Supporting Information

P-Chiral Monophosphorus Ligands for Asymmetric Copper-Catalyzed Allylic Alkylation
Wenrui Xiong, ${ }^{a}$ Guangqing $\mathrm{Xu},{ }^{b}$ Xinhong $\mathrm{Yu}^{* a}$ and Wenjun Tang* ${ }^{* a, b}$
${ }^{a}$ Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200037, China
${ }^{b}$ State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
*E-mail: tangwenjun@sioc.ac.cn
*E-mail: xhyu@ecust.edu.cn

Table of Contents

1. General Considerations S2
2. Procedure for the Preparation of (\boldsymbol{E})-Allyl Bromides S2-S7
3. The Synthesis of P-Chiral Monophosphorus Ligands. S7-S12
4. Optimization of Reaction Conditions S12-S15
5. X-Ray Crystallographic Data of Copper Complex. S52-S53
6. References S54-S55
7. NMR Spectra and HPLC chromatographs S56-S108

1. General Considerations

Unless otherwise noted, all commercial reagents were purchased from commercial suppliers and used without further purification. All reactions were carried out under nitrogen atmosphere in oven-dried glassware using standard Schlenk techniques. All solvents were purified and dried according to the standard methods prior to use. The ligands, copper complex and allyl substrates were prepared by following the indicated procedures described in the literature. Racemic products were synthesized by reaction of the allyl bromides with the corresponding Grignard reagent at $-78^{\circ} \mathrm{C}$ in dichloromethane in the presence of copper salt. Flash column chromatography was performed on silica gel (particle size 200-300 mesh, purchased from Canada) and eluted with petroleum ether/ethyl acetate.
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{31} \mathrm{P}$ NMR and ${ }^{19}$ F NMR spectra were recorded on a Bruker-Ultrashield PLUS400 NMR or a 500 MHz Agilent spectrometer with CDCl_{3} as the solvent. ${ }^{1} \mathrm{H}$ chemical shifts were referenced to CDCl_{3} at 7.26 ppm. ${ }^{13} \mathrm{C}$ chemical shifts were referenced to CDCl_{3} at 77.16 ppm and obtained with ${ }^{1} \mathrm{H}$ decoupling. ${ }^{31} \mathrm{P}$ chemical shifts were referenced to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ in $\mathrm{D}_{2} \mathrm{O}$ at 0.0 ppm as external standard and obtained with ${ }^{1} \mathrm{H}$ decoupling. Multiplicities are abbreviated as follows: singlet (s), doublet (d), triplet (t), quartet (q), doublet-doublet (dd), triplet-doublet (td), quintet (quint), sextet (sextet), septet (septet), multiplet (m), and broad (br). MS was measured on Shimadzu LCMS-2010EV (EI) or Brukerdaltonics APEX III (HR-EI) mass spectrometers. Chiral HPLC analysis were performed on an Agilent 1200 system using chiral column described below in detail. Chiral GC analysis were performed on an Agilent 6890N GC using chiral column described below in detail. The optical rotations were measured on a Jacsco P-1010 polarimeter. Single crystals for X-ray structure determination were performed on SMART APEX CCD single-crystal diffractometer.

2. Procedure for the Preparation of (\boldsymbol{E})-Allyl Substrates

The unpurchased (E)-allyl substrates were synthesized from the corresponding aldehydes or ketones by a three-step Horner-Wadsworth-Emmonds olefination/DIBAL-H reduction/bromination or esterification sequence.

2.1 Procedure for the Horner-Wadsworth-Emmons Olefination

To a stirred suspension of NaH (60% in mineral oil, 1.6 equiv) in dry THF at $0{ }^{\circ} \mathrm{C}$ was added triethyl phosphonoacetate (1.6 equiv) dropwise and stirred for a further 1 h . The corresponding aldehydes or ketones (1.0 equiv) was dissolved in dry THF and added dropwise to the reaction mixture. After stirring for 24 h at rt , the solution was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The aqueous layer was extracted with EA and the combined organic layers were dried over anhydrous sodium sulfate, filtered and concentrated in vacuo to give the crude product as an E : Z mixture. The crude product was purified by column chromatography on silica gel with
n hexane/EA to give the desired (E)-allyl esters. ${ }^{1} \mathrm{H}$ NMR data of all compounds matched with those reports in the literature. ${ }^{1}$

2.2 Procedure for the DIBAL-H Reduction

To a stirred solution of the corresponding (E)-allyl esters (1.0 equiv) in dry DCM at $-78{ }^{\circ} \mathrm{C}$ was added dropwise DIBAL-H (1.5 M solution in toluene, 2.2 equiv). After the addition was complete, the solution was warmed to rt slowly and stirred overnight. Upon complete consumption of the starting material (as indicated by TLC), the reaction mixture was cooled to $-78^{\circ} \mathrm{C}$ and quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. After stirred at rt for 30 min , the reaction mixture was treated with anhydrous sodium sulfate and the resulting suspension was further at rt for 30 min . The suspension was passed through a pad of celite and the organic phased was separated from the filtrate, dried, and concentrated to provide crude (E)-allyl alcohols, which was used directly in next step without further purification. ${ }^{1} \mathrm{H}$ NMR data of all compounds matched with those reported in the literature. ${ }^{2}$

