Investigating the Role of Alkyl Chain Length of the Inhibitors on Its
Intercalation Inhibiting Mechanism in Sodium Montmorillonite

Gang Xie*, Danchao Huang, Mingyi Deng, Pingya Luo**
State Key Laboratory of Oil \& Gas Reservoir Geology and Exploitation, Southwest Petroleum
University, Chengdu, Sichuan 610500, China.

Supporting Information

Elemental analysis

Fig. S1 shows the results of the elemental analysis of Na-MMTinhibitor complexes. Nitrogen is a characteristic element in the Na-MMT- inhibitor complexes. Each inhibitor molecule contains two nitrogen atoms. The nitrogen content of the inhibitor can be quantitatively determined by measuring the Na-MMT- inhibitor complexes, and verifying the results of the isothermal adsorption. Table 4 shows that the proportion of nitrogen was the maximum at a low concentration of the inhibitor $(0.5 \% \mathrm{w} / \mathrm{w})$. The proportion of nitrogen did not change when the concentration of the inhibitor was increased, indicating that the saturated adsorption content of the adsorbed inhibitor was less than $0.5 \%(w / w)$. The proportionate order of nitrogen in the inhibitors are $\mathrm{C} 8<\mathrm{C} 7<\mathrm{C} 6<\mathrm{C} 5<\mathrm{C} 4<\mathrm{C} 3$ $<\mathrm{C} 2$, indicating that as the alkyl chain length increases, the nitrogen proportion gradually decreases. The saturated adsorption capacity of the inhibitors of Na-MMT decreased with the increase in the alkyl chain length.

S1 The nitrogen proportion of inhibitor adsorbed on the Na-MMT at different concentrations

Inhibitors	Concentration wt\%	$\mathrm{N}(\mathrm{At} \%)$
C2	0.50	2.84
	1.00	2.83
	1.50	2.85
	2.00	2.86
	2.50	2.83
	3.00	2.84
	3.50	2.85
	4.00	2.86
C3	0.50	2.66
	1.00	2.64
	1.50	2.65
	2.00	2.67
	2.50	2.67
	3.00	2.64
	3.50	2.65
	4.00	2.66
C4	0.50	2.14
	1.00	2.15
	1.50	2.13
	2.00	2.14
	2.50	2.14
	3.00	2.16
	3.50	2.15
	4.00	2.14
C5	0.50	2.05
	1.00	2.06
	1.50	2.04
	2.00	2.05
	2.50	2.06
	3.00	2.04
	3.50	2.07
	4.00	2.05
C6	0.50	1.91
	1.00	1.9
	1.50	1.92
	2.00	1.91
	2.50	1.90
	3.00	1.91
	3.50	1.92
	4.00	1.90

Inhibitors	Concentration wt $\%$	$\mathrm{~N}(\mathrm{At} \%)$
	0.50	1.85
C 7	1.00	1.85
	1.50	1.85
	2.00	1.85
	2.50	1.85
	3.00	1.85
	3.50	1.85
	4.00	1.85
	0.50	1.81
	1.00	1.80
	1.50	1.81
	2.00	1.82
	2.50	1.82
	3.00	1.80
	3.50	1.81

