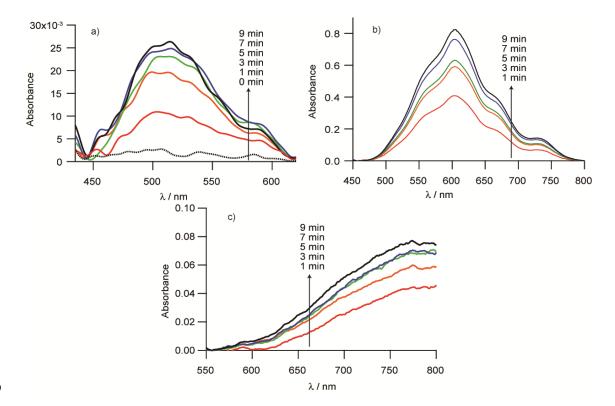

1	Supporting Information
2	Remote Control of Electron Transfer Reaction by Microwave
3	Irradiation: Kinetic Demonstration of Reduction of Bipyridine
4	Derivatives on Surface of Nickel Particle
5	Fuminao Kishimoto*, Masayuki Matsuhisa, Takashi Imai, Dai Mochizuki, Shuntaro Tsubaki,
6	Masato M. Maitani, Eiichi Suzuki, and Yuji Wada*
7	Department of Chemical Science and Engineering, School of Materials and Chemical Technology,
8	Tokyo Institute of Technology2-12-1, Ookayama, Meguro-ku, Tokyo 152-8552 (Japan)
9 10 11	*E-mail: <u>kfuminao@chemsys.t.u-tokyo.ac.jp</u> , <u>yuji-w@apc.titech.ac.jp</u>
12	Present addresses
13	Dr. F. Kishimoto: Department of Chemical System Engineering, School of Engineering, The
14	University of Tokyo. 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
15	
16	Mr. T. Imai: Nippon Kayaku Co., Ltd. Asa Plant, Functional Products Technical Department. 2300
17	Ouji-gun, Sanyo-onoda-shi, Yamaguchi 757-8686, Japan.
18	
19	Prof. D. Mochizuki: Department of Applied Chemistry, Graduate School of Engineering, Tokyo Denki
20	University. 5 Senju Asahi-cho, Adachi-ku, Tokyo 120-8551, Japan.
21	
22	Masato Maitani: Research Center for Advanced Science and Technology, The University of Tokyo, 4-
23	6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan.

24 Experimental Section

25	Nickel powder (3-7 μ m, 99.8 %), <i>N</i> , <i>N</i> '-dimethyl-4,4'-bipyridinium dichloride (98 %, MV ²⁺),
26	and 4,4'-bipyridine were purchased from Sigma-Aldrich Co. LLC. and used as received. N,N'-
27	ethylene-2,2'-bipyridinium dibromide (DQ ²⁺), 2,2'-bipyridine, 1,3-dibromopropane, acetone, and 1,3-
28	propanesultone were purchased from Wako Pure Chemical Industries, Ltd. and used as received.
29	3DQ ²⁺ was synthesized according to a procedure adapted from previous report ^[S1] . 2,2'-
30	bipyridine (19.2 mmol, 3.0 g) was added to 1,3-dibromopropane (98.5 mmol, 19.89 g, 10 ml). The
31	mixture was heated at 440 K and for 16 h under reflux. After cooling, the precipitate was filtered and
32	washed with acetone. The product was then recrystallized from water and acetone. The product was
33	identified by ¹ H NMR (Bruker Co.). ¹ H NMR (D ₂ O, 300 MHz): δ (ppm) = 9.3 (2H, d, J = 6.0 Hz); 9.0
34	(2H, m), 8.6 (2H, m), 8.5 (2H, m), 5.1 (2H, m), 4.6 (2H, m), 3.0 (2H, m).
35	
36	A water dispersion of nickel powders (0.065 g/mL) contained in three-neck test tube made
37	of quartz (Figure S7(a)) was purged with Ar bubbling for 15 minutes to remove the dissolved oxygen.
38	After the purging, the pipe for Ar introducing was raised above the water surface. During the all
39	experiment, Ar was flowed continually to prevent an invading of oxygen into the test tube. Then, the
40	test tube was inserted in a microwave irradiation chamber or an oil bath, and heated to reaction
41	temperature. The temperature of the dispersion was measured by an optical fiber thermometer (Opsens,


42	Picosens). After the temperature of the dispersion was stabilized, a drop of the aqueous solution of
43	$3DQ^{2+}$, MV^{2+} , DQ^{2+} or PVS, whose volume was one tenth of the dispersion of Ni, was added to the
44	dispersion. The amount of produced reductant of Bpy were determined by UV-vis optical measurement.
45	BPS101 Tungsten halogen Light Source (B&W Tek.) was used as the light source. The light was
46	guided to Quest X CCD Array Spectrometer (B&W Tek.) through an all quartz immersion probe (with
47	the window pitch of 5 mm, Hellma Analytics Co.) which is immersed in the reaction liquid. All
48	experiments were performed triplicate.
49	
50	For the microwave irradiation, the two types of microwave resonator were used. The one is
51	an ellipsoidal microwave applicator (CHRONIX Ltd.) as shown in Figure S7(b). A microwave antenna
52	is embedded at one of the focal point of ellipsoidal cavity, and an insertion site to introduce the samples
53	are located at the other focal point. The microwave antenna is connected to a 2.45 GHz microwave
54	generator with a semiconductor oscillator via an impedance matching device. In this cavity, TM_{110}
55	mode of standing microwave can be generated, and the sample insertion site is the antinode of the
56	alternating electric field and node of the alternating magnetic field. The other one is a waveguide type
57	microwave resonator (Fuji Electronic Industrial Co. Ltd) as shown in Figure S7(c). The microwave
	inclowave resonator (1 aji Electronic industrial Co. Eka) as shown in 1 igure 57(6). The inclowave
58	antenna is placed at the endpoint, connected to the 2.45 GHz microwave generator with a

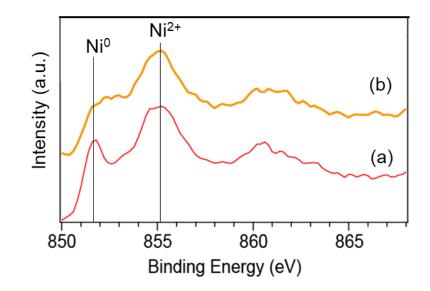
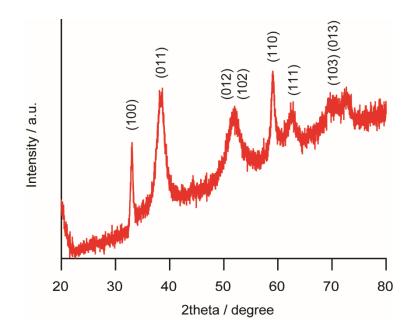
60	equipped for the impedance matching. TE_{103} mode of standing microwave can be generated in the
61	cavity. Hence the electric field component of this standing wave is made out of phase with the magnetic
62	one by 90 degrees, separating the positions of the antinode of the electric field (E field) and the
63	magnetic field (H field).
64	