2.3 Procedure for the Bromination Reaction

To a stirred solution of the corresponding (E)-allyl alcohols (1.0 equiv) in anhydrous $\mathrm{Et}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$ was added dropwise neat PBr_{3} (1.05 equiv). After stirring at this temperature for 2 h , the reaction mixture was quenched with cold saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and warmed to rt . The organic layer was separated and washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo to give the corresponding (E)-allyl bromides in nearly quantitative yield. NMR data of all compounds matched with those reported in the literature. ${ }^{3}$
(E)-3-(4'-(Trifluoromethyl)phenyl)-allylbromide (1b): 92% yield; yellow solid; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.58(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{dd}, J=15.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.15$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.3,132.9,130.0(\mathrm{q}, J=32.6 \mathrm{~Hz}), 127.8,126.9,125.6(\mathrm{q}, J$ $=3.8 \mathrm{~Hz}), 125.1,122.9,32.4$. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra are in agreement with those reported in the literature. ${ }^{3 \mathrm{a}}$
(\boldsymbol{E})-3-(4’-Bromophenyl)-allylbromide (1c): 85% yield; grey solid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.42$ (m, $2 \mathrm{H}), 7.32-7.20(\mathrm{~m}, 2 \mathrm{H}), 6.58(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{dt}, J=15.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{dd}, J=7.7,0.9 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 134.7$, 133.3, 131.8, 128.2, 126.0, 122.2, 32.9. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra are in agreement with those reported in the literature. ${ }^{3 \mathrm{a}}$
(E)-3-(4'-Chlorophenyl)-allylbromide (1d): 87% yield; white solid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.27$ $(\mathrm{m}, 4 \mathrm{H}), 6.60(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{dt}, J=15.5,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=7.8,0.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 134.3,134.0,133.2,128.8,127.9,125.8,33.0$. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra are in
agreement with those reported in the literature. ${ }^{3 a}$
(\boldsymbol{E})-3-(4'-Methylphenyl)-allylbromide (1e): 82% yield; grey solid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28$ (t, $J=$ $8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{dt}, J=15.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.3,134.5,133.0,129.3,126.7,124.2,33.8,21.3$. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra are in agreement with those reported in the literature. ${ }^{3 \mathrm{c}}$
(E)-3-(3'-Bromophenyl)-allylbromide (1f): 89% yield; pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53$ (s, $1 \mathrm{H}), 7.39(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.39$ $(\mathrm{dt}, J=15.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.9,132.9,131.2,130.1$, $129.5,126.8,125.4,122.8,32.6$. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra are in agreement with those reported in the literature. ${ }^{3 \mathrm{c}}$
(E)-3-(3'-Chlorophenyl)-allylbromide (1g): 92% yield; pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37$ (s, $1 \mathrm{H}), 7.25(\mathrm{~s}, 3 \mathrm{H}), 6.58(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{dt}, J=15.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.6,134.6,133.0,129.9,128.3,126.7,126.6,124.9,32.7$. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra are in agreement with those reported in the literature. ${ }^{3 \mathrm{c}}$
(E)-3-(3'-Methylphenyl)-allylbromide (1h): 85% yield; yellow oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.21(\mathrm{~m}$, $3 \mathrm{H}), 7.13(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{dt}, J=15.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, 2.39 (s, 3H); 13C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.2,135.8,134.7,129.2,128.6,127.5,125.0,124.0,33.7,21.4$. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra are in agreement with those reported in the literature. ${ }^{3 \mathrm{c}}$
(E)-3-(Cyclohexyl)-allylbromide (1i): 83% yield; colorless oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.71$ (dd, $J=15.3$, $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.68-5.58(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.99(\mathrm{ddd}, J=11.2,9.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.69(\mathrm{~m}$, $4 \mathrm{H}), 1.68-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.31-1.21(\mathrm{~m}, 2 \mathrm{H}), 1.20-1.13(\mathrm{~m}, 1 \mathrm{H}), 1.12-1.01(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.1,123.9,40.2,33.4,32.4,26.0,25.6$. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra are in agreement with those reported in the literature. ${ }^{3 \mathrm{a}}$
(E)-3-(2'-Methylphenyl)-allylbromide (11): 80% yield; yellow oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45$ (dd, $J=$ $8.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.06(\mathrm{~m}, 3 \mathrm{H}), 6.88(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{dt}, J=15.5,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=7.8$, $0.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.8,134.8,132.2,130.4,128.2,126.5,126.2,125.9$, 33.6. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra are in agreement with those reported in the literature. ${ }^{3 \mathrm{a}}$
(\boldsymbol{E})-3-(1'-Naphthyl)-allylbromide (1m): 86% yield; grey solid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.11$ (d, $J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{dtd}, J=8.8,7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 133.6,133.4,131.6,131.1,128.7,128.6,128.3,126.3,125.9,125.6,124.3,123.5,33.4$. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra are in agreement with those reported in the literature. ${ }^{3 \mathrm{a}}$
(E)-3-(2'-Naphthyl)-allylbromide (1n): 85% yield; white solid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81$ ($\mathrm{t}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=8.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.40(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{dt}, J=$ $15.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 134.7,133.4,133.3,133.2,128.4$, 128.1, 127.7, 127.1, 126.4, 126.3, 125.5, 123.5, 33.6. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra are in agreement with those reported in the literature. ${ }^{3 \mathrm{c}}$
(E)-(4-Bromobut-2-en-2-yl)benzene (10): 85\% yield; pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.37$ $(\mathrm{m}, 2 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.08(\mathrm{ddd}, J=8.5,5.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $2.14(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.7,141.5,128.3,127.8,125.9,122.8,29.4,15.6$. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra are in agreement with those reported in the literature. ${ }^{3 \mathrm{e}}$
(\boldsymbol{E})-1'-Bromo-4'-(4-bromobut-2-en-2-yl)benzene (1p): 88% yield; pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 3 \mathrm{H}), 6.08(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.11(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.0,140.3,131.4,127.5,123.4,121.8,28.9,15.5$. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra are in agreement with those reported in the literature. ${ }^{3 \mathrm{e}}$
(\boldsymbol{E})-1'-Chloro-4'-(4-bromobut-2-en-2-yl)benzene (1q): 80% yield; pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.35-7.28(\mathrm{~m}, 4 \mathrm{H}), 6.07(\mathrm{td}, J=8.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 140.6,140.2,133.6,128.5,127.2,123.3,29.0,15.6$. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra are in agreement with those reported in the literature. ${ }^{3 b}$
(\boldsymbol{E})-1'-Trifluoromethyl-4'-(4-bromobut-2-en-2-yl)benzene (1r): 91% yield; white solid; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.14(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, 2.16 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.7,140.0,129.8-129.3$ (m), 127.4, 126.2, 125.4-125.1 (m), 124.8, 123.0, 28.4, 15.5. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra are in agreement with those reported in the literature. ${ }^{3 \mathrm{f}}$
(E)-1’-Methyl-4'-(4-Bromobut-2-en-2-yl) benzene (1s): 80% yield; colourless oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 2 \mathrm{H}), 6.09(\mathrm{dd}, J=8.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR spectra is in agreement with those reported in the literature. ${ }^{3 \mathrm{~b}}$
(\boldsymbol{E})-1'-Methyl-3'-(4-bromobut-2-en-2-yl)benzene (1t): 82% yield; yellow oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.28-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.39$ $(\mathrm{s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.2,141.6,137.9,128.6,128.2,126.7,123.1,122.6,29.6$, 21.5, 15.7. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra are in agreement with those reported in the literature. ${ }^{3 \mathrm{~b}}$
(\boldsymbol{E})-1'-Bromo-3'-(4-bromobut-2-en-2-yl)benzene (1u): 90% yield; pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.54(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{ddd}, J=15.5,7.9,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.72(\mathrm{td}, J=8.4,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.13(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.6,142.5,132.8,129.6,128.7,127.3$, 126.0, 121.8, 28.2, 17.5. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra are in agreement with those reported in the literature. ${ }^{3 \mathrm{e}}$
(\boldsymbol{E})-1'-Chloro-3'-(4-bromobut-2-en-2-yl)benzene (1v): 89% yield; yellow oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.38(\mathrm{~s}, 1 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 3 \mathrm{H}), 6.08(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.0,140.0,134.3,127.8,126.1,124.1,123.9,28.9,15.5$. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra are in agreement with those reported in the literature. ${ }^{3 d}$
(\boldsymbol{E})-1'-Trifluoromethyl-3'-(4-bromobut-2-en-2-yl)benzene (1w): 90\% yield; yellow oil; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{t}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.0,140.0,129.2(\mathrm{~d}, J=1.1$ $\mathrm{Hz}), 128.8,124.4(\mathrm{q}, J=3.4 \mathrm{~Hz}), 122.7(\mathrm{q}, J=3.8 \mathrm{~Hz}), 28.4,15.3$. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra are in agreement with those reported in the literature. ${ }^{3 b}$
(\boldsymbol{E})-1'-Bromo-2'-(4-bromobut-2-en-2-yl)benzene (1x): 83% yield; pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.54(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{ddd}, J=15.5,7.9,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.72(\mathrm{td}, J=8.4,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.13(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.7$, 142.6, 132.9, 129.6, 128.7, 127.3, 126.0, 121.8, 28.2, 17.5. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra are in agreement with those reported in the literature. ${ }^{3 b}$
(E)-1’-(4-Bromobut-2-en-2-yl)naphthalene (1y): 88% yield; pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.00-7.93(\mathrm{~m}, 1 \mathrm{H}), 7.91-7.86(\mathrm{~m}, 1 \mathrm{H}), 7.81(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{dd}, J=8.1,7.2 \mathrm{~Hz}, 1 \mathrm{H})$,
7.29 (dd, $J=7.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{td}, J=8.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.24(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.1,142.0,133.8,130.9,128.4,127.6,126.1,126.0,125.8,125.4,125.3,124.7$, 28.7, 18.8. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra are in agreement with those reported in the literature. ${ }^{3 \mathrm{e}}$
(E)-2'-(4-Bromobut-2-en-2-yl)naphthalene (1z): 87% yield; white solid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85-$ $7.79(\mathrm{~m}, 4 \mathrm{H}), 7.58(\mathrm{dd}, J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{ddd}, J=6.9,5.7,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.26(\mathrm{td}, J=8.5,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.27(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.3,139.3,133.3,132.9$, $128.2,127.9,127.5,126.3,126.1,124.9,124.0,123.3,29.4,15.6$. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra are in agreement with those reported in the literature. ${ }^{3 \mathrm{f}}$
(\boldsymbol{E})-(1-Bromohex-2-en-3-yl)benzene ($\mathbf{1} \mathbf{x}$ '): 85% yield; colourless oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36$ (dd, J $=13.9,6.9 \mathrm{~Hz}, 5 \mathrm{H}), 6.00(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{dd}, J=16.3,8.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.42(\mathrm{~m}$, $2 \mathrm{H}), 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR spectra is in agreement with those reported in the literature. ${ }^{3 f}$
(\boldsymbol{E})-(1-Bromo-4-methylpent-2-en-3-yl)benzene (1y'): 82% yield; pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.18(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.63(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{dt}, J$ $=14.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.10(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.9,141.5,128.2,127.7,126.9$, 123.9, 29.2, 28.0, 21.6, 21.3. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra are in agreement with those reported in the literature. ${ }^{3 \mathrm{e}}$

2.4 Procedure for the Esterification Reaction

Allylic alcohol ($1.8 \mathrm{mg}, 12.4 \mathrm{mmol}$) and DMAP ($76 \mathrm{mg}, 0.62 \mathrm{mmol}$) were dissolved in pyridine $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. Acetic anhydride (5 mL) was added slowly at $0^{\circ} \mathrm{C}$. The solution was stirred at rt for 24 h and quenched with saturated aqueous NaHCO_{3} solution. It was then diluted with water $(10 \mathrm{~mL})$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20$ mL), dried over anhydrous sodium sulfate and evaporated. The residue was purified by column chromatography on silica gel with n hexane/EA to afford the allylic acetate as liquid (85% yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.27-7.45(\mathrm{~m}, 5 \mathrm{H}), 5.93(\mathrm{td}, J=1.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H})$.

To a mixture of pyridine ($2.4 \mathrm{~mL}, 30.0 \mathrm{mmol}, 3.0$ equiv), the allylic alcohol ($1.5 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv) and DCM $(10 \mathrm{~mL})$ was added benzyl chloroformate ($2.8 \mathrm{~mL}, 20.0 \mathrm{mmol}, 2.0$ equiv) dropwise at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to rt and stirred overnight (monitored by TLC). The mixture was then quenched with water $(10 \mathrm{~mL})$ and diluted with EA $(10 \mathrm{~mL})$. The organic layer was separated, washed sequentially with HCl solution $(1 \mathrm{M}, 20 \mathrm{~mL})$ and brine (20 mL), concentrated, and purified by column chromatography with n hexane/EA to give the allylic benzyl carbonate as a colorless oil (89% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.39(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~s}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.25$ $(\mathrm{m}, 1 \mathrm{H}), 5.90(\mathrm{dd}, J=7.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 4.85(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H})$.

To a solution of allylic alcohol ($1 \mathrm{~g}, 6.8 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}(1.4 \mathrm{ml}, 10.1 \mathrm{mmol}, 1.5$ equiv) in DCM $(15 \mathrm{~mL}),(\mathrm{MeO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{Cl}(0.9 \mathrm{ml}, 8.1 \mathrm{mmol}, 1.2$ equiv) and DMAP ($247 \mathrm{mg}, 2.02 \mathrm{mmol}, 0.3$ equiv) were sequentially added at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to rt , stirred for another 12 h and then diluted with EA (10 mL) and water (10 mL). The organic layer was separated and the aqueous layer was extracted with EA (10 mL). The combined organic layer was washed with water and brine, dried over anhydrous sodium sulfate, and concentrated to provide crude allylic phosphate as a yellow oil (80% yield). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 1 \mathrm{H}), 5.95(\mathrm{td}, J=7.0,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.83-4.75(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H})$.

