Supporting Information

for

Coupling of N-Heterocyclic Carbenes to Terminal Alkynes at Half Sandwich Cobalt NHC Complexes

Katharina Lubitz and Udo Radius*

Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.

Corresponding author E-Mail address: u.radius@uni-wuerzburg.de

1) Additional X-ray structures

Figure S1: Molecular structure of $[(\eta^5-C_5H_5)Co(\eta^4-C_4Ph_4)]$ (5) in the solid state (ellipsoids set at the 50% probability level). Hydrogen atoms have been omitted for clarity. Selected bond length [Å] and angles [°] in 5 Co-C6 1.977(7), Co-C7 1.983(7), Co-C8 1.974(7), Co-C9 1.976(7), Co-(\eta^4-C_4Ph_4)_{centroid} 1.6852(7), Co-(\eta^5-C_5H_5)_{centroid} 1.6670(7), C6-C7 1.441(10), C7-C8 1.464(7), C8-C9 1.458(9), C9-C6 1.466(8); $\eta^5-C_5H_5)_{centroid}$ -Co-($\eta^4-C_4Ph_4)_{centroid} 178.652(49)$, C6-C7-C8 91.2(6), C7-C8-C9 88.9(6), C8-C9-C6 89.4(6), C9-C6-C7 90.(6).

Figure S2: Preliminary molecular structure of $[(\eta^5-C_5H_5)Co(-C{Ph}=C{H}{Dipp_2Im})]$ (6) in the solid state.

2) NMR/IR/UV-Vis Spectra of Complexes (2-9)

Figure S3: ¹H NMR spectrum of $[(\eta^5 - C_5H_5)Co(Dipp_2Im)(\eta^2 - C_2H_3SiMe_3)]$ (2) in C_6D_6 .

Figure S4: ¹³C(¹H) NMR spectrum of $[(\eta^5-C_5H_5)Co(Dipp_2Im)(\eta^2-C_2H_3SiMe_3)]$ (2) in C₆D₆.

Figure S6: IR spectrum of $[(\eta^5 - C_5H_5)Co(Dipp_2Im)(\eta^2 - C_2H_3SiMe_3)]$ (2).

Figure S8: ${}^{13}C{}^{1}H$ NMR spectrum of $[(\eta^5-C_5H_5)Co({}^{i}Pr_2Im)(\eta^2-C_2Ph_2)]$ (**3**) in C_6D_6 . The resonances of the carbon atom (183.0 ppm) and the alkyne carbon atoms (129.4 ppm) have been identified in a ${}^{13}C{}^{1}H$ HMBC experiment.

Figure S9: IR spectrum of $[(\eta^5 - C_5H_5)Co(^iPr_2Im)(\eta^2 - C_2Ph_2)]$ (**3**).

Figure S10: ¹H NMR spectrum of $[(\eta^5-C_5H_5)Co(Dipp_2Im)(\eta^2-C_2Ph_2)]$ (4) in C₆D₆.

Figure S11: ¹³C{¹H} NMR spectrum of $[(\eta^5-C_5H_5)Co(Dipp_2Im)(\eta^2-C_2Ph_2)]$ (4) in C₆D₆. The resonance of the carbene carbon atom have been identified in a ¹³C{¹H} HMBC experiment at 196.6 ppm.

Figure S12: IR spectrum of $[(\eta^5 - C_5H_5)Co(Dipp_2Im)(\eta^2 - C_2Ph_2)]$ (4).

Figure S13: ¹H NMR spectrum of $[(\eta^{5}-C_{5}H_{5})Co(\eta^{4}-C_{4}Ph_{4})]$ (5) in $C_{6}D_{6}$.

Figure S15: IR spectrum of $[(\eta^5 - C_5H_5)Co(\eta^4 - C_4Ph_4)]$ (5).