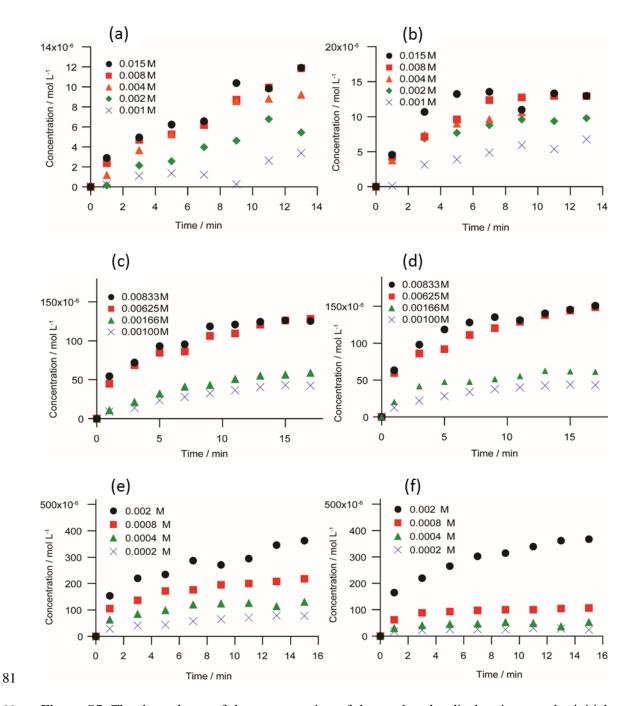
Figure S1. The alternation of the UV/Vis absorption spectra during the reaction between Ni

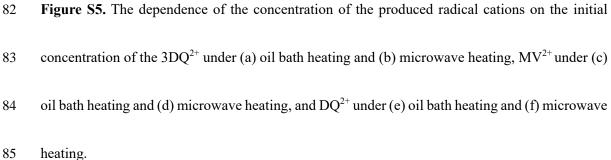
67 particles and (a) $3DQ^{+}$ (b) MV^{+} , and (c) DQ^{+} under oil bath heating

70 Figure S2. The alternation of the UV/Vis absorption spectra during the reaction between Ni

71 particles and (a) 3DQ^{'+} (b) MV^{'+}, and (c) DQ^{'+} under microwave heating.


Figure S3. Ni 2p3/2 XPS spectra of powder (a) before and (b) after the reaction with $Bpys^{2+}$.



77 Figure S4. XRD patterns of precipitated white powders after the electron transfer reaction

78 between Ni powders and MV^{2+} in aqueous solution.

79

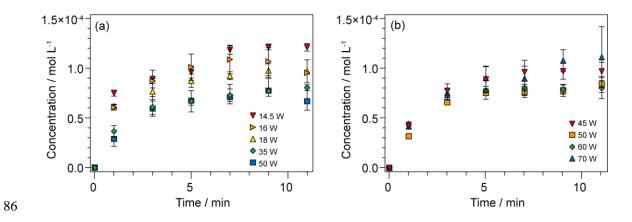
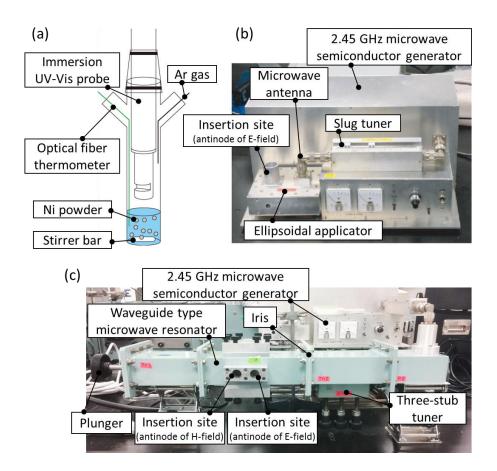
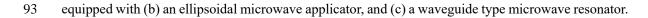




Figure S6. Change of the concentration of MV^{+} vs. the reaction time under (a) at the antinode of the alternating electric field and (b) at the antinode of the alternating magnetic field in the TE_{103} mode of 2.45 GHz microwaves.

92 Figure S7. (a) Illustration of the reaction vessel. Photograph of microwave irradiation systems

- 94
- 95
- 96
- 97
- 98
- 99 Reference

```
100 [S1] Homer, R. F.; Tomlinson, T. E. The Stereochemistry of the Bridged Quaternary Salts of
```

101 2, 2' -Bipyridyl. J. Chem. Soc., 1960, 2498-2503.