3. The Synthesis of P-Chiral Monophosphorus Ligands

Ligands L1-L6, L9 and L11 were prepared according to procedures described in our previous reports. ${ }^{4-6}$ The synthesis of L12-L18 was similar to the procedure for the synthesis of L5 and L6. ${ }^{6 a}$ Ligands L7, L8, L10 and $\mathbf{L 1 9}$ were prepared according to procedures described as follows. The compound \mathbf{A} was prepared according to a procedure described in our previous reports. ${ }^{4}$

3.1 The Synthesis of L7 and L8

(1) To a solution of compound \mathbf{A} (1.0 equiv) and triethylamine (4.0 equiv) in DCM at $0^{\circ} \mathrm{C}$ was added $\mathrm{Tf}_{2} \mathrm{NPh}$ (1.2 equiv). The mixture was stirred at rt for 5 h and then quenched with addition of water. The organic layer was separated, dried over anhydrous sodium sulfate, concentrated, and purified by column chromatography with n hexane/EA to give the triflate product as a white solid (94% yield). (2) To a solution of the triflate product (1.0 equiv) and 2, 6-dimethoxyphenylboronic acid (1.5 equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(1 \mathrm{~mol} \%), \mathrm{S}$-Phos ($3 \mathrm{~mol} \%$) and potassium fluoride (4.0 equiv) was charged degassed dioxane. The mixture was stirred at $100{ }^{\circ} \mathrm{C}$ under nitrogen for 10 h and then cooled to rt . The resulting mixture was removed most dioxane under a reduced pressure. And column chromatography was conducted with n hexane/EA to provide the coupling product as a white crystalline solid (90% yield). (3) The coupling product (1.0 equiv) and acetonitrile were charged into a flask. NBS (2.5 equiv) was added to the formed solution. The reaction mixture was stirred at rt for 16 h . Water and EA were added to the
reaction mixture. The mixture stirred for 20 min then the organic fraction is separated, washed with 2 N HCl , dried over anhydrous sodium sulfate, filtered then concentrated. The crude product is purified by column chromatography with n hexane/EA to provide the desired bromide product as a white solid (82% yield). (4) To a solution of the bromide product (1.0 equiv) and isopropenylboronic acid pinacol ester (3.0 equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(3$ $\mathrm{mol} \%$), S-Phos ($6 \mathrm{~mol} \%$) and potassium phosphate (6.0 equiv) was charged degassed dioxane and water. The mixture was stirred at $80^{\circ} \mathrm{C}$ under nitrogen for 18 h and then cooled to rt . The resulting mixture was removed most solvent under a reduced pressure. And column chromatography was conducted with n hexane/EA to provide the coupling product as a white crystalline solid (76\% yield). (5) The hydrogenation of the coupling product was performed in the presence of $\mathrm{Pd}(\mathrm{OH})_{2}$ and H_{2} in THF at rt for 16 h . After concentrated, the resulting mixture was directly performed column chromatography with nhexane/EA to provide the oxidation state product as a white crystalline solid (85% yield). (6) The oxaphosphole oxide was added to a Schlenk flask equipped with magnetic stirring bar. THF was charged followed by addition of PMHS and $\mathrm{Ti}(\mathrm{Oi} \operatorname{Pr})_{4}$ (3.0 equiv). The reaction mixture was heated at $70{ }^{\circ} \mathrm{C}$ and monitored by ${ }^{31} \mathrm{P}$ NMR spectroscopy. The reaction mixture then was cooled to rt and quenched by dropwise addition of degassed $30 \% \mathrm{NaOH}$ at $0^{\circ} \mathrm{C}$, the resulting mixture was further stirred at $60^{\circ} \mathrm{C}$ for 0.5 h . The aqueous layer was removed and subsequently extracted under nitrogen atmosphere. The combined organics were dried over anhydrous sodium sulfate then filtered through nitrogen-purged neutral alumina with $\mathrm{Et}_{2} \mathrm{O}$. The solvents were removed under reduced pressure to afford ligand $\mathbf{L} 7$ as a colourless oil (80% yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{dd}, J=7.2,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.91$ $(\mathrm{dd}, J=8.1,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=12.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{dd}, J=26.3,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{dt}, J$ $=13.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{dt}, J=13.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.23(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.72(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 163.7, 153.6, 152.6, $139.7(\mathrm{~d}, ~ J=17.7 \mathrm{~Hz}), 138.0,137.3,130.0,129.0,125.0(\mathrm{~d}, J=16.0 \mathrm{~Hz}), 123.4,123.3(\mathrm{~d}, J$ $=4.1 \mathrm{~Hz}), 109.7,70.6,70.4,62.3,61.1,30.74(\mathrm{~d}, J=19.7 \mathrm{~Hz}), 29.7,26.9(\mathrm{~d}, J=14.8 \mathrm{~Hz}), 26.6(\mathrm{~d}, J=4.7 \mathrm{~Hz})$, $24.4(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 23.4(\mathrm{~d}, J=5.1 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.8$; ESI-MS: m/z $415.30[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 415.2402$, found: 415.2397.

The synthesis of ligand $\mathbf{L 8}$ was followed according to a similar experimental procedure. $\mathbf{L 8}: 85 \%$ yield; White solid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{ddd}, J=7.5,3.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.92$ $(\mathrm{dd}, J=8.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{dd}, J=12.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{dd}, J=26.3,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.44-$ 3.37 (m, 1H), 3.34 (s, 3H), 3.28 (dd, $J=17.4,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-1.94(\mathrm{~m}, 4 \mathrm{H}), 1.89-1.77$ (m, 4H), 1.74-1.60 (m, $6 \mathrm{H}), 1.43-1.26(\mathrm{~m}, 2 \mathrm{H}), 0.73(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.7,154.4,153.3,139.71(\mathrm{~d}$, $J=17.7 \mathrm{~Hz}), 135.3,134.8,130.0,128.9,124.7,123.3(\mathrm{~d}, J=4.1 \mathrm{~Hz}), 109.7,70.7,70.4,62.4,61.2,38.6(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}), 35.4,34.7,34.5,34.2,30.8(\mathrm{~d}, J=19.8 \mathrm{~Hz}), 26.9(\mathrm{~d}, J=14.7 \mathrm{~Hz}), 25.6(\mathrm{dd}, J=17.3,12.0 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-6.1$; ESI-MS: m/z $467.30[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{O}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$: 467.2715, found: 467.2703.

3.2 The Synthesis of L10

The synthesis of compound \mathbf{B} was followed by the above description.
(1) Compound B (1.0 equiv) was placed in a dry Schlenk tube, then DCM was added and stirred to completely dissolve the material. The reaction system was transferred to an ice water bath and BBr_{3} (2.5 equiv, 1.0 M in DCM) was slowly added at $0^{\circ} \mathrm{C}$. After the completion of the dropwise addition, the reaction system was warmed to room temperature, stirred overnight and monitored by TLC. The reaction was quenched by adding MeOH. The residue was purified by column chromatography with n hexane/EA to give a white crystal product (91% yield). (2) The white crystal product (1.0 equiv) and anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3.0 equiv) were placed in a dry Schlenk tube, DMF was added and stirred to dissolve the materials. $i \operatorname{PrI}$ (5.0 equiv) was then added to the reaction system. After complete conversion, the reaction mixture was concentrated and column chromatography was conducted with n hexane/EA to provide the product as a white solid (94% yield). (3) The product (1.0 equiv) and acetonitrile were charged into a flask. NBS (2.5 equiv) was added to the formed solution. The reaction mixture was stirred at rt for 16 h . Water and EA were added to the reaction mixture. The mixture stirred for 20 min then the organic fraction is separated, washed with 2 N HCl , dried over anhydrous sodium sulfate, filtered then concentrated. The crude product is purified by column chromatography with n hexane/EA to provide the desired bromide product as a white solid (85% yield). (4) To a solution of the bromide product (1.0 equiv) and methyl-boric acid (3.0 equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(3 \mathrm{~mol} \%), S-\mathrm{Phos}(6 \mathrm{~mol} \%)$ and potassium phosphate (6.0 equiv) was charged dry toluene. The mixture was stirred at $110^{\circ} \mathrm{C}$ under nitrogen for 18 h and then cooled to rt . The resulting mixture was removed most solvent under a reduced pressure and filtered over celite. After concentrated, column chromatography was conducted with n hexane/EA to provide the coupling product as a white crystalline solid (76% yield). (5) The oxaphosphole oxide was added to a Schlenk flask equipped with magnetic stirbar. THF was charged followed by addition of PMHS and $\mathrm{Ti}(\mathrm{OiPr}) 4$ (3.0 equiv). The reaction mixture was heated at $70{ }^{\circ} \mathrm{C}$ and monitored by ${ }^{31} \mathrm{P}$ NMR spectroscopy. The reaction mixture then was cooled to rt and quenched by dropwise addition of degassed $30 \% \mathrm{NaOH}$ at $0^{\circ} \mathrm{C}$, the resulting mixture was further stirred at $60^{\circ} \mathrm{C}$ for 0.5 h . The aqueous layer was removed and subsequently extracted under nitrogen atmosphere. The combined organics were dried over anhydrous sodium sulfate then filtered through nitrogen-purged neutral alumina with $\mathrm{Et}_{2} \mathrm{O}$. The solvents were removed under reduced pressure to afford ligand $\mathbf{L 1 0}$ as a colourless oil (87% yield). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30$ (t, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=7.1,3.6,1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{dd}, J=12.5,1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.54(\mathrm{dd}, J=26.4,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dt}, J=12.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dq}, J=12.3,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}$, $3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, $3 \mathrm{H}), 0.78(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.9,152.2,151.8,140.1,139.9,131.8,130.2$,
$128.9,127.3,126.6,124.3(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 109.8,75.4,73.9,70.5,70.3,30.8,30.6,27.1(\mathrm{~d}, J=14.9 \mathrm{~Hz}), 22.7(\mathrm{~d}$, $J=2.4 \mathrm{~Hz}), 22.4,22.0,17.1,16.8 ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.8$; ESI-MS: m/z $415.30[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 415.2402$, found: 415.2397.