Figure S16: ¹H NMR spectra of $[(\eta^5-C_5H_5)Co(-C{Ph}=C{H}{Dipp_2Im})]$ (6) at different temperatures in d^8 toluene. The resonances of the methyl and methine protons of the Dipp *iso*-propyl groups are broadened at room temperature, presumably due to on/off coordination of one of the aryl ring π -system at the Co atom (see drawing below), associated with dynamics of the NHC unit of the complex. At temperatures below +10°C the resonances became sharp.

Figure S17: ¹H NMR spectrum of $[(\eta^5-C_5H_5)Co(-C{Ph}=C{H}{Dipp_2Im})]$ (6) at -38 °C in d⁸ toluene.

d⁸-Tol

Figure S18: ${}^{13}C{}^{1}H$ NMR spectrum of $[(\eta^{5}-C_{5}H_{5})Co(-C{Ph}=C{H}{Dipp_{2}Im})]$ (6) at -38 °C in d^{8} toluene.

Figure S19: IR spectrum of $[(\eta^5-C_5H_5)Co(-C{Ph}=C{H}{Dipp_2Im})]$ (6).

Figure S20: UV-Vis spectrum of $[(\eta^5-C_5H_5)Co(-C{Ph}=C{H}{Dipp_2Im})]$ (6).

Figure S21: ¹H NMR spectrum of $[(\eta^5-C_5H_5)Co(-C{Tol}=C{H}{Dipp_2Im})]$ (7) at -38 °C in a^8 toluene.

Figure S22: ¹³C{¹H} NMR spectrum of $[(\eta^{5}-C_{5}H_{5})Co(-C{Tol}=C{H}{Dipp_{2}Im})]$ (7) at +25 °C in d^{8} toluene.

Figure S23: IR spectrum of $[(\eta^{5}-C_{5}H_{5})Co(-C{Tol}=C{H}{Dipp_{2}Im})]$ (7).

Figure S24: UV-Vis spectrum of $[(\eta^5-C_5H_5)Co(-C{Tol}=C{H}{Dipp_2Im})]$ (7).

Figure S26: ${}^{13}C{}^{1}H$ NMR spectrum of $[(\eta^{5}-C_{5}H_{5})Co(\eta^{4}{(RER-NHC)C_{4}H_{2}Ph_{2}}]$ (8) in $C_{6}D_{6}$.

Figure 27: IR spectrum of $[(\eta^{5}-C_{5}H_{5})Co(\eta^{4}{(RER-NHC)C_{4}H_{2}Ph_{2}}]$ (8).

Figure S28: ¹H NMR spectrum of $[(\eta^{5}-C_{5}H_{5})Co(\eta^{4}\{(RER-NHC)C_{4}H_{2}ToI_{2}\}]$ (9) in $C_{6}D_{6}$.

Figure S30: IR spectrum of $[(\eta^{5}-C_{5}H_{5})Co(\eta^{4}\{(RER-NHC)C_{4}H_{2}ToI_{2}\}]$ (9).

Figure S31: ¹H NMR spectra of the reaction of $[(\eta^5-C_5H_5)Co(^{i}Pr_2Im)(\eta^2-C_2H_4)]\mathbf{1}$ (green) with one equivalent phenylacetylene (red) in d^8 -tol uene at different temperatures starting at -80°C. This reaction leads directly $[(\eta^5-C_5H_5)Co(\eta^4\{(RER-NHC)C_4H_2Ph_2\}]$ (8) (blue) (and 1) at 20 °C. After the reaction has been completed, the NMR spectrum at top reveals a reaction mixture of 1 and 8 in a ratio round 1:1, as well as free ethylene (yellow). No resonances for any intermediate was detected.

3) NMR spectra of the experiments concerning the catalytic alkyne trimerization

Figure S32: ¹H NMR spectra of the reaction of diphenylacetylene with catalytic amounts of $[(\eta^5-C_5H_5)Co(iPr_2Im)(\eta^2-C_2H_4)]$ **1** (5mol%) in C₆D₆ at different temperatures. The NMR spectrum at room temperature reveals the resonances found for complex **3** (**brown**) and a singlet of free ethylene (**yellow**), eliminated from starting compound **1**. At higher temperatures complex **3** decomposes. All spectra reveal major a mounts of diphenylacetylene and no [2+2+2] cycloaddition product of diphenylacetylene was formed.

