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1. Preparation of WO3 photoanode

In a typical synthesis, 1 g of ammonium paratungstate was dissolved in 93 ml deionized water. 

2 mL of concentrated HCl was added to the above solution and stirred. Then 4 ml of H2O2 

(30%) was added and stirred vigorously for 1 h to dissolve the tungstic acid. Finally, the as-

prepared solution was transferred into a 100 mL Teflon-lined stainless autoclave. The FTO 

substrates were cleaned with ultra-sonication for 15 min in acetone, methanol, and deionized 

water sequentially. After drying in an N2 stream, they were placed in a stainless steel autoclave 

with the conducting side facing down. The autoclave was subjected to heat treatment at 160℃ 

for 4 h, after which it was cooled to room temperature. The as-synthesized samples were rinsed 

with a copious amount of deionized water and followed by annealing at 500℃ for 120 min.

2. Analytical Methods.

NB, BA and DMOB were quantified by HPLC (LC-20AT, Japan) coupled with C-18 

column (4.6 mm ×150 mm, 5 μm particle size). The mobile phase consisted of water 

solution (pH 2, adjusted by phosphoric acid) and methanol solution (20:80, v%) at a 

flow rate of 1.0 mL/min. The concentrations of NB, BA and DMOB were quantified at 

266 nm, 227 nm and 230 nm, respectively.

3. Determination of the second-order rate constants between HO•, Cl• and NH4
+

The second-order rate constants for the reaction of HO• with NH4+ were determined using NB 

as a reference compound, which reacts with HO• at a second-order rate constant of 3.9×109 M-1 

s-1. The reaction solution was spiked with the mixture of 2 mM NH4
+ and 2 mM NB. The 

second-order rate constants was calculated from Eq. S1.

                            (s1)ln (
[𝑁𝐻 +

4 ]𝑂

[𝑁𝐻 +
4 ] ) =

𝐾𝐻𝑂•,𝑁𝐻 +
4

𝐾𝐻𝑂•,𝑁𝐵
× ln (

[𝑁𝐵]𝑂

[𝑁𝐵]
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The second-order rate constants for the reaction of Cl• with NH4
+ were measured using 

BA as a reference compound. The solution contained 50 mM Cl‾. BA can react with ClO• 

rapidly with rate constants of 1.8×1010 M−1 S−1. BA and NH4
+ were added into the 

system at concentrations of 2 mM. NB (10 mM) was used to scavenge the HO• in the 

system.

                             (s2)ln (
[𝑁𝐻 +

4 ]𝑂

[𝑁𝐻 +
4 ] ) =

𝐾𝐶𝑙•,𝑁𝐻 +
4

𝐾𝐶𝑙•,𝑁𝐵
× ln (

[𝐵𝐴]𝑂

[𝐵𝐴]

Figure S1 Schematic illustration of the preparation of Sb-SnO2/WO3.
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Figure S2 XRD patterns of Sb-SnO2/FTO.

Figure S3 (A) top views of the WO3 layer (B) cross-sectional views of the WO3 layer.
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Figure S4 LSV curves of the WO3 and WO3/Sb-SnO2 anodes in NaCl and NaH2PO4 solutions.

Figure S5 Photoelectrochemical characterization of electrodes in 50 mM NaCl. (A) LSV 

obtained at a scan rate of 0.05 V s−1. (B) Time profiles of current generation at 1.7 V, 

respectively. L refers to irradiation. 
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Figure S6 (A) the degradation of NH4
+-N by HClO in different system. (B) ESR spectra of 

DMPO−OH• and DMPO−OCl• in this WO3/HClO system. Conditions: potential 1.7 V vs 

Ag/AgCl, 30 mg L-1 NH4
+-N, pH=5, NaClO=0.5 g L-1 (calculated by free chlorine).

Figure S7 NH4
+-N degradation using the Sb-SnO2/WO3 in 50 mM NaCl and 50 mM NaHCO3 

at 1.7 V vs Ag/AgCl.
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Figure S8 The plots of ln(C/Co) versus time for the NB, BA and DMOB degradation.
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Figure S9 Model simulated radical concentration in DMOB degradation on the Sb-SnO2/WO3 

operated under 1.7 V vs Ag/AgCl.

In this model, the pH was held constant at 5.0 and the initial NaCl concentration was 

0.05M. The concentrations of radical species were calculated during the 60 min reaction 

time.

Figure S10 Determination of the second-order rate constants of NH4
+ reacting with (a) ClO• 

(b) Cl• and (c) OH• by competition kinetics using DMOB, BA and NB as reference compounds.
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Figure S11 Effect of applied potential on (A) NH4
+-N removal and (B) NO3

−-N generation. 

Condition: NaCl 50 mM, pH=5, 30 mg L-1 NH4
+-N.

Figure S12 Effects of pH on (A) NH4
+-N removal and (B) NO3

−-N generation. Condition: NaCl 

50 mM, 30 mg L-1 NH4
+-N.
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Figure S13 SEM images of Sb-SnO2/FTO electrode prepared with different SnO2 dosages of 0 

layers (a), 2 layers (b), 6 layers (c), and 10 layers (d). 
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Figure S14 Polarization curve of Sb-SnO2/FTO electrode (A) and the change of NH4
+-N 

concentration in electrochemical degradation (B). Condition: pH=5, 50 mM NaCl, 1.7 V vs 

Ag/AgCl.

Figure S15 Effect of NH4
+-N initial concentration on the NH4

+-N removal efficiencies. 

Condition: pH=5, potential 1.7 V vs Ag/AgCl, NaCl 50 mM.
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Figure S16 Formation of chlorate as functions of reaction times. Condition: pH=5, 50 mM 

NaCl, 1.7 V vs Ag/AgCl.

Figure S17 NH4
+-N removal efficiency in Sb-SnO2/WO3 system during five tests at 90 min 

intervals. Condition: NaCl 50 mM, pH=5, 1.7 V vs Ag/AgCl, 30 mg L-1 NH4
+-N.
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Figure S18 SEM images of prepared WO3 nanotubes (A) and the used WO3 nanotubes after 

the repeated experiments (B), (C) SEM images of prepared Sb-SnO2 coating and the used Sb-

SnO2 coating after the repeated experiments (D).

Figure S19 Current efficiency and energy consumption as a function of potential in degrading 
NH4

+-N.

Current efficiency can be expressed as:

                                     (S3)CE =
𝑛𝑖 × 𝐹 × (𝐶𝑜 ― 𝐶𝑡) × 𝑉

𝑀 × ∫𝑡
0𝐼𝐴𝑑𝑡

× 100%

where Co is the initial concentration of NH4
+-N, Ct is the concentration of NH4

+-N at 
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reaction time t (s), V is the volume of the electrolyte (0.05 L), M is the molar mass of 

NH4
+ (14 g mol−1), I is the current density (A m−2 ), A is the effective area of the 

electrodes (0.0016 m2), F is the Faraday constant (96485.3 C mol−1 ) and n is the number 

of electrons needed for the oxidation of one mole of NH4
+-N (n=3). The prediction of 

required ammonia degradation time is obtained when NH4
+-N concentration decreased 

below 1 mg L−1.

Energy consumption (kWh kg−1 N) is calculated according to Eq. S4:

                                            (S4)EC =
∫𝑡

𝑜𝑈𝐼𝐴𝑑𝑡

3.6 × (𝐶𝑜 ― 𝐶𝑡) × 𝑉

where I is the current of (A•m-2).

Figure S20 (A) the trends of NH4
+-N and TN removal efficiency of the Sb-SnO2/WO3 

degrading real wastewater after filtration. (B) Effects of bicarbonate, nitrate and phosphate ions 

on the degradation of NH4
+-N in the Sb-SnO2/WO3 system. Conditions: potential 1.7 V vs 

Ag/AgCl, NaCl 50 mM, 30 mg L-1 NH4
+-N, the concentration of bicarbonate, nitrate and 

phosphate ions is 2 mM.
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Figure S21 Illustration of the nitrogen removal mechanism in the exhaustive denitrification 

system.

Figure S22 The total nitrogen removal in the Sb-SnO2/WO3 and WO3 electrode with Pd-Cu/NF 

as cathode. Condition: NaCl 50 mM, pH=5, 1.7 V vs Ag/AgCl, 30 mg L-1 NH4
+-N.
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Table S1 Second-order rate constants of reaction in the model

No. Reaction Rate constant References

R1 H+ + OH‾ → H2O 1.000E+11 1

R2 H2O → H+ + OH‾ 1.000E+03 1

R3 OCl‾ + H+ → HOCl 5.000E+10 1

R4 HOCl → OCl‾ + H+ 1.600E+03 1

R5 C2 + H2O → Cl2OH‾ + H+ 1.500E+01 2

R6 Cl‾ + HOCl → Cl2OH‾ 1.500E+04 2

R7 Cl2OH‾ → HOCl + Cl‾ 5.500E+09 2

R8 HO•+HO• → H2O2 5.500E+09 3

R9 Cl‾ + HO• → ClOH•‾ 4.300E+09 3

R10 ClOH•‾ → Cl‾ + HO• 6.100E+09 3

R11 Cl•+ OH‾ → ClOH•‾ 1.800E+10 3

R12 HO•+ HOCl → ClO• + H2O 2.000E+09 4

R13 Cl•+HOCl → ClO• + H+ + Cl‾ 3.000E+09 4

R14 ClOH•‾ + H+ → Cl• + H2O 2.100E+10 5

R15 ClOH•- + Cl‾ → Cl2•‾ + OH‾ 1.000E+05 4

R16 Cl2•‾ + OH- → ClOH•‾ + Cl‾ 4.500E+07 6

R17 Cl2•‾ → Cl• + Cl‾ 1.100E+05 5

R18 Cl•+Cl• → Cl2 1.000E+08 5

R19 Cl• + Cl2•‾ → Cl‾ + Cl2 1.400E+09 5

R20 Cl2•‾ + Cl2•‾ → 2Cl‾ + Cl2 8.300E+08 7

R21 Cl2•‾ + HO•→ HOCl + Cl‾ 1.000E+09 7

R22 OH•+ DMOB → Product1 1.800E+10 7

R23 Cl• + DMOB → Product 2 2.000E+06 6

R24 ClO• + DMOB → Product 3 4.000E+07 6

Table S2 Rate constants of scavengers reacting with different radicals

HO•

(M-1s-1)

Cl•

(M-1s-1)

Cl2•‾

(M-1s-1)

ClO•

(M-1s-1)

TBA 6.0 × 108 3.0 × 108 700

HCO3
– 8.5 × 106 2.2 × 108 8.0 × 107 N.A.
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Table S3 The main characteristics of the real wastewater.
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Parameters Actual wastewater

pH 7.2

NH4
+-N(mg/L) 50

NO3
–-N(mg/L) 15

Cl–(mg/L) 132

SO4
2–(mg/L) 40

COD(mg/L) 500

TN 70


