F.; Palmer, M.; Day, B. K.; Huettl, P.; Gerhardt, G.

A. Improved ceramic-based multisite microelectrode for rapid measurements of l-glutamate in the CNS. *J. Neurosci. Meth.* **2002**, 119, 163-171.

(2) Mikeladze, E.; Schulte, A.; Mosbach, M.; Blöchl, A.; Schuhmann, W. Redox Hydrogel-Based Bienzyme Microelectrodes for Amperometric Monitoring of -Glutamate. *Electroanal.* **2002**, 14, 393-399.

(3) Castillo, J.; Blöchl, A.; Dennison, S.; Schuhmann, W.; Csöregi, E. Glutamate detection from nerve cells using a planar electrodes array integrated in a microtiter plate. *Biosens. Bioelectron.* **2005**, 20, 2116-2119.

(4) Mcmahon, C. P.; Rocchitta, G.; Kirwan, S. M.; Killoran, S. J.; Serra, P. A.; Lowry,
J. P. Oxygen tolerance of an implantable polymer/enzyme composite glutamate biosensor displaying polycation-enhanced substrate sensitivity. *Biosens. Bioelectron.*2007, 22, 1466-1473.

(5) Zhang, Z.; Xiao, T.; Hao, J.; Yu, P.; Ohsaka, T.; Mao, L. An online electrochemical system for continuous measurement of glutamate with signal amplification by enzymatic substrate cycling. *Electroanal*. **2015**, 27, 2406-2411.

(6) Qiu, Q.; Zhang, F.; Tang, Y.; Zhang, X.; Jiang, H.; Liu, Y.; Huang, W. Real-time Monitoring of Exocytotic Glutamate Release from Single Neuron by Amperometry at an Enzymatic. Biosensor. *Electroanal*.2018, 30, 1054–1059.

(7) Lee, G.; Lim, J.; Park, J.; Choi, S.; Hong, S.; Park, H. Neurotransmitter detection

by enzyme-immobilized CNT-FET. Curr. Appl. Phys. 2009, 9, S25-S28.

(8) Braeken, D.; Rand, D. R.; Andrei, A.; Huys, R.; Bartic, C. Glutamate sensing with enzyme-modified floating-gate field effect transistors. *Biosens. Bioelectron.* **2009**, 24, 2384-2389.

(9) Kergoat, L.; Piro, B.; Simon, D. T.; Pham, M. C.; Noël, V.; Berggren, M. Detection of Glutamate and Acetylcholine with Organic Electrochemical Transistors Based on Conducting Polymer/Platinum Nanoparticle Composites. *Adv. Mater.* 2014, 26, 5658-5664.