3.3 The Synthesis of L19

(1) To a mixture of compound \mathbf{B} (1.0 equiv) and 3, 5 -dichlorophenylboronic acid (2.0 equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}$ (5 $\mathrm{mol} \%$), Antphos ($10 \mathrm{~mol} \%$) and TEA (3.0 equiv) was charged degassed dioxane $/ \mathrm{H}_{2} \mathrm{O}$. The mixture was stirred under nitrogen for 24 h at $100^{\circ} \mathrm{C}$, concentrated, partitioned with water and DCM. The DCM layer was dried over anhydrous sodium sulfate, concentrated, and purified by column chromatography with n hexane/EA to provide pure product (55% yield). (2) To a solution of the pure product (1.0 equiv) and 3, 5 -dimethoxyphenylboronic acid acid (6.0 equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(10 \mathrm{~mol} \%)$, BI-DIME ($20 \mathrm{~mol} \%$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (8.0 equiv) was charged degassed mesitylene. The mixture was stirred at $140^{\circ} \mathrm{C}$ under nitrogen for 24 h and then cooled to rt . The resulting mixture was concentrated and purified by column chromatography with n hexane/EA to provide the oxidation state of L19 (92% yield). (3) To a solution of oxidation state of $\mathbf{L 1 9}$ (1.0 equiv) in THF at rt was added PMHS (3.0 equiv) and $\mathrm{Ti}(\mathrm{OiPr})_{4}$ (3.0 equiv). The reaction mixture was heated at $70{ }^{\circ} \mathrm{C}$ and monitored by ${ }^{31} \mathrm{P}$ NMR spectroscopy. The reaction mixture then was cooled to rt and quenched by dropwise addition of degassed $30 \% \mathrm{NaOH}$ at $0^{\circ} \mathrm{C}$, the resulting mixture was further stirred at $60^{\circ} \mathrm{C}$ for 0.5 h . The aqueous layer was removed and subsequently extracted under nitrogen atmosphere. The combined organics were dried over anhydrous sodium sulfate then filtered through nitrogen-purged neutral alumina with $\mathrm{Et}_{2} \mathrm{O}$. The solvents were removed under reduced pressure to afford ligand $\mathbf{L 1 9}$ as a white solid (75% yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{t}$, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{dd}, J=6.7,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, J=8.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=2.3$ $\mathrm{Hz}, 4 \mathrm{H}), 6.51(\mathrm{~s}, 2 \mathrm{H}), 4.88(\mathrm{dd}, J=12.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{dd}, \mathrm{J}=26.0,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 12 \mathrm{H}), 0.69(\mathrm{~d}, J=$ $12.1 \mathrm{~Hz}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.0(\mathrm{~d}, J=19.2 \mathrm{~Hz}), 161.2,146.3(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 142.9,141.9$, $141.5(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 135.0,127.6,125.7,123.3(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 113.0(\mathrm{~d}, J=5.2 \mathrm{~Hz}), 105.6,99.7,65.765 .2$, 55.6, 34.3, 33.8, 24.1; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-10.6$; ESI-MS: m/z $543.20[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{33} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 543.2300$, found: 543.2302.

3.4 Characterization Data of New P-Chiral Monophosphorus Ligands

L12: 85% yield; White solid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~s}, 2 \mathrm{H})$, $7.15(\mathrm{~s}, 2 \mathrm{H}), 6.94(\mathrm{dd}, J=11.4,6.0 \mathrm{~Hz}, 4 \mathrm{H}), 4.88(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{dd}, J=25.5,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~s}$,
$3 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 12 \mathrm{H}), 0.91(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.7$, $155.3,154.5,139.6(\mathrm{~d}, J=18.1 \mathrm{~Hz}), 138.8,138.6,137.7,137.5,133.0,130.8,130.2(\mathrm{~d}, J=9.2 \mathrm{~Hz}), 128.5,127.0$, 126.5, 123.1 (d, $J=3.9 \mathrm{~Hz}$), 109.7, 61.2, 60.9, 31.9, $30.9(\mathrm{~d}, J=19.2 \mathrm{~Hz}$), $29.7(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 29.3,27.0(\mathrm{~d}, J=$ 14.6 Hz), 22.7, 21.4, 14.1; ${ }^{31} \mathrm{P}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-11.1; ESI-MS: m/z $539.40[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) m/z calcd for $\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{O}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 539.2715$, found: 539.2716.

L13: 80% yield; White solid; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=$ $1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.96(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.87$ $(\mathrm{d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{dd}, J=25.6,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 18 \mathrm{H}), 1.34(\mathrm{~s}, 18 \mathrm{H})$, 0.93 (d, $J=12.2 \mathrm{~Hz}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.7,155.3,154.6,150.7,150.4,140.2,140.0,138.0$, $137.7,132.9,131.4,130.3(\mathrm{~d}, J=10.2 \mathrm{~Hz}), 130.0,123.6,123.0(\mathrm{~d}, J=18.9 \mathrm{~Hz}), 120.7(\mathrm{~d}, J=19.2 \mathrm{~Hz}), 109.7$, $70.8,70.6,61.1(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 60.9,34.9(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 31.5(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 30.9(\mathrm{~d}, J=19.4 \mathrm{~Hz}), 27.0(\mathrm{~d}, J=$ 14.7 Hz); ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-9.3$; ESI-MS: m/z $707.45[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{47} \mathrm{H}_{64} \mathrm{O}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 707.4593$, found: 707.4574.

L15: 83% yield; White solid; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.32(\mathrm{~m}, 2 \mathrm{H}), 6.97-6.88(\mathrm{~m}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=$ $2.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.45(\mathrm{t}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.87(\mathrm{dd}, J=12.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{dd}, J=25.5$, $12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 6 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.7,160.6(\mathrm{~d}, J=19.6 \mathrm{~Hz}), 155.6,154.9,140.7(\mathrm{~d}, J=15.7 \mathrm{~Hz}), 139.4(\mathrm{~d}, J=18.2 \mathrm{~Hz}), 132.5$, $130.5,130.4(\mathrm{~d}, ~ J=1.2 \mathrm{~Hz}), 130.3,129.7,125.0(\mathrm{~d}, J=15.7 \mathrm{~Hz}), 122.8(\mathrm{~d}, J=3.9 \mathrm{~Hz}), 109.8,107.3,106.7,99.3$ (d, $J=3.3 \mathrm{~Hz}$), 70.8, 70.6, 61.2, $61.0(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 55.4(\mathrm{~d}, J=9.4 \mathrm{~Hz}), 30.9(\mathrm{~d}, J=19.4 \mathrm{~Hz}), 26.9(\mathrm{~d}, J=14.7$ Hz); ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-8.6; ESI-MS: m/z $603.40[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{O}_{7} \mathrm{P}$ $[\mathrm{M}+\mathrm{H}]^{+}: 603.2512$, found: 603.2513.

L16: 86% yield; White solid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.33(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{t}, J=8.3 \mathrm{~Hz}, 6 \mathrm{H}), 4.88(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{dd}, J=25.6,12.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 6 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 163.6,158.7(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 155.1,154.3,139.5(\mathrm{~d}, J=18.1 \mathrm{~Hz}), 132.4,131.2,130.9,130.5(\mathrm{~d}, J=7.6$ $\mathrm{Hz}), 130.20(\mathrm{~d}, J=18.4 \mathrm{~Hz}), 129.8(\mathrm{~d}, J=16.2 \mathrm{~Hz}), 125.0(\mathrm{~d}, J=15.2 \mathrm{~Hz}), 123.0(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 113.8,113.6$, 109.7, $70.7,70.5,61.0,60.6(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 55.2,30.9(\mathrm{~d}, J=19.3 \mathrm{~Hz}), 29.7,27.0(\mathrm{~d}, J=14.7 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-6.9; ESI-MS: m/z $543.30[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{33} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$: 543.2300, found: 543.2302.

L17: 82% yield; White solid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37(\mathrm{t}, J=14.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{dd}$, $J=11.8,5.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~s}, 2 \mathrm{H}), 6.79(\mathrm{~s}, 2 \mathrm{H}), 4.89(\mathrm{dd}, J=12.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{dd}, J=25.5,12.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.91(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 6 \mathrm{H}), 3.87(\mathrm{~s}, 6 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.8,155.3,154.8,153.1(\mathrm{~d}, J=16.7 \mathrm{~Hz}), 139.5(\mathrm{~d}, J=18.3 \mathrm{~Hz}), 137.2(\mathrm{~d}, J=2.1$ $\mathrm{Hz}), 134.2(\mathrm{~d}, J=13.2 \mathrm{~Hz}), 132.2,130.5,(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 129.7,122.8,110.0,106.4,105.8,61.2,61.0(\mathrm{~d}, J=6.1$ $\mathrm{Hz}), 56.2(\mathrm{~d}, J=16.1 \mathrm{~Hz}), 31.0(\mathrm{~d}, J=19.1 \mathrm{~Hz}), 27.0(\mathrm{~d}, J=14.6 \mathrm{~Hz}) ;{ }^{31} \mathrm{P} \operatorname{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-9.1$; ESI-MS: m/z $663.30[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{37} \mathrm{H}_{44} \mathrm{O}_{9} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$: 663.2723, found: 663.2723.

L18: 83% yield; White solid; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=14.2,5.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.08(\mathrm{dd}, J=7.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{dd}, J=15.0,7.4 \mathrm{~Hz}, 4 \mathrm{H}), 4.83$ (dd, $J=12.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~s}$, $3 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.7,158.5(\mathrm{~d}, J=18.8 \mathrm{~Hz}), 158.1$ $(\mathrm{d}, J=4.3 \mathrm{~Hz}), 156.3,155.0,139.7(\mathrm{~d}, J=17.1 \mathrm{~Hz}), 135.7,130.0,128.6,128.3,128.1,124.1(\mathrm{~d}, J=4.1 \mathrm{~Hz})$, $123.0,122.1,117.4(\mathrm{~d}, J=12.1 \mathrm{~Hz}), 109.3,105.3,104.3(\mathrm{~d}, J=12.8 \mathrm{~Hz}), 103.9,60.6(\mathrm{~d}, J=6.4 \mathrm{~Hz}), 56.0,55.7$ (d, $J=2.7 \mathrm{~Hz}$), $30.8(\mathrm{~d}, J=17.4 \mathrm{~Hz}), 27.3(\mathrm{~d}, J=14.3 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-6.4$; ESI-MS: m/z $603.30[\mathrm{M}+\mathrm{H}]^{+} ; \mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{O}_{7} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 603.2512$, found: 603.2510.

