#### **Supporting Information**

#### Low Temperature Performance of a Ferroelectric Glass Electrolyte Rechargeable Cell

M.H. Braga<sup>1\*</sup>, A.J. Murchison<sup>2</sup>, J.E. Oliveira<sup>1</sup>, J.B. Goodenough<sup>2\*</sup>

<sup>1</sup>LAETA, Engineering Physics Department, Engineering Faculty, University of Porto, R. Dr. Roberto Frias s/n, 4200-465 Porto, Portugal

<sup>2</sup>Texas Materials Institute and the Materials Science and Engineering Program, The University of Texas at Austin, Austin TX 78712 USA

\*corresponding authors: mbraga@fe.up.pt and jgoodenough@mail.utexas.edu

## **Cathode Charaterization**

The  $\gamma$ -MnO<sub>2</sub> was identified and characterized with X-ray diffraction and SEM/EDS analysis. An X-ray diffraction pattern characteristic of  $\gamma$ -MnO<sub>2</sub> is shown in figure S1. An overlay of the as purchased  $\gamma$ -MnO<sub>2</sub> and the  $\gamma$ -MnO<sub>2</sub> after it had been sintered at 400°C for 24 hours prior to being used in electrochemical measurements were compared with previously published data of  $\gamma$ -MnO<sub>2</sub> [S1]. Figure S3 shows a characteristic morphology of the  $\gamma$ -MnO<sub>2</sub> after sintering that was used for cathode preparation in the full cells measured. Figure S2 shows a line EDS scan and quantitative results showing the atomic percentage of approximately 2:1 for O:Mn. Figure S3 presents EDS mapping and shows a uniform distribution of manganese and oxygen in the material.

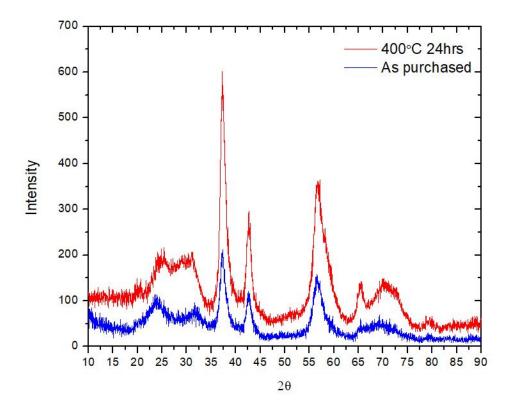



Figure S1 X-Ray Diffraction pattern of  $\gamma$ -MnO<sub>2</sub> active material prior to and after sintering at 400°C for 24 hours

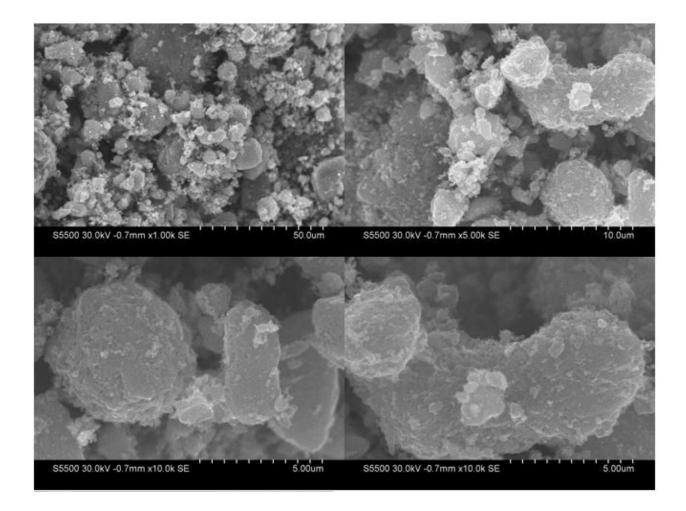
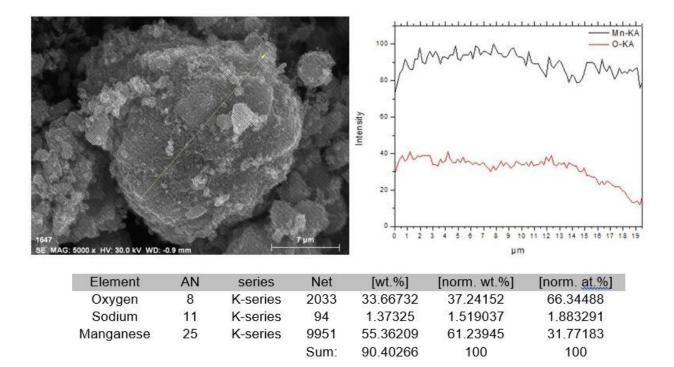




Figure S2 Scanning Electron Microscopy images showing the characteristic morphology of  $\gamma$ -MnO<sub>2</sub> active

material after sintering at 400°C for 24 hours



**Figure S3** Energy Dispersive X-Ray line scan results of  $\gamma$ -MnO<sub>2</sub> active material particle after sintering at 400°C for 24 hours showing approximately a 2:1 Oxygen to Mn atomic percentage ratio with trace impurities of sodium.

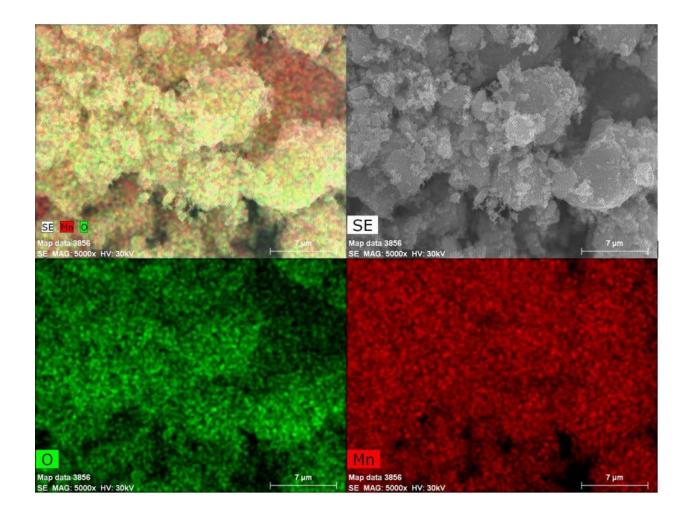
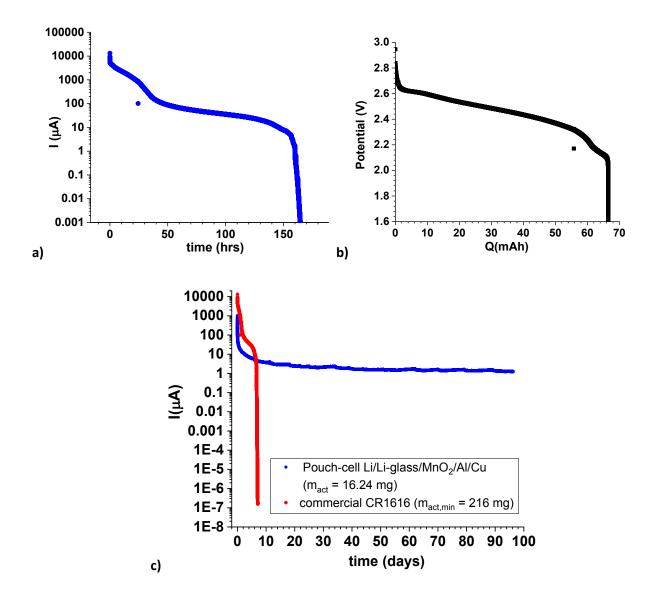



Figure S4 Energy Dispersive X-Ray mapping of  $\gamma$ -MnO<sub>2</sub> active material after sintering at 400°C for 24

hours

# **Activation Energy Calculations**

Activation energy of ionic conduction in the lithium glass electrolyte was calculated using the slopes of

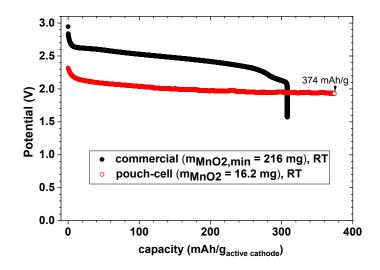

the Arrhenius plot shown in Fig. 4c with the relationship

$$\ln\left(\sigma_{Li}T\right) = -\frac{\Delta E_a}{1000 k_B} \frac{1000}{T}$$

Where  $-\frac{\Delta E_a}{1000 k_B}$  is the slope of the Arrhenius plot,  $\Delta E_a$  motional enthalpy or activation energy of the

ionic conduction process, and  $k_B$  is the Boltzmann constant.

Current and voltage profiles for a commercial Li-MnO<sub>2</sub> CR1616 coin-cell discharged with a green LED and the comparison with a Li-MnO<sub>2</sub> pouch cell reported here




**Figure S5** Current and Potential profiles for a commercial Li-MnO<sub>2</sub> CR1616 coin-cell (liquid electrolyte) discharged with a green LED; **a**) the current profile; **b**) the potential profile; **c**) comparison between the current profile of the commercial Li-MnO<sub>2</sub> CR1616 coin-cell and Li/Li-glass/ $\gamma$ -MnO<sub>2</sub>/Al pouch-cell with 16.2 mg of active material.





**Figure S6** Green LED lit for 96 days and 6 hrs in an Argon filed glove box with a Li/Li-glass/ $\gamma$ -MnO<sub>2</sub>/Al pouch-cell with 16.2 mg of active material.



**Figure S7** Potential profiles for a commercial Li-MnO<sub>2</sub> CR1616 coin-cell (with liquid electrolyte) and a Li/Li-glass/ $\gamma$ -MnO<sub>2</sub>/Al pouch-cell with 16.2 mg of active material both discharged with a green LED. The capacity of the commercial cell was considered to be the theoretical capacity 308 mAh.g<sup>-1</sup> (LiMnO<sub>2</sub>). The  $\gamma$ -MnO<sub>2</sub> of the pouch cell is smaller than 209 mAh.g<sup>-1</sup> (Li<sub>5</sub>Mn<sub>7</sub>O<sub>16</sub>).

### References

S1. Alfaruqi, M; Mathew, V; Gim, J; Kim, S; Song, J; Baboo, J; Choi, S; Kim, J "Electrochemically Induced

Structural Transformation in a  $\gamma$ -MnO2 Cathode of a High Capacity Zinc-Ion Battery System", Chemistry of

Materials, 2015, 27 (10), 3609-3620