Supporting Information

Nucleation and Conversion Transformations of the Transition Metal $Polysulfide \ VS_4 \ in \ Lithium \ Ion \ Batteries$

Ruqian Lian[†], Jianrui Feng[‡], Dashuai Wang[†], Qifeng Yang[†], Dongxiao Kan[†], Muhammad Mamoor[†], Gang Chen[†], Yingjin Wei[†],*

†Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China.

[‡]Department of Chemistry, Zhejiang University, Hangzhou 310027, China.

AUTHOR INFORMATION

Corresponding Author

* E-mail: yjwei@jlu.edu.cn

Fig. S1. The structures of a $2\times2\times2$ VS₄ supercell with two Li atoms inserted in (a) a single unit cell; (b-h) different unit cells. (i) The total energy of these configurations. It showed that the aggregation model (Site 1) was indeed energetically favored.

Fig. S2. (a-f) The predicted structures of $\text{Li}_x V S_4$ ($3 \le x \le 8$). (g) The crystal structure of $\text{Li}_2 S$. It can be seen that the $\text{Li}_8 S$ cluster (yellow) formed in $\text{Li}_x V S_4$ ($5 \le x \le 8$) was different from the $\text{Li}_8 S$ unit in $\text{Li}_2 S$ crystal.

Fig. S3. The predicted structures of $Li_{x\text{--}2}VS_3,\,Li_{x\text{--}4}VS_2$ and $Li_{x\text{--}6}VS$ (3 \leq x \leq 8).

Fig. S4. The trace of Li^+ diffusion in the (a) Li_3VS_4 , (b) Li_4VS_4 , (c) Li_5VS_4 , (d) Li_6VS_4 , (e) Li_7VS_4 , (f) Li_8VS_4 structure at 800K.