4. Optimization of Reaction Conditions

Table S1. Cu-catalyzed asymmetric allylic alkylation of cinnamyl chloride (1) with $\mathbf{E t M g B r}$ (2a) by employing different copper salts and (R)-BIDIME. ${ }^{a}$

		$+$ 3a (branched)	
Entry	$5 \mathrm{~mol} \%[\mathrm{Cu}]$	$6 \mathrm{~mol} \% \mathrm{~L}$	3a:4a ${ }^{\text {b }}$
1	--	--	23/77
2	CuI	(R)-BIDIME	7/93
3	CuBr	(R)-BIDIME	5/95
4	CuCl	(R)-BIDIME	0/100
5	$\mathrm{CuBr} . \mathrm{SMe}_{2}$	(R)-BIDIME	7/93
6	$\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right] \mathrm{PF}_{6}$	(R)-BIDIME	10/90
7	$\mathrm{Cu}(\mathrm{OAc})_{2}$	(R)-BIDIME	9/91
8	CuOAc	(R)-BIDIME	0/100
9	$\mathrm{Cu}(\mathrm{OTf})_{2}$	(R)-BIDIME	9/91
10	$(\mathrm{CuOTf})_{2}$ - toluene	(R)-BIDIME	9/91
11	$(\mathrm{CuOTf})_{2}$ - benzene	(R)-BIDIME	9/91
12	CuTc	(R)-BIDIME	0/100
13	CuCN	(R)-BIDIME	93/7
14^{c}	CuCN	(R)-BIDIME	80/20
15^{d}	CuCN	(R)-BIDIME	96/4

${ }^{a}$ Unless otherwise specified, the reactions were performed under nitrogen in DCM at $-78{ }^{\circ} \mathrm{C}$ in the presence of 5 $\mathrm{mol} \%[\mathrm{Cu}]$ and $6 \mathrm{~mol} \% \mathbf{L}$ with cinnamyl chloride ($\mathbf{1}, 0.25 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{EtMgBr}(3 \mathrm{M}$ solution in diethyl ether, $0.5 \mathrm{mmol}, 2.0$ equiv). Slow addition of EtMgBr over 0.5 h . ${ }^{b}$ All reactions gave full conversion. The ratios of $\mathbf{3 a} / \mathbf{4 a}$ were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. ${ }^{c}$ The reaction was performed under nitrogen in DCM at $-78^{\circ} \mathrm{C}$ in the presence of $2.5 \mathrm{~mol} \% \mathrm{CuCN}$ and $3 \mathrm{~mol} \% \mathbf{L}$ with cinnamyl chloride ($\mathbf{1}, 0.25 \mathrm{mmol}, 1.0$ equiv) and EtMgBr (3 M solution in diethyl ether, 0.5 mmol , 2.0 equiv). ${ }^{d}$ The reaction was performed under nitrogen in DCM at $-78^{\circ} \mathrm{C}$ in the presence of $10 \mathrm{~mol} \% \mathrm{CuCN}$ and $12 \mathrm{~mol} \% \mathbf{L}$ with cinnamyl chloride ($\mathbf{1}, 0.25 \mathrm{mmol}, 1.0$ equiv) and EtMgBr (3 M solution in diethyl ether, $0.5 \mathrm{mmol}, 2.0$ equiv).

Table S2. The preliminary investigation of different ligands for the copper catalyzed asymmetric allylic alkylation. ${ }^{a}$

L4

L5

L6

Entry	LG	$5 \mathrm{~mol} \%[\mathrm{Cu}]$	$6 \mathbf{m o l} \% \mathbf{L}$	$\mathbf{3 a}^{2} \mathbf{4 \mathbf { a } ^ { b }}$	er $(\mathbf{3 a})^{c}$
1	Cl	CuCN	$\mathbf{L 1}$	$93: 7$	$53: 47$
2	Br	CuCN	$\mathbf{L 1}$	$62: 38$	$56: 44$
3	Cl	CuCN	$\mathbf{L 2}$	$97: 3$	$51: 49$
4	Br	CuCN	$\mathbf{L 2}$	$60: 40$	$53: 47$
5	Cl	CuCN	$\mathbf{L 3}$	$91: 9$	$53: 47$
6	Br	CuCN	$\mathbf{L 3}$	$53: 47$	$54: 46$
7	Cl	CuCN	$\mathbf{L 4}$	$98: 2$	$52: 48$
8	Br	CuCN	$\mathbf{L 4}$	$28: 72$	$53: 47$
9	Cl	CuCN	$\mathbf{L 5}$	$93: 7$	$64: 36$
10	Br	CuCN	$\mathbf{L 5}$	$60: 40$	$86: 14$
11	Cl	CuCN	$\mathbf{L 6}$	$96: 4$	$56: 44$
12	Br	CuCN	$\mathbf{L 6}$	$72: 28$	$85: 15$

${ }^{a}$ Unless otherwise specified, the reactions were performed under nitrogen in DCM at $-78{ }^{\circ} \mathrm{C}$ in the presence of 5 $\mathrm{mol} \%[\mathrm{Cu}]$ and $6 \mathrm{~mol} \% \mathbf{L}$ with allyl substrates ($\mathbf{1}, 0.25 \mathrm{mmol}, 1.0$ equiv) and EtMgBr (3 M solution in diethyl ether, $0.5 \mathrm{mmol}, 2.0$ equiv). Slow addition of EtMgBr over 0.5 h . ${ }^{b}$ All reactions gave full conversion. The ratios of 3a/4a were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. ${ }^{\text {c }}$ The er values of $\mathbf{3 a}$ were determined by chiral HPLC analysis.

Table S3. The further optimization of reaction conditions for the copper catalyzed asymmetric allylic alkylation. ${ }^{a}$

Entry	R	LG	[Cu]	L	3a:4a ${ }^{\text {b }}$	$\operatorname{er}(\mathbf{3 a})^{c}$
1	H	Br	$5 \mathrm{~mol} \% \mathrm{CuCN}$	$6 \mathrm{~mol} \% \mathrm{~L} 15$	76:24	93:7
$2^{\text {d }}$	H	Br	$5 \mathrm{~mol} \% \mathrm{CuCN}$	$6 \mathrm{~mol} \% \mathbf{L 1 5}$	79:21	54:46
3^{e}	H	Br	$5 \mathrm{~mol} \% \mathrm{CuCN}$	$6 \mathrm{~mol} \% \mathrm{~L} 15$	87:13	53:47
$4{ }^{f}$	H	Br	$5 \mathrm{~mol} \% \mathrm{CuCN}$	$6 \mathrm{~mol} \% \mathbf{L 1 5}$	67:33	54:46
5^{8}	H	Br	$5 \mathrm{~mol} \% \mathrm{CuCN}$	$6 \mathrm{~mol} \% \mathbf{L 1 5}$	33:67	70:30
6	H	Br	$5 \mathrm{~mol} \% \mathrm{CuTc}$	$6 \mathrm{~mol} \% \mathbf{L 1 5}$	80:20	96:4
7	H	Br	$5 \mathrm{~mol} \%\left[\mathrm{Cu}(\mathrm{CNMe})_{4}\right] \mathrm{PF}_{6}$	$6 \mathrm{~mol} \% \mathbf{L 1 5}$	70:30	94:6
8	H	Br	$5 \mathrm{~mol} \% \mathrm{CuCl}$	$6 \mathrm{~mol} \% \mathbf{L 1 5}$	76:24	93:7
9	H	Br	$5 \mathrm{~mol} \% \mathrm{CuBr}$	$6 \mathrm{~mol} \% \mathbf{L 1 5}$	71:29	93:7
10	H	Br	$5 \mathrm{~mol} \% \mathrm{CuBr} \cdot \mathrm{SMe}_{2}$	$6 \mathrm{~mol} \% \mathbf{L 1 5}$	83:17	81:19
11	H	Br	$5 \mathrm{~mol} \% \mathrm{CuI}$	$6 \mathrm{~mol} \% \mathbf{L 1 5}$	80:20	94:6
12^{h}	H	Br	$5 \mathrm{~mol} \% \mathrm{CuTc}$	$6 \mathrm{~mol} \% \mathbf{L 1 5}$	74:26	93:7
13^{i}	H	Br	$5 \mathrm{~mol} \% \mathrm{CuTc}$	6 mol \% L15	71:29	86:14
14	H	Br	$2.5 \mathrm{~mol} \% \mathrm{CuTc}$	$3 \mathrm{~mol} \% \mathbf{L 1 5}$	80:20	96:4
15	H	Br	$1 \mathrm{~mol} \% \mathrm{CuTc}$	$1.2 \mathrm{~mol} \% \mathbf{L 1 5}$	82:18	95:5
16	H	Br	$0.5 \mathrm{~mol} \% \mathrm{CuTc}$	$0.6 \mathrm{~mol} \% \mathrm{L15}$	85:15	97:3
17	H	Br	$0.1 \mathrm{~mol} \% \mathrm{CuTc}$	$0.12 \mathrm{~mol} \% \mathbf{L 1 5}$	60:40	96:4
18	H	Cl	$0.5 \mathrm{~mol} \% \mathrm{CuTc}$	$0.6 \mathrm{~mol} \% \mathbf{L 1 5}$	40:60	77:23
19	H	Cl	$0.5 \mathrm{~mol} \% \mathrm{CuCN}$	$0.6 \mathrm{~mol} \% \mathbf{L 1 5}$	88:12	61:39
20	Me	Br	$5 \mathrm{~mol} \% \mathrm{CuCN}$	$6 \mathrm{~mol} \% \mathbf{L 1 5}$	74:26	68:32
21	Me	Br	$5 \mathrm{~mol} \% \mathrm{CuTc}$	$6 \mathrm{~mol} \% \mathbf{L 1 5}$	74:26	95:5
22	Me	Br	$2.5 \mathrm{~mol} \% \mathrm{CuTc}$	$3 \mathrm{~mol} \% \mathbf{L 1 5}$	67:33	82:18
23	Me	Br	$1 \mathrm{~mol} \% \mathrm{CuTc}$	$1.2 \mathrm{~mol} \% \mathbf{L 1 5}$	69:31	79:21
24^{j}	Me	OAc	$5 \mathrm{~mol} \% \mathrm{CuTc}$	$6 \mathrm{~mol} \% \mathbf{L 1 5}$	--	--
25	Me	OCbz	$5 \mathrm{~mol} \% \mathrm{CuTc}$	$6 \mathrm{~mol} \% \mathbf{L 1 5}$	14:86	42:58
26	Me	$\mathrm{OPO}(\mathrm{OMe})_{2}$	$5 \mathrm{~mol} \% \mathrm{CuTc}$	$6 \mathrm{~mol} \% \mathbf{L 1 5}$	25:75	44:56