Figure S33: ¹H NMR spectra of the reaction of diphenylacetylene with catalytic amounts of $[(\eta^5-C_5H_5)Co(iPr_2Im)(\eta^2-C_2H_4)]$ **1** (5mol%) in C₆D₆ at different temperatures, depicted is the aromatic region of the ¹H NMR spectra. Only the resonances of diphenylacetylene (**red**) were detected, even at high temperatures (100 °C). This result has been confirmed by ¹³C{¹H} NMR spectroscopy and GC/MS analyses; the latter indicates only traces of hexaphenylbenzene (534.23), beside a major amount of diphenylacetylene (278.2).

Figure S34: ¹H NMR spectra of the reaction of diphenylacetylene with catalytic a mounts of $[(\eta^5-C_5H_5)Co(Dipp_2Im)(\eta^2-C_2H_3SiMe_3)]$ **2** (5mol%) in C_6D_6 at different temperatures. ¹H NMR spectra at different temperatures of catalytically investigations of **2** (5mol%) in intermolecular [2+2+2] cycloaddition reaction of diphenylacetylene in C_6D_6 . The spectrum at room temperature reveals the resonances detected for $[(\eta^5-C_5H_5)Co(R^1_2Im)(\eta^2-C_2Ph_2)]$ **4** (violet), the spectra at higher temperatures reveals the resonances detected for $[(\eta^5-C_5H_5)Co(R^4_2Im)(\eta^2-C_2Ph_2)]$ **4** (violet), the spectra at higher temperatures reveals the resonances detected for $[(\eta^5-C_5H_5)Co(\eta^4-C_4Ph_4)]$ **5** (green), along with uncoordinated Dipp_2Im (yellow).

Figure S35: ¹H NMR spectra of the reaction of diphenylacetylene with catalytic a mounts of $[(\eta^5-C_5H_5)Co(Dipp_2Im)(\eta^2-C_2H_3SiMe_3)]$ 2 (5mol%) in C₆D₆ at different temperatures, shown is the aromatic region of the ¹H NMR spectra. Aside from signals of diphenylacetylene (red) signals for traces of hexaphenylbenzene (blue) at can be detected. Traces of hexaphenylbenzene (534.23) were also found in GC/MS analyses at 16.38 min, beside a major amount of diphenylacetylene (278.2).

Figure S36: ¹H NMR spectra of the reaction of phenylacetylene with catalytic amounts of $[(\eta^5-C_5H_5)Co(iPr_2Im)(\eta^2-C_2H_4)]$ **1** (5mol%) in C₆D₆ at different temperatures. The spectrum at room temperature reveals a singlet for eliminated ethylene (yellow) and the signals of phenylacetylene (blue). After heating (60 °C), new resonances can be detected in the aromatic region along with resonances for traces of complex **8**.

Figure S37: ¹H NMR spectra of the reaction of phenylacetylene with catalytic amounts of $[(\eta^5-C_5H_5)Co(iPr_2Im)(\eta^2-C_2H_4)]$ 1 (5mol%) in C₆D₆ at different temperatures, shown is the aromatic region of the ¹H NMR spectra. At higher temperatures (80 °C) a set of new aromatic signals for different oligomerization products (red) was detected. GC/MS analyses reveal two different oligomerization products (306.1) at 2.94 min and 13.64 min. But even after prolonged heating (e.g. 100 °C for 24 h) there were still significant a mounts of phenylacetylene (blue) detected in the NMR spectra as well as in the GC/MS traces of the reaction.

Figure S38: ¹H NMR spectra of the reaction of phenylacetylene with catalytic amounts of $[(\eta^5-C_5H_5)Co(Dipp_2Im)(\eta^2-C_2H_3SiMe_3)]$ **2** (5mol%) in C₆D₆ at different temperatures. The spectra reveal the formation of new signals in the aromatic region (**red**) due to the formation of different [2+2+2] cycloaddition isomers, as wellas the signals of phenylacetylene (**blue**). The resonances of uncoordinated trimethyl vinyl silane (**brown**) are also detected.

Figure S39: ¹H NMR spectra of the reaction of phenylacetylene with catalytic amounts of $[(\eta^5-C_5H_5)Co(Dipp_2Im)(\eta^2-C_2H_3SiMe_3)]$ **2** (5mol%) in C₆D₆ at different temperatures, shown is the aromatic region of the ¹H NMR spectra. The spectra reveal the formation of new signals in the aromatic region (**red**) due to the formation of different [2+2+2] cycloaddition isomers, as well as the signals of phenylacetylene (**blue**). According to GC/MS analysis are two different oligomerization products (306.1) at 2.94 min and 13.64 min formed. But even after prolonged heating (e.g. 100 °C for 24 h) there were still significant amounts of phenylacetylene (**blue**) detected in the NMR spectra as well as in the GC/MS traces of the reaction.

Figure S40: ¹H NMR spectra at different temperatures of the reaction of $[(\eta^5-C_5H_5)Co(^{i}Pr_2Im)(\eta^2-C_2Ph_2)]$ **3** with additional of diphenylacetylene in C_6D_6 . There is no reaction at room temperature and the spectrum reveals the resonances of **3** (brown) and diphenylacetylene. Applying higher temperatures leads to decomposition of **3**.

Figure S41: ¹H NMR spectra at different temperatures of the reaction of $[(\eta^5-C_5H_5)Co({}^iPr_2Im)(\eta^2-C_2H_4)]$ **1** with two equivalents of diphenylacetylene in C₆D₆. The NMR spectrum at room temperature reveals resonances for the complexes $[(\eta^5-C_5H_5)Co({}^iPr_2Im)(\eta^2-C_2H_4)]$ **1** (blue) and $[(\eta^5-C_5H_5)Co({}^iPr_2Im)(\eta^2-C_2Ph_2)]$ **3** (brown) and diphenylacetylene. At elevated temperatures the decomposition of **3** can be observed.

Figure S42: Bond critical (green) and ring critical (red) points calculated for $[(\eta^5 - C_5H_5)Co(^{i}Pr_2Im)(\eta^2 - C_2Ph_2)]$ (left) and $[(\eta^5 - C_5H_5)Co(Dipp_2Im)(\eta^2 - C_2Ph_2)]$ (right).

Computational details – Optimized

 $[(\eta^{5}-C_{5}H_{5})Co(^{i}Pr_{2}Im)(\eta^{2}-C_{2}Ph_{2})]$

Geometries

Energy = -2578.65598425711 NIMAG = 0			
Со	6.9825518	8.1960871	1.5512654
С	8.7282989	7.4622564	1.4869162
с	6.1412695	6.5600680	2.2081993
С	6.1437588	6.5499681	0.9088950
С	5.5140474	9.6241266	0.8887286
С	5.5493776	9.5981091	2.3176990
с	6.8605135	9.9550978	2.7463188
С	7.6424634	10.1671836	1.5614807
С	6.8031085	9.9932486	0.4096036
Ν	9.5441070	7.1045306	2.5371112
Ν	9.5005461	7.1963326	0.3775025
С	5.6439224	5.9656133	3.4221447
С	5.7249779	5.9180042	-0.3132961
Η	4.6460839	9.3862499	0.2801785
н	4.7131385	9.3371543	2.9600865
н	7.1972035	10.0838101	3.7708221

Н	8.6901007	10.4577993	1.5413268
Н	7.0892272	10.1556012	-0.6254511
С	10.7739699	6.6426234	2.0906923
С	9.1761829	7.2086012	3.9606851
С	10.7467576	6.7009578	0.7333800
С	9.0776366	7.4227123	-1.0167362
С	5.1966960	4.6210090	3.4564089
С	5.5693787	6.7037389	4.6259926
С	5.4536535	6.6747084	-1.4774352
С	5.5743571	4.5114581	-0.4026563
Н	11.5547035	6.3071751	2.7616921
н	8.1308325	7.5473280	3.9289424
С	9.2446988	5.8427987	4.6462735
С	10.0316378	8.2640805	4.6675765
Н	11.4995990	6.4257916	0.0055287
Н	8.0245465	7.7236714	-0.9191930
С	9.1622331	6.1319899	-1.8333703
С	9.8774496	8.5670299	-1.6469852
Н	5.2393770	4.0263129	2.5440594
С	4.6998637	4.0557516	4.6279202
С	5.0661887	6.1363324	5.7954807
Н	5.9048162	7.7416459	4.6171927
Н	5.5756499	7.7576302	-1.4306350
С	5.0250899	6.0643274	-2.6542803
С	5.1584723	3.9040456	-1.5853527
Н	5.8053611	3.8992331	0.4694792
Н	8.6168844	5.1105594	4.1229893
Н	8.8781015	5.9275356	5.6780911
Н	10.2753164	5.4585433	4.6871588
Н	9.9566928	9.2364065	4.1624489
Н	11.0924503	7.9727039	4.6976120
Н	9.6906513	8.3869782	5.7049768
Н	8.5779913	5.3308312	-1.3632306
Н	10.2018702	5.7898657	-1.9497366
Н	8.7534099	6.3036746	-2.8381433

9.7916921	9.4849427	-1.0502892
9.4990545	8.7756160	-2.6574074
10.9445518	8.3129127	-1.7358132
4.3612205	3.0178929	4.6226794
4.6302748	4.8075750	5.8070765
5.0120559	6.7356233	6.7064807
4.8077020	6.6769046	-3.5314679
4.8751494	4.6746382	-2.7188699
5.0533232	2.8180815	-1.6242036
4.2410836	4.3616175	6.7233007
4.5463259	4.1967930	-3.6425939
	9.4990545 10.9445518 4.3612205 4.6302748 5.0120559 4.8077020 4.8751494 5.0533232 4.2410836	9.49905458.775616010.94455188.31291274.36122053.01789294.63027484.80757505.01205596.73562334.80770206.67690464.87514944.67463825.05332322.81808154.24108364.3616175

$[(\eta^{5}\text{-}C_{5}H_{5})Co(Dipp_{2}Im)(\eta^{2}\text{-}C_{2}Ph_{2})]$

```
Energy = -3276.858758454
NIMAG = 0
```

Со	6.9053609	8.0107351	1.3919782
С	8.7488609	7.5338085	1.3900549
С	6.1272595	6.5326952	2.4032053
С	6.0954820	6.2417959	1.1362091
С	5.2982549	9.1084122	0.4437921
С	5.2674471	9.3182131	1.8583680
С	6.4946213	9.9180391	2.2549541
С	7.2999324	10.0286262	1.0771421
С	6.5491904	9.5550196	-0.0553789
Ν	9.5815409	7.2657419	2.4736282
Ν	9.6601391	7.5927504	0.3308510
С	5.5031974	6.2912111	3.6831247
С	5.5106775	5.4230368	0.1079572
н	4.4985208	8.6578596	-0.1362501
н	4.4502361	9.0418453	2.5183563
н	6.7588751	10.2543531	3.2508451
н	8.2966449	10.4571136	1.0427820
н	6.8734084	9.5496974	-1.0908299
С	10.9213142	7.1984275	2.0983340
С	10.9703837	7.4086545	0.7637548

С	4.6336824	5.1888127	3.8774865
С	5.6832308	7.1761613	4.7673885
С	5.1952705	5.9544559	-1.1643473
С	5.1781469	4.0655983	0.3463365
Η	11.7057766	6.9996633	2.8165549
Н	11.8082051	7.4309708	0.0796735
Η	4.4583924	4.4990533	3.0517068
С	3.9801143	4.9926475	5.0914191
С	5.0283990	6.9762765	5.9816486
Н	6.3526639	8.0249429	4.6306899
Η	5.4892947	6.9802288	-1.3840877
С	4.5234333	5.1930009	-2.1192345
С	4.5263836	3.3022303	-0.6193719
Η	5.4474008	3.6156424	1.3025928
Н	3.3084485	4.1400410	5.2093189
С	4.1734530	5.8836415	6.1541081
Н	5.1873163	7.6786459	6.8020841
Н	4.2751859	5.6381229	-3.0847424
С	4.1804947	3.8626871	-1.8547839
Η	4.2811462	2.2599791	-0.4058710
Н	3.6609851	5.7272244	7.1044485
Η	3.6610801	3.2657323	-2.6054830
С	9.2460476	7.0147106	3.8606693
С	9.2988679	8.0833832	4.7832696
С	9.0569626	5.6761702	4.2716203
С	9.1257187	7.7801223	6.1406969
С	8.8837649	5.4345387	5.6411274
С	8.9178733	6.4714031	6.5682866
Н	9.1559781	8.5845920	6.8761502
н	8.7208467	4.4131084	5.9855568
Η	8.7808695	6.2590972	7.6296931
С	9.3877530	7.7234674	-1.0864265
С	9.0330069	6.5646174	-1.8217473
С	9.6267168	8.9642247	-1.7202206
С	8.7900579	6.7193870	-3.1928650

С	9.3788390	9.0539418 -3.0982048
С	8.9401892	7.9524031 -3.8246063
Н	8.4877951	5.8529989 -3.7796169
Η	9.5395708	10.0045489 -3.6081801
Н	8.7398195	8.0460713 -4.8932345
С	9.5878202	9.5183060 4.3566756
Η	9.2947285	9.6094779 3.3003818
С	8.7845841	10.5570020 5.1579083
Η	8.8842902	11.5493363 4.6952718
Н	7.7162021	10.3063657 5.2042347
н	9.1508147	10.6449345 6.1914692
С	11.0925427	9.8412957 4.4655482
Н	11.2858721	10.8788558 4.1543050
Н	11.4377246	9.7295526 5.5044377
Н	11.7010527	9.1820310 3.8331967
С	9.1063982	4.5052158 3.2965704
Н	8.9051994	4.9020015 2.2909597
С	10.5089626	3.8620957 3.2905176
Н	10.5443164	3.0273128 2.5749405
Н	11.2910463	4.5798004 3.0093093
Н	10.7564823	3.4644848 4.2865250
С	8.0443942	3.4328202 3.5857941
Н	8.0352506	2.6916194 2.7736083
Н	8.2566632	2.8878251 4.5176767
Н	7.0418434	3.8708240 3.6682011
С	9.0138914	5.1721617 -1.1953937
Н	8.5912715	5.2694511 -0.1829736
С	8.1639354	4.1508372 -1.9633741
Н	8.6275524	3.8830274 -2.9254676
н	8.0866771	3.2255487 -1.3761601
н	7.1466741	4.5118633 -2.1536797
С	10.4499733	4.6128808 -1.0765006
н	10.9117247	4.5346646 -2.0725783
н	11.0971717	5.2341190 -0.4464312
н	10.4243429	3.6046100 -0.6376083

С	10.2272737	10.1672102	-0.9989970
н	10.1428694	9.9886815	0.0828055
С	11.7294970	10.2936039	-1.3309612
н	11.8751788	10.4778552	-2.4056758
Н	12.1755695	11.1342415	-0.7791204
н	12.2875676	9.3839015	-1.0715596
С	9.5173603	11.4938282	-1.3206561
Н	8.4366309	11.4399431	-1.1387896
н	9.9282297	12.3005199	-0.6960808
н	9.6699912	11.7888129	-2.3690104