Coupling of N-Heterocyclic Carbenes to Terminal Alkynes at Half Sandwich Cobalt NHC Complexes

Katharina Lubitz and Udo Radius*

Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.

Corresponding author E-Mail address:
u.radius@uni-wuerzburg.de

1) Additional X-ray structures

Figure S1: Molecular structure of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\eta^{4}-\mathrm{C}_{4} \mathrm{Ph} 4\right)\right]$ (5) in the solid state (ellipsoids set at the 50% probability level). Hydrogen atoms have been omitted for clarity. Selected bond length [Å] and angles [${ }^{\circ}$] in 5 Co-C6 1.977(7), Co-C71.983(7), Co-C8 1.974(7), Co-C9 1.976(7), Co-(η^{4} $\left.\left.\mathrm{C}_{4} \mathrm{Ph}_{4}\right)_{\text {centroid }} 1.6852(7), \mathrm{Co}-\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{\text {Centroid }} 1.6670(7), \mathrm{C} 6-\mathrm{C} 71.441(10), \mathrm{C} 7-\mathrm{C} 81.464(7), \mathrm{C} 8-\mathrm{C} 91.458(9), \mathrm{C} 9-\mathrm{C} 61.466(8) ; \eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{\mathrm{Centroid}}-\mathrm{Co}-\left(\eta^{4}-\right.$ $\left.\mathrm{C}_{4} \mathrm{Ph}_{4}\right)_{\text {Centroid }}$ 178.652(49), C6-C7-C8 91.2(6), C7-C8-C9 88.9(6), C8-C9-C6 89.4(6), C9-C6-C7 90.(6).

Figure S2: Prelimina ry molecular structure of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}(-\mathrm{C}\{\mathrm{Ph}\}=\mathrm{C}\{\mathrm{H}\}\{\operatorname{Dipp} 2 \mathrm{Im}\})\right](6)$ in the solid state.

2) NMR/IR/UV-Vis Spectra of Complexes (2-9)

Figure S3: ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\right.\right.$ Dipp $\left.\left._{2} I m\right)\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{SiMe}_{3}\right)\right](\mathbf{2})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S4: $\left.{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\right.\right.$ Dipp $\left.\left._{2} \operatorname{Im}\right)\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{SiMe}_{3}\right)\right](\mathbf{2})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S5: ${ }^{29}$ Si NMR spectrum of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\mathrm{Dipp}_{2} \mathrm{Im}\right)\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{SiMe}_{3}\right)\right]$ (2) in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S6: IR spectrum of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\operatorname{Dipp}_{2} \mathrm{Im}\right)\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{SiMe}_{3}\right)\right]$ (2).

Figure S7: ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left({ }^{i} \mathrm{Pr}_{2} \mathrm{Im}\right)\left(\eta^{2}-\mathrm{C}_{2} \mathrm{Ph}_{2}\right)\right](3)$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S8: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left({ }^{1} \mathrm{Pr}_{2} \mathrm{Im}\right)\left(\eta^{2}-\mathrm{C}_{2} \mathrm{Ph}_{2}\right)\right](3)$ in $\mathrm{C}_{6} \mathrm{D}_{6}$. The resonances of the carbene carbon atom $(183.0 \mathrm{ppm})$ and the alkyne carbon atoms (129.4 ppm) have been identified in a ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{HMBC}$ experiment.

Figure S9: IR spectrum of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left({ }^{i} \mathrm{Pr}_{2} \mathrm{Im}\right)\left(\eta^{2}-\mathrm{C}_{2} \mathrm{Ph}_{2}\right)\right]$ (3).

Figure S10: ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\right.\right.$ Dipp $\left.\left._{2} I m\right)\left(\eta^{2}-\mathrm{C}_{2} \mathrm{Ph}_{2}\right)\right](4)$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S11: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\mathrm{Dipp}_{2} \mathrm{Im}\right)\left(\eta^{2}-\mathrm{C}_{2} \mathrm{Ph}_{2}\right)\right](4)$ in $\mathrm{C}_{6} \mathrm{D}_{6}$. The resonance of the carbene carbon atom have been identified in a ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{HMBC}$ experiment at 196.6 ppm .

Figure S12: IR spectrum of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\right.\right.$ Dipp $\left.\left._{2} I \mathrm{~m}\right)\left(\eta^{2}-\mathrm{C}_{2} \mathrm{Ph}_{2}\right)\right](4)$.

Figure S13: ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\eta^{4}-\mathrm{C}_{4} \mathrm{Ph}_{4}\right)\right](5)$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S14: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\eta^{4}-\mathrm{C}_{4} \mathrm{Ph}_{4}\right)\right]$ (5) in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S15: IR spectrum of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\eta^{4}-\mathrm{C}_{4} \mathrm{Ph}_{4}\right)\right]$ (5).

Figure S16: ${ }^{1} \mathrm{H}$ NMR spectra of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(-\mathrm{C}\{\mathrm{Ph}\}=\mathrm{C}\{\mathrm{H}\}\left\{\mathrm{Dipp}_{2} \mathrm{Im}\right\}\right)\right](6)$ at different temperatures in d^{8} toluene. The resonances of the methyl and methine protons of the Dipp iso-propyl groups are broadened at room temperature, presumably due to on/off coordination of one of the aryl ring π-system at the Co atom (see drawing below), associated with dyna mics of the NHC unit of the complex. At temperatures below $+10^{\circ} \mathrm{C}$ the resonances became sharp.

Figure S17: ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(-\mathrm{C}\{\mathrm{Ph}\}=\mathrm{C}\{\mathrm{H}\}\left\{\mathrm{Dipp}_{2} \mathrm{Im}\right\}\right)\right](6)$ at $-38{ }^{\circ} \mathrm{C}$ in d^{8} toluene.

Figure S18: $\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(-\mathrm{C}\{\mathrm{Ph}\}=\mathrm{C}\{\mathrm{H}\}\left\{\mathrm{Dipp}_{2} \mathrm{Im}\right\}\right)\right](6)$ at $-38^{\circ} \mathrm{C}$ in d^{8} toluene.

Figure S19: IR spectrum of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(-\mathrm{C}\{\mathrm{Ph}\}=\mathrm{C}\{\mathrm{H}\}\left\{\mathrm{Dipp}_{2} \mathrm{Im}\right\}\right)\right](6)$.

Figure S20: UV-Vis spectrum of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(-\mathrm{C}\{\mathrm{Ph}\}=\mathrm{C}\{\mathrm{H}\}\left\{\mathrm{Dipp}_{2} \mathrm{Im}\right\}\right)\right]$ (6).

Figure S21: ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}(-\mathrm{C}\{\mathrm{Tol}\}=\mathrm{C}\{\mathrm{H}\}\{\right.$ Dipp 2 Im$\left.\})\right](7)$ at $-38^{\circ} \mathrm{C}$ in d^{8} toluene.

Figure S22: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(-\mathrm{C}\{\mathrm{Tol}\}=\mathrm{C}\{\mathrm{H}\}\left\{\right.\right.\right.$ Dipp $\left.\left.\left._{2} \mathrm{Im}\right\}\right)\right](7)$ at $+25^{\circ} \mathrm{C}$ in d^{8} toluene.

Figure S23: IR spectrum of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(-\mathrm{C}\{\mathrm{Tol}\}=\mathrm{C}\{\mathrm{H}\}\left\{\right.\right.\right.$ Dipp $\left.\left.\left._{2} \mathrm{Im}\right\}\right)\right]$ (7).

Figure S24: UV-Vis spectrum of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(-\mathrm{C}\{\mathrm{Tol}\}=\mathrm{C}\{\mathrm{H}\}\left\{\mathrm{Dipp}_{2} \mid m\right\}\right)\right](7)$.

Figure S25: ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\eta^{4}\left\{(\right.\right.\right.$ RER-NHC $\left.\left.) \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{Ph}_{2}\right\}\right]$ (8) in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S26: $\left.{ }^{13} \mathrm{C}_{\{ }{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\eta^{4}\left\{(\right.\right.\right.$ RER-NHC $\left.\left.) \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{Ph} 2\right\}\right]$ (8) in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure 27: IR spectrum of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\eta^{4}\left\{(\right.\right.\right.$ RER-NHC $\left.\left.) \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{Ph}_{2}\right\}\right]$ (8).

Figure S28: ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\eta^{4}\left\{(\right.\right.\right.$ RER-NHC $\left.\left.) \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{Tol}_{2}\right\}\right](9)$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S29: $\left.{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\eta^{4}\left\{(\right.\right.\right.$ RER-NHC $\left.\left.) \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{Tol}_{2}\right\}\right]$ (9) in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S30: IR spectrum of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\eta^{4}\left\{(\right.\right.\right.$ RER-NHC $\left.\left.) \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{Tol}_{2}\right\}\right]$ (9).

Figure S31: ${ }^{1} \mathrm{H}$ NMR spectra of the reaction of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left({ }^{1} \mathrm{Pr}_{2} \mathrm{Im}\right)\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right] \mathbf{1}$ (green) with one equivalent phenylacetylene (red) in d^{8}-toluene at different temperatures starting at $-80^{\circ} \mathrm{C}$. This reaction leads directly $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\eta^{4}\left\{(\mathrm{RER}-\mathrm{NHC}) \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{Ph}_{2}\right\}\right]\right.$ (8) (blue) (and 1) at $20^{\circ} \mathrm{C}$. After the reaction has been completed, the NMR spectrumat top reveals a reaction mixture of $\mathbf{1}$ a nd 8 in a ratio round 1:1, as well as free ethylene (yellow). No resonances for any intermediate was detected.

3) NMR spectra of the experiments concerning the catalytic alkyne trimerization

Figure S32: ${ }^{1} \mathrm{H}$ NMR spectra of the reaction of diphenylacetylene with catalytic a mounts of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\mathrm{iPr} \mathrm{P}_{2} \mathrm{Im}\right)\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right] \mathbf{1}$ ($5 \mathrm{~mol} \%$) in $\mathrm{C}_{6} \mathrm{D}_{6}$ at different temperatures. The NMR spectrum at room temperature reveals the resonances found for complex 3 (brown) and a singlet of free ethylene (yellow), eliminated from starting compound 1. At higher temperatures complex $\mathbf{3}$ de composes. All spectra reveal major a mounts of diphenylace tylene and no [2+2+2] cycloaddition product of diphenylacetylene was formed.

Figure S33: ${ }^{1} \mathrm{H}$ NMR spectra of the reaction of diphenylacetylene with catalytic a mounts of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\mathrm{iPr} \mathrm{I}_{2} \mathrm{Im}\right)\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right] \mathbf{1}$ ($5 \mathrm{~mol} \%$) in $\mathrm{C}_{6} \mathrm{D}_{6}$ at different temperatures, depicted is the a romatic region of the ${ }^{1} \mathrm{H}$ NMR spectra. Only the resonances of diphenylacetylene (red) were detected, even at high temperatures ($100{ }^{\circ} \mathrm{C}$). This result has been confirmed by ${ }^{13} \mathrm{C}\left\{^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectroscopy and GC/MS analyses; the latter indicates only traces of hexaphenylbenzene (534.23), beside a major a mount of diphenyla cetylene (278.2).

Figure S34: ${ }^{1} \mathrm{H}$ NMR spectra of the reaction of diphenylacetylene with catalytic a mounts of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\right.\right.$ Dipp $\left.\left._{2} \operatorname{lm}\right)\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{SiMe}_{3}\right)\right]$ $\mathbf{2}(5 \mathrm{~mol} \%)$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ at different temperatures. ${ }^{1} \mathrm{H}$ NMR spectra at different temperatures of catalytically investigations of $\mathbf{2}$ ($5 \mathrm{~mol} \%$) in intermolecular $[2+2+2]$ cycloaddition reaction of diphenylacetylene in $\mathrm{C}_{6} \mathrm{D}_{6}$. The spectrum at room temperature reveals the resonances detected for $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\mathrm{R}^{1}{ }_{2} \mathrm{Im}\right)\left(\eta^{2}-\mathrm{C}_{2} \mathrm{Ph}_{2}\right)\right] 4$ (violet), the spectra at higher temperatures reveals the resonances detected for $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\eta^{4}-\mathrm{C}_{4} \mathrm{Ph}_{4}\right)\right] \mathbf{5}$ (green), along with uncoordinated Dipp ${ }_{2}$ Im (yellow).

Figure S35: ${ }^{1} \mathrm{H}$ NMR spectra of the reaction of diphenylacetylene with ca talytic a mounts of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\mathrm{Dipp}_{2} \mathrm{Im}\right)\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{SiMe}_{3}\right)\right]$ $2(5 \mathrm{~mol} \%)$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ at different temperatures, shown is the aromatic region of the ${ }^{1} \mathrm{H}$ NMR spectra. Aside from signals of diphenylacetylene (red) signalsfor traces of hexaphenylbenzene (blue) at can be detected. Traces of hexaphenylbenzene (534.23) were also found in GC/MS analyses at 16.38 min , beside a major a mount of diphenylacetylene (278.2).

Figure S36: ${ }^{1} \mathrm{H}$ NMR spectra of the reaction of phenylacetylene with catalytic amounts of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\mathrm{iPr} \mathrm{I}_{2} \mathrm{Im}\right)\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right] \mathbf{1}$ ($5 \mathrm{~mol} \%$) in $\mathrm{C}_{6} \mathrm{D}_{6}$ at different temperatures. The spectrum at room te mperature reveals a singlet for eliminated ethylene (yellow) and the signals of phenylacetylene (blue). After heating $\left(60^{\circ} \mathrm{C}\right)$, new resonances can be detected in the a romatic region along with resonances for traces of complex 8.

Figure S37: ${ }^{1} \mathrm{H}$ NMR spectra of the reaction of phenylacetylene with catalytic a mounts of $\left.\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}^{(\mathrm{iPr}} \mathrm{I}_{2} \mathrm{Im}\right)\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right] \mathbf{1}$ $(5 \mathrm{~mol} \%)$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ at different temperatures, shown is the a romatic region of the ${ }^{1} \mathrm{H}$ NMR spectra. At higher te mperatures $\left(80^{\circ} \mathrm{C}\right)$ a set of new aromatic signals for different oligomerization products (red) was detected. GC/MS analyses reveal two different oligomerization products (306.1) at 2.94 min and 13.64 min . But even after prolonged heating (e.g. $100^{\circ} \mathrm{C}$ for 24 h) there were still significant a mounts of phenylacetylene (blue) detected in the NMR spectra as well as in the GC/MS traces of the reaction.

Figure S38: ${ }^{1} \mathrm{H}$ NMR spectra of the reaction of phenylacetylene with catalytic a mounts of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\mathrm{Dipp}_{2} \mathrm{Im}\right)\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{SiMe}_{3}\right)\right] \mathbf{2}$ ($5 \mathrm{~mol} \%$) in $\mathrm{C}_{6} \mathrm{D}_{6}$ at different temperatures. The spectra reveal the formation of new signals in the a romatic region (red) due to the formation of different $[2+2+2]$ cycl oaddition isomers, as wellas the signals of phenyla cetylene (blue). The resonances of uncoordinated trimethyl vinyl silane (brown) are also detected.

Figure S39: ${ }^{1} \mathrm{H}$ NMR spectra of the reaction of phenylacetylene with catalytic a mounts of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\mathrm{Dipp}_{2} \mathrm{Im}\right)\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{SiMe}_{3}\right)\right] \mathbf{2}$ ($5 \mathrm{~mol} \%$) in $\mathrm{C}_{6} \mathrm{D}_{6}$ at different temperatures, shown is the aromatic region of the ${ }^{1} \mathrm{H}$ NMR spectra. The spectra reveal the formation of new signals in the a romatic region (red) due to the formation of different $[2+2+2]$ cycl oaddition isomers, as well as the signals of phenylacetylene (blue). According to GC/MS analysis are two different oligomerization products (306.1) at 2.94 min and 13.64 min formed. But even after prolonged heating (e.g. $100^{\circ} \mathrm{C}$ for 24 h) there were still significant amounts of phenylacetylene (blue) detected in the NMR spectra as well as in the GC/MS traces of the reaction.

Figure S40: ${ }^{1} \mathrm{H}$ NMR spectra at different te mperatures of the reaction of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left({ }^{i} \mathrm{Pr}_{2} I \mathrm{~m}\right)\left(\eta^{2}-\mathrm{C}_{2} \mathrm{Ph} 2\right)\right] \mathbf{3}$ with additional of diphenylacetylene in $\mathrm{C}_{6} \mathrm{D}_{6}$. There is no reaction at room te mperature a nd the spectrum reveals the resonances of $\mathbf{3}$ (brown) and diphenylacetylene. Applying higher temperatures leads to decomposition of $\mathbf{3}$.

Figure S41: ${ }^{1} \mathrm{H}$ NMR spectra at different te mperatures of the reaction of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left({ }^{1} \mathrm{Pr}_{2} \operatorname{Im}\right)\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right] \mathbf{1}$ with two equivalents of diphenylacetylene in $\mathrm{C}_{6} \mathrm{D}_{6}$. The NMR spectrum at room temperature reveals resonances for the complexes $\left[\left(\eta^{5}-\right.\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left({ }^{(} \mathrm{Pr}_{2} \mathrm{Im}\right)\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right] \mathbf{1}$ (blue) and $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left({ }^{\prime} \mathrm{Pr}_{2} \mathrm{Im}\right)\left(\eta^{2}-\mathrm{C}_{2} \mathrm{Ph}_{2}\right)\right] \mathbf{3}$ (brown) and diphenylacetylene. At elevated temperatures the decomposition of $\mathbf{3}$ can be observed.

Figure S42: Bond critical (green) a nd ring critical (red) points calculated for $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left({ }^{\prime} \mathrm{Pr}_{2} \mathrm{Im}\right)\left(\eta^{2}-\mathrm{C}_{2} \mathrm{Ph} 2\right)\right]$ (left) a nd $\left[\left(\eta^{5}\right.\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\mathrm{Dipp}_{2} \mathrm{Im}\right)\left(\eta^{2}-\mathrm{C}_{2} \mathrm{Ph} 2\right)\right]$ (right).

Computational details - Optimized

Geometries

$\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left({ }^{(} \mathrm{Pr}_{2} \mathrm{Im}\right)\left(\eta^{2}-\mathrm{C}_{2} \mathrm{Ph}_{2}\right)\right]$

Energy = -2578.65598425711
NIMAG $=0$

Co	6.9825518	8.1960871	1.5512654
C	8.7282989	7.4622564	1.4869162
C	6.1412695	6.5600680	2.2081993
C	6.1437588	6.5499681	0.9088950
C	5.5140474	9.6241266	0.8887286
C	5.5493776	9.5981091	2.3176990
C	6.8605135	9.9550978	2.7463188
C	7.6424634	10.1671836	1.5614807
C	6.8031085	9.9932486	0.4096036
N	9.5441070	7.1045306	2.5371112
N	9.5005461	7.1963326	0.3775025
C	5.6439224	5.9656133	3.4221447
C	5.7249779	5.9180042	-0.3132961
H	4.6460839	9.3862499	0.2801785
H	4.7131385	9.3371543	2.9600865
H	7.1972035	10.0838101	3.7708221

$\begin{array}{llll}\text { H } & 8.6901007 & 10.4577993 & 1.5413268\end{array}$
$\begin{array}{llll}\text { H } & 7.0892272 & 10.1556012 & -0.6254511\end{array}$
C $\quad 10.7739699 \quad 6.6426234 \quad 2.0906923$
$\begin{array}{llll}C & 9.1761829 & 7.2086012 & 3.9606851\end{array}$
C $10.7467576 \quad 6.7009578 \quad 0.7333800$
C $9.0776366 \quad 7.4227123-1.0167362$
C $\quad 5.1966960 \quad 4.6210090 \quad 3.4564089$
C $\quad 5.5693787 \quad 6.70373894 .6259926$
$\begin{array}{llll}C & 5.4536535 & 6.6747084 & -1.4774352\end{array}$
$\begin{array}{llll}C & 5.5743571 & 4.5114581 & -0.4026563\end{array}$
$\begin{array}{llll}\text { H } & 11.5547035 & 6.3071751 & 2.7616921\end{array}$
$\begin{array}{llll}\text { H } & 8.1308325 & 7.5473280 & 3.9289424\end{array}$
C $9.2446988 \quad 5.84279874 .6462735$
C 10.03163788 .26408054 .6675765
$\begin{array}{llll}H & 11.4995990 & 6.4257916 & 0.0055287\end{array}$
$\begin{array}{llll}\text { H } & 8.0245465 & 7.7236714 & -0.9191930\end{array}$
C $9.1622331 \quad 6.1319899-1.8333703$
C $9.87744968 .5670299-1.6469852$
$\begin{array}{llll}H & 5.2393770 & 4.0263129 & 2.5440594\end{array}$
C 4.69986374 .05575164 .6279202
C $\quad \begin{array}{llll}5.0661887 & 6.1363324 & 5.7954807\end{array}$
$\begin{array}{llll}H & 5.9048162 & 7.7416459 & 4.6171927\end{array}$
$\begin{array}{llll}\text { H } & 5.5756499 & 7.7576302 & -1.4306350\end{array}$
$\begin{array}{llll}C & 5.0250899 & 6.0643274 & -2.6542803\end{array}$
C $\quad 5.1584723 \quad 3.9040456-1.5853527$
$\begin{array}{llll}\text { H } & 5.8053611 & 3.8992331 & 0.4694792\end{array}$
$\begin{array}{llll}\text { H } & 8.6168844 & 5.1105594 & 4.1229893\end{array}$
$\begin{array}{llll}\text { H } & 8.8781015 & 5.9275356 & 5.6780911\end{array}$
$\begin{array}{llll}\text { H } & 10.2753164 & 5.4585433 & 4.6871588\end{array}$
H $\quad 9.9566928 \quad 9.2364065 \quad 4.1624489$
$\begin{array}{llll}H & 11.0924503 & 7.9727039 & 4.6976120\end{array}$
$\begin{array}{llll}\text { H } & 9.6906513 & 8.3869782 & 5.7049768\end{array}$
H $8.5779913 \quad 5.3308312$-1.3632306
$\begin{array}{llll}\text { H } & 10.2018702 & 5.7898657 & -1.9497366\end{array}$
$\begin{array}{llll}\text { H } & 8.7534099 & 6.3036746 & -2.8381433\end{array}$

```
H 9.7916921 9.4849427 -1.0502892
H 9.4990545 8.7756160 -2.6574074
H 10.9445518 8.3129127 -1.7358132
H 4.3612205 3.0178929 4.6226794
C \(\quad 4.6302748 \quad 4.8075750 \quad 5.8070765\)
\(\begin{array}{llll}H & 5.0120559 & 6.7356233 & 6.7064807\end{array}\)
\(\begin{array}{llll}H & 4.8077020 & 6.6769046 & -3.5314679\end{array}\)
\(\begin{array}{llll}C & 4.8751494 & 4.6746382 & -2.7188699\end{array}\)
H 5.0533232 2.8180815 -1.6242036
\(\begin{array}{llll}H & 4.2410836 & 4.3616175 & 6.7233007\end{array}\)
H \(4.5463259 \quad 4.1967930-3.6425939\)
```


$\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\right.\right.$ Dipp $\left.\left._{2} \mathrm{Im}\right)\left(\boldsymbol{\eta}^{2}-\mathrm{C}_{2} \mathrm{Ph}_{2}\right)\right]$

Energy $=-3276.858758454$
NIMAG $=0$
Co $6.90536098 .0107351 \quad 1.3919782$
$\begin{array}{llll}C & 8.7488609 & 7.5338085 & 1.3900549\end{array}$
C $6.12725956 .5326952 \quad 2.4032053$
C $6.0954820 \quad 6.2417959 \quad 1.1362091$
C $\quad 5.2982549 \quad 9.1084122 \quad 0.4437921$
C $\quad 5.2674471 \quad 9.3182131 \quad 1.8583680$
$\begin{array}{llll}C & 6.4946213 & 9.9180391 & 2.2549541\end{array}$
C $7.2999324 \quad 10.0286262 \quad 1.0771421$
$\begin{array}{llll}C & 6.5491904 & 9.5550196 & -0.0553789\end{array}$
$\begin{array}{llll}N & 9.5815409 & 7.2657419 & 2.4736282\end{array}$
$\begin{array}{llll}\text { N } & 9.6601391 & 7.5927504 & 0.3308510\end{array}$
$\begin{array}{llll}C & 5.5031974 & 6.2912111 & 3.6831247\end{array}$
C $5.5106775 \quad 5.4230368 \quad 0.1079572$
$\begin{array}{llll}\text { H } & 4.4985208 & 8.6578596 & -0.1362501\end{array}$
$\begin{array}{llll}\text { H } & 4.4502361 & 9.0418453 & 2.5183563\end{array}$
$\begin{array}{llll}H & 6.7588751 & 10.2543531 & 3.2508451\end{array}$
$\begin{array}{llll}\text { H } & 8.2966449 & 10.4571136 & 1.0427820\end{array}$
$\begin{array}{llll}\text { H } & 6.8734084 & 9.5496974 & -1.0908299\end{array}$
C $10.9213142 \quad 7.1984275 \quad 2.0983340$
$\begin{array}{llll}C & 10.9703837 & 7.4086545 & 0.7637548\end{array}$

$\begin{array}{llll}C & 4.6336824 & 5.1888127 & 3.8774865\end{array}$
$\begin{array}{llll}C & 5.6832308 & 7.1761613 & 4.7673885\end{array}$
C $5.1952705 \quad 5.9544559-1.1643473$
C $\quad 5.1781469 \quad 4.06559830 .3463365$
$\begin{array}{llll}\text { H } & 11.7057766 & 6.9996633 & 2.8165549\end{array}$
$\begin{array}{llll}\text { H } & 11.8082051 & 7.4309708 & 0.0796735\end{array}$
$\begin{array}{llll}H & 4.4583924 & 4.4990533 & 3.0517068\end{array}$
C $3.9801143 \quad 4.9926475 \quad 5.0914191$
C $5.0283990 \quad 6.9762765 \quad 5.9816486$
$\begin{array}{llll}H & 6.3526639 & 8.0249429 & 4.6306899\end{array}$
$\begin{array}{llll}\text { H } & 5.4892947 & 6.9802288 & -1.3840877\end{array}$
C $4.5234333 \quad 5.1930009-2.1192345$
$\begin{array}{llll}C & 4.5263836 & 3.3022303 & -0.6193719\end{array}$
$\begin{array}{llll}H & 5.4474008 & 3.6156424 & 1.3025928\end{array}$
$\begin{array}{llll}H & 3.3084485 & 4.1400410 & 5.2093189\end{array}$
$\begin{array}{lllll}C & 4.1734530 & 5.8836415 & 6.1541081\end{array}$
$\begin{array}{llll}H & 5.1873163 & 7.6786459 & 6.8020841\end{array}$
$\begin{array}{llll}\text { H } & 4.2751859 & 5.6381229 & -3.0847424\end{array}$
C $4.1804947 \quad 3.8626871-1.8547839$
$\begin{array}{llll}\text { H } & 4.2811462 & 2.2599791 & -0.4058710\end{array}$
$\begin{array}{llll}H & 3.6609851 & 5.7272244 & 7.1044485\end{array}$
$\begin{array}{llll}H & 3.6610801 & 3.2657323 & -2.6054830\end{array}$
C $\quad 9.2460476 \quad 7.0147106 \quad 3.8606693$
$\begin{array}{llll}C & 9.2988679 & 8.0833832 & 4.7832696\end{array}$
C $9.0569626 \quad 5.6761702 \quad 4.2716203$
$\begin{array}{llll}C & 9.1257187 & 7.7801223 & 6.1406969\end{array}$
$\begin{array}{llll}C & 8.8837649 & 5.4345387 & 5.6411274\end{array}$
C $8.9178733 \quad 6.4714031 \quad 6.5682866$
$\begin{array}{llll}\text { H } & 9.1559781 & 8.5845920 & 6.8761502\end{array}$
$\begin{array}{llll}\text { H } & 8.7208467 & 4.4131084 & 5.9855568\end{array}$
$\begin{array}{llll}H & 8.7808695 & 6.2590972 & 7.6296931\end{array}$
C $9.3877530 \quad 7.7234674-1.0864265$
$\begin{array}{llll}\text { C } & 9.0330069 & 6.5646174 & -1.8217473\end{array}$
C $9.6267168 \quad 8.9642247-1.7202206$
C $8.7900579 \quad 6.7193870-3.1928650$
$\begin{array}{llll}C & 9.3788390 & 9.0539418 & -3.0982048\end{array}$
$\begin{array}{llll}C & 8.9401892 & 7.9524031 & -3.8246063\end{array}$
$\begin{array}{llll}\text { H } & 8.4877951 & 5.8529989 & -3.7796169\end{array}$
$\begin{array}{llll}\text { H } & 9.5395708 & 10.0045489 & -3.6081801\end{array}$
$\begin{array}{llll}\text { H } & 8.7398195 & 8.0460713 & -4.8932345\end{array}$
C $\quad 9.5878202 \quad 9.5183060 \quad 4.3566756$
$\begin{array}{llll}\text { H } & 9.2947285 & 9.6094779 & 3.3003818\end{array}$
C $8.7845841 \quad 10.5570020 \quad 5.1579083$
H 8.884290211 .54933634 .6952718
$\begin{array}{llll}\text { H } & 7.7162021 & 10.3063657 & 5.2042347\end{array}$
H $9.150814710 .6449345 \quad 6.1914692$
C $11.0925427 \quad 9.84129574 .4655482$
$\begin{array}{llll}H & 11.2858721 & 10.8788558 & 4.1543050\end{array}$
$\begin{array}{llll}\text { H } & 11.4377246 & 9.7295526 & 5.5044377\end{array}$
$\begin{array}{llll}\text { H } & 11.7010527 & 9.1820310 & 3.8331967\end{array}$
C $9.1063982 \quad 4.5052158 \quad 3.2965704$
$\begin{array}{llll}H & 8.9051994 & 4.9020015 & 2.2909597\end{array}$
C 10.50896263 .86209573 .2905176
$\begin{array}{llll}\text { H } & 10.5443164 & 3.0273128 & 2.5749405\end{array}$
$\begin{array}{llll}\text { H } & 11.2910463 & 4.5798004 & 3.0093093\end{array}$
$\begin{array}{llll}\text { H } & 10.7564823 & 3.4644848 & 4.2865250\end{array}$
C $8.0443942 \quad 3.43282023 .5857941$
$\begin{array}{llll}\text { H } & 8.0352506 & 2.6916194 & 2.7736083\end{array}$
$\begin{array}{llll}H & 8.2566632 & 2.8878251 & 4.5176767\end{array}$
$\begin{array}{llll}H & 7.0418434 & 3.8708240 & 3.6682011\end{array}$
C $\quad 9.0138914 \quad 5.1721617-1.1953937$
$\begin{array}{llll}\text { H } & 8.5912715 & 5.2694511 & -0.1829736\end{array}$
$\begin{array}{llll}C & 8.1639354 & 4.1508372 & -1.9633741\end{array}$
$\begin{array}{llll}\text { H } & 8.6275524 & 3.8830274 & -2.9254676\end{array}$
$\begin{array}{llll}\text { H } & 8.0866771 & 3.2255487 & -1.3761601\end{array}$
$\begin{array}{llll}\text { H } & 7.1466741 & 4.5118633 & -2.1536797\end{array}$
$\begin{array}{llll}C & 10.4499733 & 4.6128808 & -1.0765006\end{array}$
$\begin{array}{llll}\text { H } & 10.9117247 & 4.5346646 & -2.0725783\end{array}$
$\begin{array}{llll}\text { H } 11.0971717 & 5.2341190 & -0.4464312\end{array}$
$\begin{array}{llll}\text { H } & 10.4243429 & 3.6046100 & -0.6376083\end{array}$

C $10.2272737 \quad 10.1672102-0.9989970$
$\begin{array}{llll}\text { H } & 10.1428694 & 9.9886815 & 0.0828055\end{array}$
C $11.7294970 \quad 10.2936039$-1.3309612
$\begin{array}{llll}\text { H } & 11.8751788 & 10.4778552 & -2.4056758\end{array}$
H 12.1755695 11.1342415 -0.7791204
H 12.2875676 9.3839015 -1.0715596
$\begin{array}{llll}\text { C } & 9.5173603 & 11.4938282 & -1.3206561\end{array}$
H 8.4366309 11.4399431 -1.1387896
$\begin{array}{llll}\text { H } & 9.9282297 & 12.3005199 & -0.6960808\end{array}$
H 9.6699912 11.7888129 -2.3690104