${ }^{a}$ Unless otherwise specified, the reactions were performed under nitrogen in DCM at $-78{ }^{\circ} \mathrm{C}$ in the presence of $[\mathrm{Cu}]$ and $\mathbf{L 1 5}$ with allyl bromide and EtMgBr (3 M solution in diethyl ether, 2.0 equiv). Slow addition of EtMgBr over 0.5 h . ${ }^{b}$ All reactions gave full conversion. The ratios of $\mathbf{3 a} / \mathbf{4 a}$ were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. ${ }^{c}$ The er values of 3a were determined by chiral HPLC analysis. ${ }^{d}$ The reaction was performed in $\mathrm{Et}_{2} \mathrm{O}$. ${ }^{e}$ The reaction was performed in MTBE. ${ }^{f}$ The reaction was performed in THF. ${ }^{g} \mathrm{EtMgBr}(1 \mathrm{M}$ solution in THF). ${ }^{h}$ The reaction was performed at $-40^{\circ} \mathrm{C} .{ }^{i}$ The reaction was performed at $-10^{\circ} \mathrm{C} .{ }^{j}$ No reaction.

5. X-Ray Crystal Data of Copper Complex

CD 1906544 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB21EZ, UK; fax: (+44)1223-336-033; or deposit@ccdc.cam.ac.uk).

Identification code	mo_d8v17470_0m
Empirical formula	C23 H29 Cu F6 N2 O3 P2
Formula weight	620.96
Temperature	296(2) K
Wavelength	0.71073 A
Crystal system	Orthorhombic
Space group	P 212121
Unit cell dimensions	$\mathrm{a}=8.5246(2) \AA \quad=90^{\circ}$.
	$\mathrm{b}=10.5054(3) \AA \quad=90^{\circ}$.
	$\mathrm{c}=30.1709(7) \AA \quad=90^{\circ}$.
Volume	2701.93(12) \AA^{3}
Z	4
Density (calculated)	$1.527 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.996 \mathrm{~mm}^{-1}$
F(000)	1272
Crystal size	$0.200 \times 0.160 \times 0.130 \mathrm{~mm}^{3}$
Theta range for data collection	2.053 to 25.499°.
Index ranges	$-9<=\mathrm{h}<=10,-12<=\mathrm{k}<=8,-33<=\mathrm{l}<=36$
Reflections collected	14429
Independent reflections	$4984[\mathrm{R}(\mathrm{int})=0.0255]$
Completeness to theta $=25.242^{\circ}$	99.0\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.5766
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4984 / 64 / 386
Goodness-of-fit on F^{2}	1.078
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0440, \mathrm{wR} 2=0.1179$
R indices (all data)	$\mathrm{R} 1=0.0523, \mathrm{wR} 2=0.1261$
Absolute structure parameter	-0.004(6)
Extinction coefficient	0.018(3)
Largest diff. peak and hole	0.258 and -0.602e.

6. References

(1) (a) Metternich, J. B.; Gilmour, R. A Bio-Inspired, Catalytic $E \rightarrow Z$ Isomerization of Activated Olefins. J. Am. Chem. Soc. 2015, 137, 11254-11257. (b) Simard-Mercier, J.; Jiang, J. L.; Ho, M. L.; Flynn, A. B.; Ogilvie, W. W. Single-Isomer Trisubstituted Olefins from a Novel Reaction of $(E)-\beta$-Chloro- α-Iodo- α, β-Unsaturated Esters and Amides. J. Org. Chem. 2008, 73, 5899-5906. (c) Kalkhambkar, R. G.; Laali, K. K. Arenediazonium Salts Immobilized in Imidazolium Ionic Liquids as Electrophilic Partners in the $\operatorname{Pd}(\mathrm{OAc})_{2}$-Catalyzed Matsuda-Heck Arylation. Tetrahedron Lett. 2011, 52, 1733-1737. (d) Felluga, F.; Ghelfi, F.; Pitacco, G.; Roncaglia, F.; Valentin, E.; Venneri, C. D. Esterase-Mediated Synthesis of Optically Active GABA Analogues Containing a Stereogenic All-Carbon Quaternary Carbon Atom. Tetrahedron: Asymmetry 2010, 21, 2183-2191. (e) Dyker, G.; Grundt, P. Synthesis of Functionalized 4a-Methyl-1, 2, 3, 4, 4a, 9, 10, 10a-octahydrophenanthrenes. Helv. Chim. Acta, 1999, 82, 588-596. (f) Shevlin, M.; Friedfeld, M. R.; Sheng, H.-M.; Pierson, N. A.; Hoyt, J. M.; Campeau, L. C.; Chirik, P. J. Nickel-Catalyzed Asymmetric Alkene Hydrogenation of α, β-Unsaturated Esters: High-Throughput Experimentation-Enabled Reaction Discovery, Optimization, and Mechanistic Elucidation. J. Am. Chem. Soc. 2016, 138, 3562-3569. (g) Li, J.-Q.; Quan, X.; Andersson, P. G. Highly Enantioselective Iridium-Catalyzed Hydrogenation of α, β-Unsaturated Esters. Chem. Eur. J. 2012, 18, 10609-10616.
(2) Bernasconi, M.; Ramella, V.; Tosatti, P.; Pfaltz, A. Iridium-Catalyzed Asymmetric Hydrogenation of 3, 3-Disubstituted Allylic Alcohols in Ethereal Solvents. Chem. Eur. J. 2014, 20, 2440-2444.
(3) (a) van Zijl, A. W.; Arnold, L. A.; Minnaard, A. J.; Feringa, B. L. Highly Enantioselective Copper-Catalyzed Allylic Alkylation with Phosphoramidite Ligands. Adv. Synth. Catal. 2004, 346, 413-420. (b) Fañanás-Mastral, M.; Pérez, M.; Bos, P. H.; Rudolph, A.; Harutyunyan, S. R.; Feringa, B. L. Enantioselective Synthesis of Tertiary and Quaternary Stereogenic Centers: Copper/Phosphoramidite-Catalyzed Allylic Alkylation with Organolithium Reagents. Angew. Chem. Int. Ed. 2012, 51, 1922-1925. (c) Reichl, K. D.; Dunn, N. L.; Fastuca, N. J.; Radosevich. A. T. Biphilic Organophosphorus Catalysis: Regioselective Reductive Transposition of Allylic Bromides via $\mathrm{P}^{\mathrm{III} / \mathrm{P}^{\mathrm{V}}}$ Redox Cycling. J. Am. Chem. Soc. 2015, 137, 5292-5295. (d) Fañanás-Mastral, M.; Vitale, R.; Pérez, M.; Feringa, B. L. Enantioselective Synthesis of All-Carbon Quaternary Stereogenic Centers via Copper-Catalyzed Asymmetric Allylic Alkylation of (Z)-Allyl Bromides with Organolithium Reagents. Chem. Eur. J. 2015, 21, 4209-4212. (e) Guduguntla, S.; Gualtierotti, J. B.; Goh, S. S.; Feringa, B. L. Enantioselective Synthesis of Di- and Tri-Arylated All-Carbon Quaternary Stereocenters via Copper-Catalyzed Allylic Arylations with Organolithium Compounds. ACS Catal. 2016, 6, 6591-6595. (f) Nguyen, T. N. T.; Thiela, N. O.; Teichert, J. F. Copper(I)-catalysed Asymmetric Allylic Reductions with Hydrosilanes. Chem. Commun. 2017, 53, 11686-11689.
(4) (a) Tang, W.; Qu, B.; Capacci, A. G.; Rodriguez, S.; Wei, X.; Haddad, N.; Narayanan, B.; Ma, S.; Grinberg, N.; Yee, N. K.; Krishnamurthy, D.; Senanayake, C. H. Novel, Tunable, and Efficient Chiral Bisdihydrobenzooxaphosphole Ligands for Asymmetric Hydrogenation. Org. Lett. 2010, 12, 176-179. (b) Tang, W.; Patel, N. D.; Xu, G.; Xu, X.; Savoie, J.; Ma, S.; Hao, M.-H.; Keshipeddy, S.; Capacci, A. G.; Wei, X.; Zhang, Y.; Gao, J. J.; Li, W.; Rodriguez, S.; Lu, B. Z.; Yee, N. K.; Senanayake, C. H. Efficient Chiral Monophosphorus Ligands for Asymmetric Suzuki-Miyaura Coupling Reactions. Org. Lett. 2012, 14, 2258-2261. (c) Tang, W.; Capacci, A. G.; Wei, X.; Li, W.; White, A.; Patel, N. D.; Savoie, J.; Gao, J. J.; Rodriguez, S.; Qu, B.; Haddad, N.; Lu, B. Z.; Krishnamurthy, D.; Yee, N. K.; Senanayake, C. H. A General and Special Catalyst for Suzuki-Miyaura Coupling Processes. Angew. Chem. Int. Ed. 2010, 49, 5879-5883.
(5) (a) Tang, W.; Keshipeddy, S.; Zhang, Y.; Wei, X.; Savoie, J.; Patel, N. D.; Yee, N. K.; Senanayake, C. H. Efficient Monophosphorus Ligands for Palladium-Catalyzed Miyaura Borylation. Org. Lett. 2011, 13, 1366-1369. (b) Zhao, Q.; Li, C.; Senanayake, C. H.; Tang, W. An Efficient Method for Sterically Demanding Suzuki-Miyaura Coupling Reactions. Chem. Eur. J. 2013, 19, 2261-2265. (c) Xu, G.; Fu, W.; Liu, G.; Senanayake, C. H.; Tang. W. Efficient Syntheses of Korupensamines A, B and Michellamine B by Asymmetric Suzuki-Miyaura Coupling Reactions. J. Am. Chem. Soc. 2013, 136, 570-573.
(6) (a) Haddad, N.; Mangunuru, H. P. R.; Fandrick, K. R.; Qu, B.; Sieber, J. D.; Rodriguez, S.; Desrosiers, J. N.; Patel, N. D.; Lee, H.; Kurouski, D.; Grinberg, N.; Yee, N. K.; Song, J.-H. J.; Senanayake, C. H. Reengineered BIDIME Ligand Core Based on Computer Modeling to Increase Selectivity in Asymmetric Suzuki-Miyaura Coupling for the Challenging Axially Chiral HIV Integrase Inhibitor. Adv. Synth. Catal. 2016, 358, 3522-3527. (b) Patel, N. D.; Sieber, J. D.; Tcyrulnikov, S.; Simmons, B. J.; Rivalti, D.; Duvvuri, K.; Zhang, Y.; Gao, D.-H. A.; Fandrick, K. R.; Haddad, N.; Lao, K. S.; Mangunuru, H. P.; Biswas, R. S.; Qu, B.; Grinberg, N.; Pennino, S.; Lee, H.; Song, J.-H. J.; Gupton, B. F.; Garg, N. K.; Kozlowski, M. C.; Senanayake, C. H. Computationally Assisted Mechanistic Investigation and Development of Pd-Catalyzed Asymmetric Suzuki-Miyaura and Negishi Cross-Coupling Reactions for Tetra-ortho-Substituted Biaryl Synthesis. ACS Catal. 2018, 8, 10190-10209.

7. NMR Spectra and HPLC chromatographs

Figure S1: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of copper complex

Figure S2: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{L 1 5}$

| 0 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- | :---: |

Figure S3: ${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{L 1 5}$
$\underset{i}{\text { i }}$

Figure S4: ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{L 1 5}$

Figure S5: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{L} 7$

Figure S6: ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{L} 7$

Figure S7: ${ }^{31} \mathrm{P}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{L} 7$

Figure S8: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{L 8}$

$\stackrel{\infty}{\circ}$	$\stackrel{\sim}{\sim}$	
$\mathscr{6}$	¢080	
T	-	$\square 5 \mathrm{j}$

Figure S9: ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{L 8}$

Figure S10: ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{L 8}$

サザザずサ

Figure S11：${ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of $\mathbf{L 1 0}$

Figure S12：${ }^{13} \mathrm{C}$ NMR（ $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of $\mathbf{L 1 0}$

Figure S13: ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{L 1 0}$

Figure S14: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{L 1 2}$

Figure S15: ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{L 1 2}$
$\stackrel{\pi}{i}$

Figure S16: ${ }^{31}$ P NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{L 1 2}$

Figure S17: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{L 1 3}$

	16																T
'0	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

Figure S18: ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{L 1 3}$

Figure S19: ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{L 1 3}$

Figure S20: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{L 1 6}$

Figure S21: ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{L 1 6}$

Figure S22: ${ }^{31}$ P NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{L 1 6}$

ぶ

Figure S23：${ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of $\mathbf{L 1 7}$

Figure S24：${ }^{13} \mathrm{C}$ NMR（ $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of $\mathbf{L 1 7}$

Figure S25: ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{L 1 7}$

Figure S26: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{L 1 8}$

Figure S27: ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{L 1 8}$
$\stackrel{\text { Z }}{i}$

Figure S28: ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{L 1 8}$

Figure S29: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{L 1 9}$

Figure S30: ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{L} 19$

Figure S31: ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{L 1 9}$

Figure S32: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3aa and 4aa (The left peaks are linear products.)

Figure S33: ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3aa and 4aa

Figure S34: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ba and $\mathbf{4 b a}$ (The left peaks are linear products.)

흐 i

J	140	130	120	110	100	90	80		60	50	40	30	20	10	0

Figure S35: ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ba and 4ba

\section*{| N |
| :--- |
| N |}

Figure S36: ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ba and 4ba

Figure S37: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ca and 4ca (The left peaks are linear products.)

Figure S38: ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ca and 4ca

Figure S39: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3da and 4da (The left peaks are linear products.)
$\mathcal{Z}_{141.73}^{142.86}$
${\underset{S}{129}}_{129.01}^{128.10}$
\mathcal{L}_{127}
-114.44

140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

Figure S40: ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3da and 4da

Figure S41: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3 e a}$ and $\mathbf{4 e a}$ (The left peaks are linear products.)

Figure S42: ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ea and 4ea

Figure S43: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{3 f a}$ and $\mathbf{4 f a}$ (The left peaks are linear products.)

\%	$\bar{\sim}$
io	ก

150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

Figure S44: ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3 f a}$ and $\mathbf{4 f a}$

Figure S45: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ga and $\mathbf{4 g a}$ (The left peaks are linear products.)

50	140	130	120	110	100	90			60	50	40	30	20	10

Figure S46: ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ga and 4ga

Figure S47: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ha and 4ha (The left peaks are linear products.)

Figure S48: ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ha and 4ha

Figure S49: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ia and 4ia

| 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 10 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Figure S50: ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ia and 4ia

Figure S51：${ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of $\mathbf{3 j a}$ and $\mathbf{4 j a}$

と6・ロー

\aleph
$\substack{9 \\ \hline}$

$\stackrel{\text { I }}{\stackrel{\text { I }}{\prime}}$

Figure S52：${ }^{13} \mathrm{C}$ NMR（ $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of $\mathbf{3 j a}$ and $\mathbf{4 j a}$

Figure S53：${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{3 k a}$ and $\mathbf{4 k a}$

लิก	めめららす
等守	
1	\＜1］

ल	¢
$\stackrel{9}{\text { ¢ }}$	へ̃

140	130	120	110	100	90	80		60	50	40	30	20	10	0

Figure S54：${ }^{13} \mathrm{C}$ NMR（ $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of $\mathbf{3 k a}$ and $\mathbf{4 k a}$

Figure S55: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3la and 4la

140	130	120	110	100	90	80	70	60	50	40	30

Figure S56: ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3la and 4la

 0° MNNNNNNNNNNNNNNNNNNNNN66.

Figure S57: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3 m a}$ and $\mathbf{4 m a}$

示

Figure S58: ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3 m a}$ and $\mathbf{4 m a}$

 NNNNNNNNNNNNNNNNNN

Figure S59：${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{3 n a}$ and $\mathbf{4 n a}$

$\stackrel{\infty}{\infty} \times$	
ボす	
\checkmark	Y\％

$\stackrel{\text { N }}{\infty} \quad \stackrel{\sim}{\infty}$

Figure S60：${ }^{13} \mathrm{C}$ NMR（ $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of 3na and 4na

Figure S61: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{3 0 a}$ and $\mathbf{4 0 a}$

		$\stackrel{N}{\text { N }}$	¢	¢	+

Figure S62: ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3 o a}$ and $\mathbf{4 o a}$

Figure S63: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 3pa and 4pa

Figure S64: ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3pa and 4pa

Figure S65: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{3 q a}$ and $\mathbf{4 q a}$

		$\begin{gathered} \stackrel{\mathrm{N}}{\mathrm{~N}} \\ \text { N } \end{gathered}$	~	$\begin{aligned} & \text { o/ } \\ & \underset{\sim}{p} \\ & \hline \end{aligned}$	$\stackrel{\infty}{\substack{\sim \\ \sim}}$

150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

Figure S66: ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3 q a}$ and $\mathbf{4 q a}$

Figure S67: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ra and 4ra

Figure S68: ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ra and 4ra

Figure S69: ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ra and 4ra

Figure S70: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3sa and $\mathbf{4} \mathbf{s a}$
边

Figure S71: ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3 sa and $4 \mathbf{s a}$

Figure S72: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ta and 4ta

O	$\stackrel{\%}{0}$	लొఱ
ま	¢	Nid

Figure S73: ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ta and 4ta
́Nㄴ

Figure S74: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ua and 4ua

$\begin{aligned} & \circ \\ & 0 \\ & 0 \\ & \hline 10 \\ & \hline 10 \\ & \hline \end{aligned}$	ํㅜํㅜㅜㄱ	$\begin{aligned} & \text { J } \\ & \stackrel{i}{\mathrm{I}} \end{aligned}$	¢	$\begin{aligned} & \stackrel{e}{0} \\ & \underset{\sim}{1} \end{aligned}$	べ

Figure S75: ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ua and 4ua

Figure S76: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3va and $\mathbf{4 v a}$

®	$\begin{array}{ll} \text { N N } \\ \text { N } \\ 1 & \text { ָ } \end{array}$	
年		

				110								1			
150	140	130	120	110	100	90	$\begin{gathered} 80 \\ \mathrm{f} 1 \end{gathered}$	70	60	50	40	30	20	10	0

Figure S77: ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3va and 4va

Figure S78: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3wa and 4wa

Figure S79: ${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 3wa and 4wa

$$
\begin{aligned}
& \tilde{W}_{\mathbf{O}}^{(1)}
\end{aligned}
$$

Figure S80: ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3wa and 4wa

Figure S81: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3xa and 4xa

| 140 | 130 | 120 | 110 | 100 | 90 | 10 | 10 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Figure S82: ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3 x a}$ and $\mathbf{4 x a}$


```
OMNNNNNNNNNNN0,00000,00000000NNNNNNNNNNNNNON
```


Figure S83: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ya and 4ya

Figure S84: ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ya and 4ya

Figure S85: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3za and 4za

i0	140	130	120	110	100	90	80		60	50	40	30	20	10	0

Figure S86: ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3 z a}$ and $\mathbf{4 z a}$

Figure S87: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3 x} \mathbf{a} \mathbf{a}$ and $\mathbf{4 x} \mathbf{a}$

50	140	130	120	110	100	90			60	50	40	30	20	10	0

Figure S88: ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3 x} \mathbf{x} \mathbf{a}$ and $\mathbf{4 x} \mathbf{x} \mathbf{a}$

Figure S89: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3 y} \mathbf{\prime} \mathbf{a}$ and $\mathbf{4 y} \mathbf{y}$

50	140	130	120	110	100	90	80 f1	70	60	50	40	30	20	10	0

Figure S90: ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3 y} \mathbf{y}^{\mathbf{a}}$ and $\mathbf{4 y} \mathbf{\prime} \mathbf{a}$

Figure S91: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{3 a b}$ and $\mathbf{4 a b}$

Figure S92: ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3 a b}$ and $\mathbf{4 a b}$

Figure S93: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ac and 4ac

Figure S94: ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ac and 4ac

Figure S95: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{3 a d}$ and $\mathbf{4 a d}$

¢ั	¢®\%
罭	¢ ${ }^{\text {Noº }}$
T	-j

$\stackrel{\circ}{\infty}$

Figure S96: ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ad and $\mathbf{4 a d}$

Figure S97: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ae and 4ae

Figure S98: ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ae and 4ae

Figure S99: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3af and 4af

Figure S100: ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3af and 4af

Figure S101: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ag and $\mathbf{4 a g}$

	1	1	1			1	1			1	1		1
140	130	120	110	100	90	80		60	50	40	30	20	10

Figure S102: ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ag and 4ag

 ngm NnNyNTN

Figure S103: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ah and 4ah

140	130	120	110	100	90	80		60	50	40	30	20	10	0

Figure S104: ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3ah and 4ah

Figure S105: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{5 a}$

Figure S106: ${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{5 a}$

\＃	时间	峰面积	峰高	峰赛	对称因子	峍面积 \％
1	8.665	30328.3	1306.5	0.2828	0.469	96.847
2	10.01	987.3	43.5	0.378	0.901	3.153

Figure S107：HPLC chromatographs of 3aa

\＃	时间	峰面积	崔高	峰宽	对称因子 峰面积 \％	
1	5.879	4560.7	332.6	0.2	0.584	49.028
2	6.378	4741.5	330.5	0.1994	0.521	50.972

\＃	时间	峰面积	峰高	峰宽	对称因子	峰面积\％
1	5.884	345.8	31.3	0.1389	0.613	2.967
2	6.422	11310.6	815.8	0.1998	0.495	97.033

Figure S108：HPLC chromatographs of 3ba

\＃	时间	峍面积	峰高	峍宽	对称因子 峰面积 \％	
1	11.626	7630.4	473.7	0.2685	1.697	49.999
2	12.092	7630.7	378.3	0.3361	0.403	50.001

Figure S109：HPLC chromatographs of 3ca

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime ［min］	Type	Width ［min］	$\begin{gathered} \text { Area } \\ {\left[p A{ }^{*} s\right]} \end{gathered}$	Height ［pA］	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	14.033	BB	0.1159	20.26668	2.75307	51.52841
2	14.443	BB	0.1192	19.06440	2.52065	48.47159

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[p A^{*} \mathrm{~s}\right]} \end{gathered}$	Height [pA]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	13.951		0.1245	186.310	22.521	90.25405
2	14.440		0.1283	20.118	2.437	9.74595

Figure S110: HPLC chromatographs of 3da

Figure S111: HPLC chromatographs of 3ea

Integration Results						
No.	Retention Time min	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	
1	14	14.107	220.472	829.608	50.54	
2	15	14.737	215.726	766.046	49.46	

Figure S112: HPLC chromatographs of 3fa

Figure S113: HPLC chromatographs of 3ga

$\# \#$	时间	峰面积	峰高	峰宽			对称因子 峰面积 $\%$	
1	8.599	14201.8	633.5	0.3737	0.403	96.659		
2	9.543	490.9	30.8	0.2654	1.296	3.341		

Figure S114：HPLC chromatographs of 3ha

Peak	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width ［min］	$\begin{array}{r} \text { Area } \\ {\left[\mathrm{pA} \mathrm{~s}_{\mathrm{s}}\right]} \end{array}$	Height ［pA］	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	47.464		0.3325	33.75	1.268	49.84428
2	48.825		0.3472	33.96	1.1546	50.15572

Figure S115：HPLC chromatographs of 3ia

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*	Rel.Arean $\%$	Amount	Type
1	6.97	n.a.	155.163	19.479	49.66	n.a.	BM
2	7.39	n.a.	144.625	19.746	50.34	n.a.	MB

No.	Ret. Time	Peak Name	Height min		Area mAU*	Rel.Area	Amount
$\%$	Type						
	mAU						
1	6.98	n.a.	90.381	10.778	14.35	n.a.	BMb *
2	7.40	n.a.	487.751	64.337	85.65	n.a.	bMB *

Figure S116: HPLC chromatographs of 3ja

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area $\%$	Amount	Type
			168.969	24.180	50.20	n.a.	BM * $^{\text {* }}$
1	7.82	n.a.	149.962	23.988	49.80	n.a.	MB *
2	8.65	n.a.					

Figure S117: HPLC chromatographs of 3ka

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime ［min］	Type	Width ［min］	$\begin{gathered} \text { Area } \\ {\left[\mathrm{pA}^{*} \mathrm{~s}\right]} \end{gathered}$	Height ［pA］	Area \％
1	69.734		0.3511	31.47	1.05806	50.66784
2	70.741		0.4427	30.64	$8.18688 \mathrm{e}-1$	49.33216

Figure S118：HPLC chromatographs of 31a

\＃时间		峰面积	峍高	峰赛	对称因子 峰面积 \％	
1	6.137	3324.4	379.8	0.1459	1.126	49.794
2	6.452	3351.8	366.1	0.1526	0.685	50.206

Figure S119：HPLC chromatographs of 3ma

Figure S120: HPLC chromatographs of 3na

Figure S121: HPLC chromatographs of 3oa

	\＃	时间	峰面积	峰高	崔宽	对称因子 峰面积 \％	
	1	8.154	1311.8	101.4	0.2156	1.313	7.092
－	2	8.61	17185.2	741	0.3865	0.45	92.908

Figure S122：HPLC chromatographs of 3pa

时间		峰面积	峰高	峰容	对称因子 峰面积 \％	
1	9.17	1319.7	86.1	0.2553	0.966	7.202
2	9.732	17003.6	712.1	0.398	0.521	92.798

Figure S123：HPLC chromatographs of 3qa

Integration Results					
No.	Retention Time min	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$
1	6	6.240	0.621	5.375	8.90
2	6	6.493	6.348	54.228	91.10

Figure S124: HPLC chromatographs of 3ra

Figure S125: HPLC chromatographs of 3sa

Figure S126: HPLC chromatographs of 3ta

Figure S127：HPLC chromatographs of 3ua

\＃	时间	峰面积	峰高	峰宽	对称因子 峰面积\％	
1	7.533	1742.4	105.9	0.2743	1.231	5.787
2	8.192	28365.6	1108.7	0.4264	0.604	94.213

Figure S128：HPLC chromatographs of 3va

Figure S129: HPLC chromatographs of 3wa

Integration Results						
No.	Retention Time min	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	
1	10	9.500	1.816	9.988	50.79	
2	10	10.383	1.760	8.916	49.21	

Figure S130: HPLC chromatographs of 3xa

[^0]

Figure S131：HPLC chromatographs of 3ya

－	时间		峰面积	峰高	峰容	对称因子 峰面积 \％	
	1	16.541	3343.7	63.2	0.8821	0.72	9.975
	2	19.263	30176.7	369.3	1.362	0.417	90.025

Figure S132：HPLC chromatographs of 3za

Figure S133: HPLC chromatographs of 3x'a

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{array}{r} \text { Area } \\ {\left[\mathrm{pA}^{*} \mathrm{~s}\right]} \end{array}$	Height [pA]	Area \%
1	44.833	BBA	0.2470	242.47057	11.83693	50.18971
2	46.388	BBA	0.2457	240.63754	11.61718	49.81029

Figure S134: HPLC chromatographs of 3y'a

Figure S135: HPLC chromatographs of 3ab

Figure S136: HPLC chromatographs of 3ac

Integration Results						
No.	Retention Time min	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	
1	26	26.343	49.688	89.331	50.04	
2	28	27.953	49.599	83.030	49.96	

Figure S137: HPLC chromatographs of 3ad

Figure S138: HPLC chromatographs of 3ae

Figure S139：HPLC chromatographs of 3af

时间		峰面积	峰高	峰宽	对称因子 峰面积 \％	
1	8.438	14802.6	782.9	0.3151	0.659	95.370
2	9.383	718.7	44.9	0.2669	0.812	4.630

Figure S140：HPLC chromatographs of 3ag

Figure S141：HPLC chromatographs of 3ah

\＃	时闰	崔面积	甠高	鿰宽	对称因子 䖹面椇 \％	
1	7.286	946.2	34	0.1877	1.101	50.354
2	7.61	932.9	69.5	0.2239	0.418	49.646

＊	时闻	甠面哯	峖高	甠䆓	对称因子	犆面颠 \％
1	7.288	889.2	80.1	0.1851	1.304	43.361
2	7.619	1161.5	73.8	0.2623	0.459	56.639

Figure S142：HPLC chromatographs of 3cj

Figure S143: HPLC chromatographs of 3aa of gram-scale experiment

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area \%	Amount	Type
1	13.28	n.a.	801.713	229.791	49.63	n.a.	BMB ${ }^{\text {* }}$
2	15.77	n.a.	677.572	233.213	50.37	n.a.	BMB*
Total:			1479.286	463.004	100.00	0.000	

Figure S144: HPLC chromatographs of 5a

[^0]:

