Supporting Information for

Catalytic Enantioselective Diels-Alder Reactions of Benzoquinones and Vinylindoles with Chiral Magnesium Phosphate Complexes

Yujia Bai, Jinping Yuan, Xiaoyue Hu, and Jon C. Antilla* Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, Tianjin 300072 (China)

*Email: jantilla@tju.edu.cn

Content

\qquad

1. General Considerations2
2. General procedure for preparation of the 3-vinylindoles substrates 2
3. General procedure for the organocatalytic, enantioselective Diels-Alder reaction 9
4. General procedure for the reduction reaction of $4 d^{6}$ 20
5. A detailed synthetic method example at a minimum 1 mmol scale 21
6. References 22
7. Copies of NMR spectra and HPLC Chromatograms 23

1. General Considerations

General Methods. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker AVANCE IIITM HD NanoBAY (400 MHz)and Bruker AVANCE III (600 MHz) instruments with chemical shifts reported relative to tetramethylsilane (TMS). Chemical shifts (δ) are reported in ppm relative to residual solvent signals for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (${ }^{1} \mathrm{H}$ NMR: 7.26 ppm for $\mathrm{CDCl}_{3}, 7.16 \mathrm{ppm}$ for $\mathrm{C}_{6} \mathrm{D}_{6}, 2.50 \mathrm{ppm}$ for DMSO-d ${ }_{6}, 2.05 \mathrm{ppm}$ for acetone- $\mathrm{d}_{6} ;{ }^{13} \mathrm{C}$ NMR: 77.0 ppm for $\mathrm{CDCl}_{3}, 128.0 \mathrm{ppm}$ for $\mathrm{C}_{6} \mathrm{D}_{6}, 39.5 \mathrm{ppm}$ for $\mathrm{DMSO}_{-} \mathrm{d}_{6}, 29.8 \mathrm{ppm}$ for acetone- d_{6}). The HRMS data were measured on a Thermo Fisher Q Exactive HF LC-MS. Optical rotations were measured on a Rudolph Research Analytical Autopol IV polarimeter (λ 589) using a $700-\mu \mathrm{L}$ cell with a path length of 1 dm . The enantiomeric excess (ee) of the products was determined by chiral stationary phase HPLC (Chiralpak AD-H or Chiralpak OD-H or Chiralpak IA-H columns), using a UV detector operating at 254 nm . Melting points were measured on a Büchi smp-20 apparatus.
Materials. All reactions were carried out in flame-dried or oven-dried screw-cap test tubes and were allowed to proceed under a dry argon atmosphere with magnetic stirring. Analytical grade solvents and commercially available reagents were used as received, unless otherwise stated. Solvents were purified by passing through the column of activated alumina before use. Chromatographic purifications were performed using 200-300 mesh silica. Molecular Sieves (4Å) were flame-dried under high vacuum before use. Catalysts were prepared in some steps from (R)-BINOL, respectively, following literature procedures. ${ }^{1} 3$-Vinylindoles $\mathbf{2 a} \mathbf{- 2 r}$ were prepared by a Wittig reaction from the corresponding aldehydes, following a literature procedure as outlined below, and were stored at $-20^{\circ} \mathrm{C}$. Racemic samples were prepared using Magnesium TRIP-Phosphoric Acid as a catalyst at room temperature.

2. General procedure for preparation of the 3-vinylindoles substrates

Synthesis of 3-vinylindoles substrates:

A) General procedure for protection of 3-vinylindoles: ${ }^{2}$

To a flame - dried flask equipped with a stir bar was added the corresponding enone (1 equiv) and DCM. Sodium hydroxide (2.5 equiv) and tetrabutylammonium hydrogensulfate (TBAH) (0.2 equiv) were then added as single portions. The reaction mixture was stirred at room temperature under nitrogen atmosphere for 0.5 hour. Benzyl bromide (1.2 equiv) was then added dropwise and the reaction was allowed to stir for 5 hours. After completion, the reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with DCM. The combined organic layers were washed with brine solution and then dried
over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After solvent was removed by rotary evaporation, the crude product was purified via flash column chromatography with a gradient of an appropriate eluent on silica gel (petroleum ether - ethyl acetate, 4:1).
B) The preparation of 3-vinylindoles through a Wittig reaction: ${ }^{3}$

To a solution of methyltriphenylphosphonium bromide (1.5 equiv) in anhydrous THF under argon at $-30^{\circ} \mathrm{C}$, n-BuLi (2.5 M in n -hexane; 1.5 equiv) was slowly added. The mixture was stirred at the indicated temperature for 1 h . Then the solution of an indole-3-carboxaldehyde (1 equiv) in anhydrous THF was added dropwise to the ylide formed, the reaction was stirred at $-30^{\circ} \mathrm{C}$ for 1 h . The resulting suspension was poured into Ether- $\mathrm{H}_{2} \mathrm{O}(300: 1,30 \mathrm{~mL})$. The precipitate was filtered through a funnel and the filtrate was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under vacuum, the crude product was purified by flash chromatography on neutral aluminium oxide (petroleum ether - ethyl acetate, 30:1) and recrystallization give product 2a-2r.

1-benzyl-3-vinyl-1H-indole (2a)

White solid, 249 mg , yield: 85%; M.P.: $76-78{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{dd}, \mathrm{J}=6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 4 \mathrm{H})$, $7.23-7.15$ (m, 3H), 7.13 (d, J = $7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 6.88 (dd, $J=17.8$, $11.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.69$ (dd, $J=17.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 2 \mathrm{H}), 5.15$ (dd, $J=11.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.20$, 137.14, 129.34, 128.85, 127.77, 127.64, 126.88, 126.44, 122.32, 120.34, 120.21, 114.84, 110.39, 110.00, 50.06. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}$ [M+H] ${ }^{+}$: 234.1277, found: 234.1279.

1-benzyl-4-bromo-3-vinyl-1H-indole (2b)

2b Yellow solid, 339 mg , yield: 87\%; M.P.: $52-54{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58$ (dd, $\left.J=17.5,10.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.27-7.15(\mathrm{~m}$, $5 \mathrm{H}), 7.09(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{t}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.36$ (dd, J = 17.5, $1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.18 (s, 2H), 5.02 (dd, $J=10.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.70$, 135.54, 128.42, 127.84, 126.84, 125.68, 125.22, 124.10, 123.42, 121.61, 115.39, 113.56, 109.84, 108.24, 49.26. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{BrN}[\mathrm{M}+\mathrm{H}]^{+}: 312.0382$, found: 312.0384 .

1-benzyl-4-chloro-3-vinyl-1H-indole (2c)

2c Yellow solid, 265 mg , yield: 79%; M.P.: $48-50^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(600$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55(\mathrm{dd}, \mathrm{J}=17.5,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.23(\mathrm{~m}$, $4 \mathrm{H}), 7.12(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.02(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.45$ (d, J = $17.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.26 (s, 2H), 5.08 (d, J = $10.9 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.95,136.66$, 129.59, 128.92, 127.92, 126.80, 126.77, 125.86, 122.39, 121.07, 115.94, 110.95, 108.75, 50.33. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{CIN}[\mathrm{M}+\mathrm{H}]^{+}$: 268.0888, found: 268.0890.

1-benzyl-5-bromo-3-vinyl-1H-indole (2d)

2d

White solid, 328mg, yield: 84\%; M.P.: $50-52{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.24$ (m, $4 \mathrm{H}), 7.17$ (s, 1H), $7.14-7.03$ (m, 3H), 6.80 (dd, $J=17.8,11.4$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.64 (dd, J = 17.8, 1.2 Hz, 1H), 5.24 (s, 2H), 5.17 (dd, J = 11.4, 1.2 Hz, 1H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) δ 136.63, 135.77, 128.93, 128.60, 128.45, 127.95, 126.78, 125.12, 122.89, 114.46, 113.62, 111.45, 111.13, 50.28. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{BrN}$ $[\mathrm{M}+\mathrm{H}]^{+}: 312.0382$, found: 312.0386.

1-benzyl-5-chloro-3-vinyl-1H-indole (2e)

2e

White solid, 278 mg , yield: 83%; M.P.: $42-44{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.16$ (s, $1 \mathrm{H}), 7.14-7.10$ (m, 2H), 7.06 (d, J = $6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 6.79 (dd, J $=17.8,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 2 \mathrm{H})$, 5.16 (d, J = $11.3 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 136.68, 135.53, 128.94, 128.68, 128.68, 127.95, 127.42, 126.80, 126.04, 122.58, 119.84, 114.53, 111.03, 111.02, 50.30. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{CIN}[\mathrm{M}+\mathrm{H}]^{+}: 268.0888$, found: 268.0891 .

1-benzyl-6-bromo-3-vinyl-1H-indole (2f)

White solid, 328mg, yield: 84\%; M.P.: $94-95{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H})$, $7.34-7.25$ (m, 4H), $7.17-7.04$ (m, 3H), 6.82 (dd, J = 17.8, $11.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.65$ (d, J = $17.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.22 (s, 2H), 5.17 (d, $J=11.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.96$, 136.53, 128.97, 128.74, 127.97, 126.80, 125.28, 123.42, 121.51, 115.96, 115.06, 112.91, 111.14, 50.09. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{BrN}[\mathrm{M}+\mathrm{H}]^{+}$: 312.1382, found: 312.0390.

1-benzyl-6-fluoro-3-vinyl-1H-indole (2g)

White solid, 274 mg , yield: 87%; M.P.: $93-95{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79$ (dd, J = 9.4, $5.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.35-7.27$ (m, 3H), 7.17 (s, 1H), 7.12 (d, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.93$ (ddd, $J=$ 9.4, 6.2, $2.4 \mathrm{~Hz}, 2 \mathrm{H}$), 6.83 (dd, J = 17.8, $11.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.66

2g (dd, $J=17.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.22 (s, 2H), 5.16 (dd, J = 11.3, $1.0 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 160.76, 159.18, 137.27, 136.60, 128.97, 128.92, 127.98, 127.88, 127.86, 126.83, 122.95, 121.14, 121.07, 115.01, 110.79, 108.88, 108.71, 96.56, 96.39, 50.26. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{FN}[\mathrm{M}+\mathrm{H}]^{+}: 252.1183$, found: 252.1184 .

1-benzyl-5-methyl-3-vinyl-1H-indole (2h)

2h White solid, 270mg, yield: 87\%; M.P.: $47-49{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72$ (s, 1H), $7.33-7.26$ (m, 3H), 7.17 (t, $J=4.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{dd}, J=8.3$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.89$ (dd, $J=17.8,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.71$ (dd, $J=$ $17.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.27 (s, 2H), 5.17 (dd, $J=11.3,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.50$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.19,134.50,128.41$, 128.38, 127.72, 126.69, 126.59, 125.71, 125.56, 122.75, 118.99, 113.22, 108.93, 108.58, 48.99, 20.56, 20.53. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 248.1434, found: 248.1436.

1-benzyl-5-methoxy-3-vinyl-1H-indole (2i)

$2 i$

White solid, 254 mg , yield: 77%; M.P.: $57-59^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.04(\mathrm{~m}$, $4 \mathrm{H}), 6.91-6.81(\mathrm{~m}, 2 \mathrm{H}), 5.62$ (dd, $J=17.8,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, 5.25 (s, 2H), 5.13 (dd, J = 11.3, 1.1 Hz, 1H), 3.87 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.61,137.17,132.42$, 129.35, 128.83, 128.11, 127.73, 126.80, 114.34, 112.23, 110.72, 109.80, 102.34, 100.00, 55.94, 50.28. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$: 264.1383, found: 264.1386.

1-benzyl-6-methoxy-3-vinyl-1H-indole (2j)

2j

White solid, 267 mg , yield: 81%; M.P.: $59-61^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77$ (d, J = $8.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.28-7.23$ (m, 3H), 7.11 (d, J = $7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.06 (s, 1H), 6.83 (ddd, J $=15.4,10.2,8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.71$ (d, J = $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.66$ (dd, $J=17.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 2 \mathrm{H}), 5.12$ (dd, $J=11.3,1.3$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.79 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.55,138.11,137.07$, 129.45, 128.85, 127.74, 126.86, 121.03, 120.75, 114.88, 110.15, 109.63, 108.24, 93.75, 55.67, 50.01. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$: 264.1383, found: 264.1385.

1-benzyl-7-methyl-3-vinyl-1H-indole (2k)

White solid, 267 mg , yield: 86%; M.P.: $64-66{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74$ (dd, J=7.6, $\left.4.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.30-7.19$ (m, 3H), 7.11 (s, 1H), 7.05 (td, $J=7.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.87 (ddd, $J=15.3$, $13.4,5.7 \mathrm{~Hz}, 4 \mathrm{H}$), 5.66 (dd, J = 17.8, $3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.50 (s, 2H), 5.14 (dd, J = 11.3, 3.6 Hz, 1H), 2.49 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 139.29,135.85,129.25,129.09,128.92,127.62,127.45,125.51$, $125.25,121.34,120.44,118.14,114.73,110.46,52.29,19.62$. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 248.1434$, found: 248.1436 .

1-benzyl-3-(prop-1-en-2-yl)-1H-indole (2I) ${ }^{4}$

2I

To a flame - dried flask equipped with a stir bar was added the 1-(1H-indol-3-yl)ethan-1-one (1 equiv) and DCM. Sodium hydroxide (2.5 equiv) and tetrabutylammonium hydrogensulfate (TBAH) (0.2 equiv) were then added as single portions. The reaction mixture was stirred at room temperature under nitrogen atmosphere for 0.5 hour. Benzyl bromide (1.2 equiv) was then added dropwise and the reaction was allowed to stir for 5 hours. After completion, the reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with DCM. The combined organic layers were washed with brine solution and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After solvent was removed by rotary evaporation, the crude product was purified via flash column chromatography with a gradient of an appropriate eluent on silica gel (petroleum ether - ethyl acetate, 4:1).
To a stirred suspension of methyltriphenylphoshonium bromide (1.5 equiv) in THF, cooled to $0^{\circ} \mathrm{C}$, n-BuLi (1.5 equiv, 2.5 M in hexanes) was slowly added. The resulting yellow suspension was stirred for 2 h at the same temperature, then 1-(1-benzyl-1H-indol-3-yl) ethan-1-one (1.0 equiv) was added in one portion. The mixture was stirred overnight at room temperature, and then it poured into Ether- $\mathrm{H}_{2} \mathrm{O}(300: 1,30 \mathrm{~mL})$. The precipitate was filtered through a funnel and the filtrate was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under vacuum; the crude product was purified by flash chromatography on neutral aluminium oxide (petroleum ether-ethyl acetate, $30: 1$) to give the title compound in 67% yield as a white solid. 208mg. M.P.: $88-90^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.26(\mathrm{~m}, 7 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $5.62(\mathrm{~s}, 1 \mathrm{H}), 5.38(\mathrm{~s}, 2 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.64,136.18,127.71,127.58,126.58,125.76,125.64$, 125.06, 120.99, 120.08, 119.07, 116.45, 108.86, 108.54, 48.91, 22.26. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 248.1434, found: 248.1437.

(E/Z)-1-benzyl-3-(prop-1-en-1-yl)-1H-indole (2m) ${ }^{5}$

Me To a suspension of ethyltriphenylphosphonium bromide (1.5 equiv) in THF (20 mL) was added phenyllithium in $2.5 \mathrm{M} \mathrm{n-BuLi}$ solution (1.5 equiv) at room temperature and the mixture was stirred for 10 min . The solution was cooled to $-78^{\circ} \mathrm{C}$ and an indole-3-carboxaldehyde (1 equiv) in THF (10 mL) was added dropwise. After stirring for 5 min at $-78^{\circ} \mathrm{C}$ and then the mixture was stirred for overnight at room temperature. After cooling to $0^{\circ} \mathrm{C}$, the reaction mixture was quenched by saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with $\mathrm{Et}_{2} \mathrm{O}(\times 3)$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. The residue was purified by flash chromatography on neutral aluminium oxide (elution with hexane) to give 2 m as a $4: 1 \mathrm{E} / \mathrm{Z}$ mixture in 57% yield. 212 mg . M.P.: $66-68{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 0.2 \mathrm{H}), 7.69(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 0.8 \mathrm{H}), 7.27$
(dt, $J=18.5,5.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.22-7.09(\mathrm{~m}, 5 \mathrm{H}), 6.67(\mathrm{dd}, J=11.3,0.9 \mathrm{~Hz}, 0.8 \mathrm{H})$, 6.56 (dd, $J=15.9,1.5 \mathrm{~Hz}, 0.2 \mathrm{H}), 6.19(\mathrm{dq}, J=15.9,6.6 \mathrm{~Hz}, 0.2 \mathrm{H}), 5.75(\mathrm{dq}, J$ $=11.3,7.0 \mathrm{~Hz}, 0.8 \mathrm{H}$), $5.34(\mathrm{~s}, 1.6 \mathrm{H}), 5.27(\mathrm{~s}, 0.4 \mathrm{H}), 1.91(\mathrm{dt}, J=8.2,2.5 \mathrm{~Hz}$, 3H). ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 137.42, 135.94, 128.80, 128.78, 128.22, 127.64, 126.82, 126.71, 126.02, 123.15, 122.45, 122.17, 122.07, 120.47, 120.17, 119.76, 119.58, 119.22, 113.08, 109.80, 109.61, 50.15, 49.97, 18.99, 15.69. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 248.1434$, found: 248.1440 .

3-vinyl-1H-indole (2n)

2n

White solid, 319 mg , yield: 89%; M.P.: $80-81{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.23-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26$ -7.12 (m, 3H), 6.89 (dd, $J=17.8,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~d}, \mathrm{~J}=17.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, \mathrm{~J}=11.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 136.78, 129.45, 125.67, 123.47, 122.53, 120.38, 120.13, 115.88, 111.33, 110.79. HRMS (ESI) calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}\left[\mathrm{M}+\mathrm{H}^{+}\right.$: 143.1890, found: 143.1883 .

1-(4-methoxyphenyl)-3-vinyl-1H-indole (20) ${ }^{3}$

20

1H-indole-3-carbaldehyde (1.5 equiv), CuOAc (1.1 equiv) and the 4 -iodoanisole (1.0 equiv) were placed in a reaction vessel under a stream of argon. The reaction vessel was evacuated and backfilled with argon. Anhydrous DMA (10 mL) was then added by syringe at room temperature under a stream of argon and the mixture was stirred under argon at $160^{\circ} \mathrm{C}$ for 48 h . After this period, the reaction was then allowed to cool to room temperature and had been treated with a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with EtOAc. The organic extract was washed with brine, dried, filtered and concentrated under reduced pressure, and the residue was purified by flash chromatography on silica gel with a mixture of hexane and ethyl acetate (5:1) as eluent to give the product for the next step.

And then to a solution of methyltriphenylphosphonium bromide (1.5 equiv) in anhydrous THF under argon at $-30^{\circ} \mathrm{C}$, n -BuLi (2.5 M in n -hexane; 1.5 equiv) was slowly added. The mixture was stirred at the indicated temperature for 1 h . Then the solution of the product of the last step (1 equiv) in anhydrous THF was added dropwise to the ylide formed, the reaction was stirred at $-30{ }^{\circ} \mathrm{C}$ for 1 h . The resulting suspension was poured into Ether- $\mathrm{H}_{2} \mathrm{O}(300: 1,30 \mathrm{~mL})$. The precipitate was filtered through a funnel and the filtrate was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under vacuum; the crude product was purified by flash chromatography on neutral aluminium oxide (petroleum ether-ethyl acetate, 30:1) and recrystallization give $\mathbf{2 o}$ as a white solid in 62% yield. 233mg. M.P.: $56-58{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{dd}, \mathrm{J}=7.2,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.15(\mathrm{dq}, J=5.6,1.9 \mathrm{~Hz}$, 2H), $6.97-6.92$ (m, 2H), 6.86 (dd, $J=17.8,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.68$ (dd, J = 17.8, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{dd}, \mathrm{J}=11.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 158.42,137.25,132.32,129.08,127.45,126.68,126.07,122.71$, 120.68, 120.26, 115.83, 114.78, 111.08, 110.68, 55.63. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 250.1226$, found: 250.1224 .

1-(4-methoxybenzyl)-3-vinyl-1H-indole (2p)

2p

Following the general procedure, the title compound was obtained from 1H-indole-3-carbaldehyde and 4-methoxybenzyl bromide as a white solid in 85% yield. 281 mg . M.P.: $66-68{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88$ (d, J = $7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.27 (d, J $=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.05(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.90$ -6.77 (m, 3H), 5.67 (d, J = $17.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.17$ (s, 2H), 5.13 (d, J $=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.19,137.15$, 129.38, 129.07, 128.36, 127.49, 126.48, 122.23, 120.31, 120.15, 114.70, 114.20, 110.25, 110.01, 109.94, 55.33, 55.31, 49.56. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 264.1383$, found: 264.1385.

1-(4-(tert-butyl)benzyl)-3-vinyl-1H-indole (2q)

Following the general procedure, the title compound was obtained between 1H-indole-3-carbaldehyde and 4-tert-butylbenzyl bromide as a white solid in 85% yield. 308 mg . M.P.: $51-53{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88$ (dd, $J=7.1$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.27$ (m, 3H), $7.21-7.14$ (m, 3H), 7.05 (d, J $=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 6.87 (dd, $J=17.8,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.68$ (dd, $J=$ 17.8, 1.4 Hz, 1H), 5.22 (s, 2H), 5.13 (dd, J = 11.3, 1.4 Hz, 1H), 1.27 (s, 9H). ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.76,137.27$, 134.14, 129.38, 127.56, 126.68, 126.46 125.74, 122.23, 120.29, 120.13, 114.81, 110.26, 109.99, 49.71, 34.55, 31.35. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 290.1903$, found: 290.1904.

1-(4-chlorobenzyl)-3-vinyl-1H-indole (2r)

$$
\begin{aligned}
& \text { Following the general procedure, the title compound was } \\
& \text { obtained from 1H-indole-3-carbaldehyde and 4-chlorobenzyl } \\
& \text { chloride as a white solid in } 76 \% \text { yield. } 255 \mathrm{mg} \text {. M.P.: } 59-61^{\circ} \mathrm{C} \text {. } \\
& \left.{ }^{1} \mathrm{H} \text { NMR (} 600 \mathrm{MHz}, \mathrm{CDCl}_{3} \text {) } \delta 7.90 \text { (dd, } J=6.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.27 \\
& \text { (d, J = } 1.7 \mathrm{~Hz}, 2 \mathrm{H} \text {), } 7.23-7.17 \text { (m, 4H), } 7.04 \text { (d, J = } 8.4 \mathrm{~Hz}, 2 \mathrm{H} \text {), } \\
& 6.88 \text { (dd, } J=17.8,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{dd}, J=17.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}) \text {, } \\
& 5.26 \text { (s, 2H), } 5.17 \text { (dd, } J=11.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \text { NMR (} 151 \mathrm{MHz} \text {, } \\
& \left.\mathrm{CDCl}_{3}\right) ~ \delta ~ 137.03,135.62,133.59,129.12,129.01,128.14, \\
& \text { 127.30, 126.50, 122.43, 120.39, 120.32, 115.13, 110.66, 109.82, 49.45. } \\
& \text { HRMS (ESI) calcd for } \mathrm{C}_{17} \mathrm{H}_{14} \mathrm{CIN}[\mathrm{M}+\mathrm{H}]^{+}: 268.0888 \text {, found:268.0891. }
\end{aligned}
$$

3. General procedure for the organocatalytic, enantioselective Diels-Alder reaction

$4 \AA$ MS (30 mg) were added to a reaction tube and flame dried in situ. Then substrate $\mathbf{1 a - 1 i}$ (1 equiv, 0.05 mmol), catalyst $\mathrm{Mg}[\mathbf{P 4}]_{2}(3.6 \mathrm{mg}, 5 \mathrm{~mol} \%)$ and $2 \mathrm{a}-2 \mathrm{r}$ (1.5 equiv, 0.075 mmol) were added, and then the tube was removed under argon. The resulting mixture was stirred at $-25^{\circ} \mathrm{C}$ for 10 min . Then anhydrous methylcyclohexane (1 mL) was added via a syringe. The mixture was then stirred overnight at the same temperature to give the crude product. The crude product was purified by washing with hexane and MeOH to give the pure D-A corresponding product $\mathbf{3 a}-3 \mathbf{i}$ and $\mathbf{4 b}-4 \mathrm{r}$. Then the product $\mathbf{3 a - 3 i}$ and 4b-4r was analyzed by HPLC.
(5aS,12aS,12bS)-12-benzyl-6,12,12a,12b-tetrahydro-5H-naphtho[2,3-a]car bazole-5,13(5aH)-dione (3a)

3a

Yellow solid, 18mg, yield: 91\%; M.P.: $141-143{ }^{\circ} \mathrm{C}$. $[\alpha]^{20}{ }_{D}=+281.7^{\circ}\left(\mathrm{c} 0.43, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.31-7.25(\mathrm{~m}, 8 \mathrm{H}), 7.13(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, 6.72 (t, J=7.4 Hz, 1H), 6.63 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.58-$ 6.46 (m, 2H), 5.75 (dd, J = 8.0, $3.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.42 (dd, J $=50.2,15.7 \mathrm{~Hz}, 2 \mathrm{H}$), $4.12-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{t}, \mathrm{J}=$ $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=13.8,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.39(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) ~ \delta 200.25,196.57,154.00,140.59,138.75,137.99,137.65$, 129.88, 128.64, 127.73, 127.44, 125.90, 120.50, 118.38, 109.88, 109.07, 64.68, 52.37, 47.51, 46.30, 26.94. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 392.1645, found: 392.1647. The enantiomeric excess was determined to be 96% by HPLC analysis on Chiralpak AD column (20% isopropanol/hexane, 1 $\mathrm{mL} / \mathrm{min}), \mathrm{UV} 254 \mathrm{~nm}, \mathrm{t}_{1}($ minor $)=12.4 \mathrm{~min}, \mathrm{t}_{2}($ major $)=14.9 \mathrm{~min}$.
(4aS,11aS,11bS)-11-benzyl-5,11,11a,11b-tetrahydro-1H-benzo[a]carbazol e-1,4(4aH)-dione (3b)

3b

Red solid, 17 mg , yield: 98%; M.P.: $128-130{ }^{\circ} \mathrm{C} .[\alpha]^{20}{ }_{\mathrm{D}}=$ $+280^{\circ}\left(\mathrm{c} 0.25, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-$ $7.26(\mathrm{~m}, 6 \mathrm{H}), 7.12(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.63(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=50.2 \mathrm{~Hz}, 2 \mathrm{H})$, 5.74 (d, J = 2.8 Hz, 1H), 4.42 (dd, $J=50.2,15.7 \mathrm{~Hz}, 2 \mathrm{H}$), $4.13-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{t}, \mathrm{J}=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=$ 13.3, $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.40(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.22$, 196.54, 154.01, 140.59, 138.79, 138.00, 137.66, 129.88, 128.64, 127.74, 127.43, 125.90, 120.49, 118.37, 109.86, 109.05, 64.69, 52.36, 47.52, 46.27, 26.95. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 342.1489$, found: 342.1496. The enantiomeric excess was determined to be 97% by HPLC analysis on Chiralpak OD column (30% isopropanol/hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}_{1}$ $($ minor $)=22.1 \mathrm{~min}, \mathrm{t}_{2}($ major $)=33.3 \mathrm{~min}$.
(4aS,11aS,11bS)-11-benzyl-2,3-dimethyl-5,11,11a,11b-tetrahydro-1H-benz o[a]carbazole-1,4(4aH)-dione (3c)

Yellow solid, 18mg, yield: 95\%; M.P.: $150-152{ }^{\circ} \mathrm{C}$. $[a]^{20}{ }_{\mathrm{D}}=+174.3^{\circ}\left(\mathrm{c} 0.54, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.34-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 1 \mathrm{H})$, 7.13 (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.69$ (dt, $J=24.8,6.1 \mathrm{~Hz}, 2 \mathrm{H}$), 5.71 (dd, $J=7.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.44$ ($\mathrm{q}, J=15.8 \mathrm{~Hz}, 2 \mathrm{H}$), $4.10-4.03$ (m, 1H), 3.32 (t, J = $5.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.20-$ $3.15(\mathrm{~m}, 1 \mathrm{H}), 2.48$ (ddt, $J=18.5,7.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.34$ (dtd, $J=13.3,8.7,4.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.87(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 199.98, 197.18, 153.84, 146.13, 141.89, 138.81, 138.03, 129.80, 128.57, 127.79, 127.38, 125.93, 120.47, 118.17, 109.77, 108.70, 64.50, 51.87, 47.51, 45.73, 27.42, 13.15, 12.61. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 370.1802$, found: 370.1810. The enantiomeric excess was determined to be 98% by HPLC analysis on Chiralpak OD column (20% isopropanol/hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm} \mathrm{t}_{1}($ minor $)=11.5 \mathrm{~min}, \mathrm{t}_{2}($ major $)=13.4 \mathrm{~min}$.
(4aS,11aS,11bS)-11-benzyl-3-methyl-5,11,11a,11b-tetrahydro-1H-benzo[a]carbazole-1,4(4aH)-dione and
(4aS,11aS,11bS)-11-benzyl-2-methyl-5,11,11a,11b-tetrahydro-1H-benzo [a]carbazole-1,4 (4aH)-dione (3d and 3d')

3d and 3d'

Orange solid, 17 mg , yield: 93\%; M.P.: $174-176{ }^{\circ} \mathrm{C}$. $[\alpha]^{20}{ }_{D}=+180.0^{\circ}(\mathrm{c} \quad 0.5$, CHCl_{3},). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right)$ б 7.32 - $7.27(\mathrm{~m}$, $6 \mathrm{H}), 7.18-7.08(\mathrm{~m}, 1 \mathrm{H})$, 6.74-6.61 (m, 2H), $6.36(\mathrm{~d}, \mathrm{~J}=39.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.77-5.68(\mathrm{~m}, 1 \mathrm{H}), 4.53-4.34$ (m, 2H), $4.11-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{dt}, J=34.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.20-3.10(\mathrm{~m}$, 1 H), 2.50 (ddd, $J=14.8,7.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.40 (dtd, $J=13.5,8.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}$), 1.89 (t, J = $13.5 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.00$, 197.51, 153.85, 151.12, 138.65, 137.98, 137.42, 134.53, 129.81, 128.79, 128.57, 127.87, 127.74, 125.96, 120.49, 118.34, 118.12, 109.91, 108.87, 76.70, 64.57, $52.14,47.81,46.34,27.12,16.10$. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 356.1645, found: 356.1653. The enantiomeric excess was determined to be 82% and 96% by HPLC analysis on Chiralpak IA column (15\% isopropanol/hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, 3 \mathrm{~d}: \mathrm{t}_{1}$ (minor) $=7.8 \mathrm{~min}, \mathrm{t}_{2}$ (major) $=8.5 \mathrm{~min} ; 3 \mathrm{~d}^{\prime}: \mathrm{t}_{1}($ minor $)=9.9 \mathrm{~min}, \mathrm{t}_{2}($ major $)=10.6 \mathrm{~min}$.
o[2,3-a]carbazole-5,13(5aH)-dione and
(5aS,12aS,12bS)-12-benzyl-1-hydroxy-6,12,12a,12b-tetrahydro-5H-naphth o[2,3-a]-carbazole-5,13(5aH)-dione (3e and 3e')

$3 e$ and $3 e^{\prime}$

Orange solid, 17 mg , yield: 85\%; M.P.: 179 $181{ }^{\circ} \mathrm{C} . \quad[\alpha]^{20}{ }_{\mathrm{D}}=$ $+172.0^{\circ}$ (c $0.42, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR (600 MHz, CDCl_{3}) $\delta 11.89$ (s, $0.87 \mathrm{H}), 11.81(\mathrm{~s}, 0.05 \mathrm{H}), 7.59(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.26-$ $7.11(\mathrm{~m}, 5 \mathrm{H}), 6.78-6.62(\mathrm{~m}, 2 \mathrm{H}), 5.68(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.53-4.37(\mathrm{~m}, 2 \mathrm{H})$, $4.24-4.22(\mathrm{~m}, 0.07 \mathrm{H}), 4.20-4.13(\mathrm{~m}, 0.93 \mathrm{H}), 3.49(\mathrm{t}, \mathrm{J}=4.3 \mathrm{~Hz}, 0.07 \mathrm{H})$, $3.46(\mathrm{t}, \mathrm{J}=4.4 \mathrm{~Hz}, 0.93 \mathrm{H}), 3.36-3.27(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.41-$ $2.30(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 202.10, 197.71, 160.88, 153.82, 138.96, 137.96, 136.64, 132.58, 130.19, 128.69, 127.66, 127.53, 125.86, 124.50, 120.51, 118.67, 118.30, 109.71, 108.69, 65.29, 52.28, 47.21, 46.37, 26.66. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 408.1594$, found: 408.1605 . The enantiomeric excess was determined to be 97% and 97% by HPLC analysis on Chiralpak AD column (20% isopropanol/hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $365 \mathrm{~nm}, 3 \mathrm{e}: \mathrm{t}_{1}($ minor $)=9.07 \mathrm{~min}, \mathrm{t}_{2}($ major $)=11.48 \mathrm{~min} ; 3 \mathrm{e}^{\prime}: \mathrm{t}_{1}($ minor $)=10.13$ $\min , \mathrm{t}_{2}($ major $)=13.23 \mathrm{~min}$.
(5aS,12aS,12bS)-12-benzyl-1,4-dihydroxy-6,12,12a,12b-tetrahydro-5H-na phtho[2,3-a]carbazole-5,13(5aH)-dione (3f)

Purple solid, 20mg, yield: 96\%; M.P.: $182-184{ }^{\circ} \mathrm{C}$. $[\alpha]^{20}{ }_{D}=+251.3^{\circ}\left(\mathrm{c} 0.19, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, CDCl_{3}) $\delta 12.39$ (s, 1H), 11.60 (s, 1H), 7.34 (d, J = 7.0 $\mathrm{Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.14(\mathrm{~m}, 5 \mathrm{H})$, 6.73 (t, J = $7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.68 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.70$ (s, 1H), 4.47 (dd, J = 46.4, $15.8 \mathrm{~Hz}, 2 \mathrm{H}$), $4.26-4.17$ $(\mathrm{m}, 1 \mathrm{H}), 3.44(\mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.28-3.19(\mathrm{~m}, 1 \mathrm{H})$, $2.77-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.35(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.01$, 200.62, 172.84, 155.90, 154.36, 153.88, 138.83, 137.96, 134.62, 130.17, 128.98, 128.66, 128.01, 127.62, 127.51, 125.81, 120.50, 118.35, 114.09, 111.99, 111.87, 109.54, 108.73, 65.04, 52.32, 46.44, 45.86, 27.51. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 424.1543, found: 424.1548. The enantiomeric excess was determined to be 85% by HPLC analysis on Chiralpak IA column (15% isopropanol/hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}_{1}$ $($ minor $)=8.92 \mathrm{~min}, \mathrm{t}_{2}($ major $)=11.21 \mathrm{~min}$.
(4aS,11aS,11bS)-11-benzyl-2,3-dichloro-5,11,11a,11b-tetrahydro-1H-benz
o[a]carbazole-1,4(4aH)-dione (3h)

3h

Red brown solid, 15 mg , yield: 75%; M.P.: $134-136{ }^{\circ} \mathrm{C}$. $[\alpha]^{20}{ }_{\mathrm{D}}=+146.3^{\circ}\left(\mathrm{c} 0.35, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.34-7.26(\mathrm{~m}, 6 \mathrm{H}), 7.16(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.74(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.76-$ 5.68 (m, 1H), 4.51 (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, \mathrm{~J}=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.08(\mathrm{~m}, 1 \mathrm{H}), 3.35$ (td, $J=8.3,5.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.29(\mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.61-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.37(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 189.57,185.91,153.88,144.91,142.50,138.97$, 137.72, 130.21, 128.73, 127.82, 127.68, 125.58, 120.61, 118.68, 109.32, 109.15, 64.63, 52.52, 47.42, 45.21, 26.92. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{NO}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}: 410.0709$, found: 410.0709. The enantiomeric excess was determined to be 29% by HPLC analysis on Chiralpak IA column (20% isopropanol/hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}_{1}($ minor $)=7.88 \mathrm{~min}, \mathrm{t}_{2}($ major $)=8.82 \mathrm{~min}$.
(5aS,12aS,12bS)-12-benzyl-8-bromo-6,12,12a,12b-tetrahydro-5H-naphtho [2,3-a]carbazole-5,13(5aH)-dione (4b)

4b

Yellow solid, 22 mg , yield: 92%; M.P.: $152-154{ }^{\circ} \mathrm{C}$. $[\alpha]^{20}{ }_{\mathrm{D}}=+120.4^{\circ}\left(\mathrm{c} 0.51, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.07-8.01(\mathrm{~m}, 1 \mathrm{H}), 7.91-7.85(\mathrm{~m}, 1 \mathrm{H})$, 7.72 (dd, $J=5.3,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H})$, 7.21 (t, J=6.5 Hz, 1H), 6.93 (t, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.83 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=$ $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.51-4.40(\mathrm{~m}, 2 \mathrm{H}), 4.31-4.27(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{t}, \mathrm{J}=4.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.36 (dd, $J=15.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.30(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.05,194.80,155.76,137.44,137.08,135.16$, 134.63, 134.08, 132.42, 130.25, 128.71, 127.48, 127.25, 126.37, 122.40, 117.97, 114.70, 106.92, 64.78, 51.38, 47.15, 46.86, 27.12. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{BrNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 470.0750$, found: 470.0752 . The enantiomeric excess was determined to be 91% by HPLC analysis on Chiralpak IA column (15% isopropanol/hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}_{1}$ (minor) $=9.67 \mathrm{~min}, \mathrm{t}_{2}($ major $)=$ 10.53 min .
(5aS,12aS,12bS)-12-benzyl-8-chloro-6,12,12a,12b-tetrahydro-5H-naphtho [2,3-a]carbazole-5,13(5aH)-dione (4c)

4c

Yellow solid, 20mg, yield: 96%; M.P.: $182-184{ }^{\circ} \mathrm{C}$. $[\alpha]^{20}{ }_{\mathrm{D}}=+208.9^{\circ}\left(\mathrm{c} 0.37, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.15-7.94(\mathrm{~m}, 1 \mathrm{H}), 7.93-7.81(\mathrm{~m}, 1 \mathrm{H})$, $7.79-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}=33.5 \mathrm{~Hz}, 5 \mathrm{H}), 7.01(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.46$ (dd, $J=$ $42.2,15.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.34-4.19(\mathrm{~m}, 1 \mathrm{H}), 3.73-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.25(\mathrm{~m}$, 1H), $2.86-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.13(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.13, 194.92, 155.48, 137.47, 136.47, 135.14, 134.68, 134.13, 132.38,
130.08, 129.70, 128.72, 127.50, 127.26, 126.38, 122.87, 119.19, 114.94, 106.43, 64.74, 51.43, 47.16, 46.84, 27.27. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{CINO}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}: 426.1255$, found: 426.1256. The enantiomeric excess was determined to be 93% by HPLC analysis on Chiralpak IA column (15\% isopropanol/hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}_{1}$ (minor) $=9.23 \mathrm{~min}, \mathrm{t}_{2}$ (major) $=$ 10.00 min .
(5aS,12aS,12bS)-12-benzyl-9-bromo-6,12,12a,12b-tetrahydro-5H-naphtho [2,3-a]carbazole-5,13(5aH)-dione (4d)

4d

Yellow solid, 23mg, yield: 96%; M.P.: $150-152^{\circ} \mathrm{C}$. $[\alpha]^{20}{ }_{D}=+116.7^{\circ}\left(\mathrm{c} 0.6, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.06-7.99(\mathrm{~m}, 1 \mathrm{H}), 7.89-7.83(\mathrm{~m}, 1 \mathrm{H})$, $7.74-7.68$ (m, 2H), 7.34 (d, J = $1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.27 (dt, J=15.0, 7.3 Hz, 4H), $7.23-7.17$ (m, 2H), 6.51 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{q}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~s}$, 2H), 4.21 (p, J = $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.53$ (t, $J=4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.35 (ddd, $J=10.8,7.9$, $4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.26(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , CDCl_{3}) $\delta 197.92,194.84,152.76,137.52,135.18,134.65,134.06,132.25$, 128.69, 128.19, 127.58, 127.52, 127.24, 126.35, 123.38, 111.13, 109.96, 109.93, 65.04, 51.77, 47.41, 47.09, 26.88. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{BrNO}_{2}$ [$\mathrm{M}+\mathrm{H}]^{+}: 470.0750$, found: 470.0753. The enantiomeric excess was determined to be 95% by HPLC analysis on Chiralpak IA column (15\% isopropanol/hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}_{1}($ minor $)=11.01 \mathrm{~min}, \mathrm{t}_{2}($ major $)=15.31 \mathrm{~min}$.
The relative configuration of the title compound was tentatively assigned by means of NMR NOESY experiments. Irradiation at $3.35 \mathrm{ppm}\left(\mathrm{H}_{5} \mathrm{a}\right)$ gives a signal at $4.21 \mathrm{ppm}\left(\mathrm{H}_{12} \mathrm{~b}\right)$. Irradiation at $4.21 \mathrm{ppm}\left(\mathrm{H}_{12} \mathrm{~b}\right)$ gives signals at 3.35 ppm ($\mathrm{H}_{5} \mathrm{a}$) and $3.53 \mathrm{ppm}\left(\mathrm{H}_{12} \mathrm{a}\right)$. Therefore, a $5 \mathrm{a}, 12 \mathrm{~b}$-cis and 12a,12b-cis configuration can be assumed.

(5aS,12aS,12bS)-12-benzyl-9-chloro-6,12,12a,12b-tetrahydro-5H-naphtho [2,3-a]carbazole-5,13(5aH)-dione (4e)

4e

Yellow solid, 21 mg , yield: 98\%; M.P.: 161 - 163 ${ }^{\circ} \mathrm{C} .[\alpha]^{20}{ }_{\mathrm{D}}=+140.0^{\circ}$ (c 0.5, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02$ (dt, $\left.J=7.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.92$ 7.81 (m, 1H), $7.77-7.66$ (m, 2H), $7.33-7.18$ (m, $6 \mathrm{H}), 7.07$ (dd, $J=8.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.69(\mathrm{q}, \mathrm{J}=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.44$ (s, 2H), 4.22
(p, J = 4.1 Hz, 1H), 3.52 (t, J = 4.5 Hz, 1H), 3.36 (ddd, J = 10.7, 7.8, 4.7 Hz,

1 H), 2.67 (ddt, $J=19.5,7.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.30 (ddt, $J=19.5,10.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.88,193.81,151.39,136.64,136.61,134.21$, 133.61, 133.02, 131.35, 128.41, 127.66, 126.58, 126.48, 126.21, 125.32, 121.98, 119.49, 110.05, 108.41, 64.20, 50.98, 46.41, 46.15, 25.87. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{CINO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 426.1255$, found: 426.1259. The enantiomeric excess was determined to be 96% by HPLC analysis on Chiralpak IA column (15% isopropanol/hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}_{1}$ $($ minor $)=11.61 \mathrm{~min}, \mathrm{t}_{2}($ major $)=15.70 \mathrm{~min}$.
(5aS,12aS,12bS)-12-benzyl-10-bromo-6,12,12a,12b-tetrahydro-5H-naphth o[2,3-a]carbazole-5,13(5aH)-dione (4f)

$4 f$

Yellow solid, 22mg, yield: 95\%; M.P.: 152 - 154 ${ }^{\circ} \mathrm{C} .[\alpha]^{20}{ }_{\mathrm{D}}=+232.2^{\circ}\left(\mathrm{c} 0.31, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $(600$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05-7.99(\mathrm{~m}, 1 \mathrm{H}), 7.89-7.83(\mathrm{~m}$, $1 \mathrm{H}), 7.74-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.21$ $(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-$ 6.77 (m, 2H), 5.67 (d, J = $3.4 \mathrm{~Hz}, 1 \mathrm{H}$), $4.44(\mathrm{~s}, 2 \mathrm{H})$, $4.27-4.19(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{t}, \mathrm{J}=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-3.28(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.62$ (m, 1H), $2.33-2.20(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.01, 194.90, 154.82, 137.61, 137.33, 135.15, 134.69, 134.10, 132.34, 128.75, 127.58, 127.26, 126.36, 125.19, 123.73, 121.43, 120.86, 111.43, 110.46, 64.90, 51.44, 47.34, 47.01, 26.87. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{BrNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 470.0750$, found: 470.0767. The enantiomeric excess was determined to be 90% by HPLC analysis on Chiralpak OD column (15% isopropanol/hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}_{1}$ (major) $=14.57 \mathrm{~min}, \mathrm{t}_{2}($ minor $)=21.78 \mathrm{~min}$.
(5aS,12aS,12bS)-12-benzyl-10-fluoro-6,12,12a,12b-tetrahydro-5H-naphth o[2,3-a]carbazole-5,13(5aH)-dione (4g)

Yellow solid, 20 mg , yield: 96%; M.P.: $152-154{ }^{\circ} \mathrm{C}$. $[\alpha]^{20}{ }_{D}=+280.0^{\circ}\left(\mathrm{c} 0.1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.06-7.99(\mathrm{~m}, 1 \mathrm{H}), 7.90-7.85(\mathrm{~m}, 1 \mathrm{H})$, $7.74-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.29$ (dd, $J=12.8,7.2 \mathrm{~Hz}, 4 \mathrm{H}$), $7.24-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.43-6.32(\mathrm{~m}, 2 \mathrm{H}), 5.61$ (q, J $=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.41(\mathrm{~m}, 2 \mathrm{H}), 4.25(\mathrm{p}, \mathrm{J}=3.9$ $\mathrm{Hz}, 1 \mathrm{H}$), $3.54(\mathrm{t}, \mathrm{J}=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.35$ (ddd, $J=10.8,8.0,4.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.66 (ddt, $J=15.1,7.5,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.24(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 198.10, 194.95, 137.55, 137.36, 135.17, 134.65, 134.09, 132.39, 128.74, 127.59, 127.57, 127.25, 126.37, 122.11, 121.24, 121.17, 109.02, 104.61, 104.46, 96.30, 96.12, 65.25, 51.49, 47.40, 47.01, 26.82. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{FNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 410.1551, found: 410.1554. The enantiomeric excess was determined to be 85% by HPLC analysis on Chiralpak OD column (20% isopropanol/hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}_{1}$ (major) $=12.74 \mathrm{~min}, \mathrm{t}_{2}$ (minor) $=19.19 \mathrm{~min}$.
(5aS,12aS,12bS)-12-benzyl-9-methyl-6,12,12a,12b-tetrahydro-5H-naphtho [2,3-a]carbazole-5,13(5aH)-dione (4h)

Orange solid, 19mg, yield: 95\%; M.P.: 162 - 164 ${ }^{\circ} \mathrm{C} .[\alpha]^{20}{ }^{\mathrm{D}}=+181.4^{\circ}\left(\mathrm{c} 0.47, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $(600$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12-8.07(\mathrm{~m}, 1 \mathrm{H}), 8.01(\mathrm{~d}, \mathrm{~J}=$ $4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.86$ (d, $J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.77$ (d, $J=$ $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.68$ (m, 2H), 7.33 (d, $J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, \mathrm{~J}=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.00-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.60(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H})$, 4.48 (d, J = $15.6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.37 (d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.13$ (s, 1H), 3.46 (d, J = $3.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.37 (d, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.65(\mathrm{~d}, \mathrm{~J}=19.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.23$ $(\mathrm{m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.35,194.99,152.04,138.85,138.35$, 135.42, 134.57, 133.87, 132.37, 130.46, 128.56, 127.76, 127.58, 127.31, 127.15, 126.34, 120.99, 109.16, 108.93, 65.55, 52.95, 47.70, 47.51, 26.92, 20.78. HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 406.1802$, found: 406.1812. The enantiomeric excess was determined to be 92% by HPLC analysis on Chiralpak IA column (10\% isopropanol/hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}_{1}$ $($ minor $)=10.59 \mathrm{~min}, \mathrm{t}_{2}($ major $)=15.50 \mathrm{~min}$.
(5aS,12aS,12bS)-12-benzyl-9-methoxy-6,12,12a,12b-tetrahydro-5H-napht ho[2,3-a]carbazole-5,13(5aH)-dione (4i)

4i

Orange solid, 19mg, yield: 92\%; M.P.: $144-146$ ${ }^{\circ} \mathrm{C} .[\alpha]^{20}{ }_{\mathrm{D}}=+176.7^{\circ}\left(\mathrm{c} 0.43, \mathrm{CHCl}_{3}, 85 \%\right.$ ee). ${ }^{1} \mathrm{H}$ NMR (600 MHz, CDCl_{3}) $\delta 8.06$ - 7.95 (m, 1H), $7.91-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.75-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{~d}$, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-$ $6.73(\mathrm{~m}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=$ $15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.29$ (d, J = $15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.07$ (m, 1H), 3.76 (s, 3H), 3.44 - 3.31 (m, 2H), $2.71-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.31$ (ddd, $J=15.0,9.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.20,195.03,153.27,148.80,138.86,138.44$, 135.49, 134.57, 133.85, 132.35, 128.55, 127.84, 127.34, 127.14, 126.32, 116.23, 110.13, 109.69, 106.04, 66.23, 66.18, 56.10, 56.05, 54.00, 47.73, 26.92. HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 422.1751$, found: 422.1760 . The enantiomeric excess was determined to be 85% by HPLC analysis on Chiralpak IA column (15% isopropanol/hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}_{1}$ $($ minor $)=13.42 \mathrm{~min}, \mathrm{t}_{2}($ major $)=18.99 \mathrm{~min}$.
(5aS,12aS,12bS)-12-benzyl-10-methoxy-6,12,12a,12b-tetrahydro-5H-naph tho[2,3-a]carbazole-5,13(5aH)-dione (4j)

4j

Orange solid, 20mg, yield: 93\%; M.P.: 140 - 142 ${ }^{\circ} \mathrm{C} .[\alpha]^{20}{ }_{\mathrm{D}}=+210.0^{\circ}\left(\mathrm{c} 0.29, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (600 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04-7.99(\mathrm{~m}, 1 \mathrm{H}), 7.89-7.84$ (m, 1H), $7.72-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}$,
$2 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.15(\mathrm{~m}, 3 \mathrm{H}), 6.33-6.18(\mathrm{~m}, 2 \mathrm{H}), 5.51(\mathrm{~d}, J=2.6 \mathrm{~Hz}$, 1H), $4.51-4.40(\mathrm{~m}, 2 \mathrm{H}), 4.25-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.55-3.44(\mathrm{~m}, 1 \mathrm{H})$, 3.33 (dd, $J=14.9,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.24(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.42,195.08,162.04,155.34,138.14,137.91$, 135.29, 134.57, 133.96, 132.44, 128.65, 127.67, 127.41, 127.19, 126.36, 121.15, 119.41, 107.08, 103.72, 94.91, 65.37, 55.38, 51.79, 47.56, 47.19, 26.85. HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 422.1751$, found: 422.1748 . The enantiomeric excess was determined to be 96% by HPLC analysis on Chiralpak AD column (15% isopropanol/hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}_{1}$ $($ major $)=22.08 \mathrm{~min}, \mathrm{t}_{2}($ minor $)=30.04 \mathrm{~min}$.
(5aS,12aS,12bS)-12-benzyl-11-methyl-6,12,12a,12b-tetrahydro-5H-naphth o[2,3-a]carbazole-5,13(5aH)-dione (4k)

4k

Yellow solid, 20 mg , yield: 98%; M.P.: $163-165{ }^{\circ} \mathrm{C}$. $[\alpha]^{20}{ }_{D}=+140.0^{\circ}\left(c \quad 0.5, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.01-7.96(\mathrm{~m}, 1 \mathrm{H}), 7.89-7.84(\mathrm{~m}, 1 \mathrm{H})$, $7.69(\mathrm{q}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.24$ (t, J=7.5 Hz, 2H), $7.17(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~d}, J=3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.92(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-4.04(\mathrm{~m}, 1 \mathrm{H})$, 3.34 (dd, $J=15.5,7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $2.70-2.58$ (m, 1H), 2.41 (s, 3H), $2.30-2.24$ ($\mathrm{m}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.40, 195.12, 152.66, 139.69, 139.28, 135.39, 134.55, 133.87, 133.23, 132.45, 128.57, 127.26, 126.24, 126.23, 120.97, 119.53, 118.34, 108.78, 67.42, 55.55, 48.14, 47.70, 26.89, 19.51. HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 406.1802, found: 406.1804. The enantiomeric excess was determined to be 97% by HPLC analysis on Chiralpak IA column (10% isopropanol/hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}_{1}$ $($ minor $)=8.73 \mathrm{~min}, \mathrm{t}_{2}($ major $)=9.45 \mathrm{~min}$.
(5aS,12aS,12bS)-12-benzyl-7-methyl-6,12,12a,12b-tetrahydro-5H-naphtho [2,3-a]carbazole-5,13(5aH)-dione (4I)

4I

Yellow solid, 19mg, yield: 93\%; M.P.: $139-141^{\circ} \mathrm{C}$. $[a]^{20}{ }_{D}=+157.5^{\circ}\left(\mathrm{c} 0.57, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.05-7.99(\mathrm{~m}, 1 \mathrm{H}), 7.87-7.82(\mathrm{~m}, 1 \mathrm{H})$, $7.70(\mathrm{dd}, J=5.4,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.32(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.19$ (t, J=7.2 Hz, 1H), $7.10(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.62$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.44$ (q, $J=16.1$ $\mathrm{Hz}, 2 \mathrm{H}), 4.26-4.14(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{t}, \mathrm{J}=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.31(\mathrm{~m}, 1 \mathrm{H}), 2.69$ - $2.52(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 198.26, 195.02, 154.33, 138.17, 135.52, 134.58, 133.90, 132.45, 131.07, 128.84, 128.59, 127.58, 127.23, 127.11, 126.98, 126.37, 123.81, 120.69, 117.90, 108.25, 65.88, 52.07, 47.55, 47.02, 33.91, 18.99. HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 406.1802$, found: 406.1805. The enantiomeric excess
was determined to be >99\% by HPLC analysis on Chiralpak IA column (10\% isopropanol/hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}_{1}$ (minor) $=10.65 \mathrm{~min}, \mathrm{t}_{2}$ (major) $=16.05 \mathrm{~min}$.
(5aS,6S,12aS,12bS)-12-benzyl-6-methyl-6,12,12a,12b-tetrahydro-5H-naph tho[2,3-a]carbazole-5,13(5aH)-dione (4m)

$4 m$ Orange solid, 14 mg , yield: 70%; M.P.: $136-138^{\circ} \mathrm{C}$. $[\alpha]^{20}{ }_{D}=+135.6^{\circ}\left(\mathrm{c} 0.64, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.02$ (dd, $\left.J=5.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.88$ (dd, $J=$ $5.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.70 (dd, J = 5.0, $3.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.30 (dd, J = 23.7, $7.3 \mathrm{~Hz}, 3 \mathrm{H}$), 7.24 (d, J = $7.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.20-7.13$ (m, 2H), $6.74-6.66(\mathrm{~m}, 2 \mathrm{H}), 5.61-5.55$ (m, 1H), 4.45 (d, J = $33.3 \mathrm{~Hz}, 2 \mathrm{H}$), 4.17 (d, J = 3.7 Hz , $1 \mathrm{H}), 3.49$ (t, $J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.93$ (dd, $J=10.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.47$ (m, 1H), 1.18 (d, J = 6.8 Hz, 3H). ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.56, 194.71, 154.05, 138.15, 137.72, 135.38, 134.45, 133.88, 132.89, 129.92, 128.60, 127.71, 127.36, 127.15, 126.32, 126.02, 120.53, 118.22, 115.84, 108.81, 65.05, 56.17, 52.36, 48.80, 32.94, 20.04. HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{NO}_{2}$ [M+H] ${ }^{+}$: 406.1802, found: 406.1806. The enantiomeric excess was determined to be 83% by HPLC analysis on Chiralpak OD column (20% isopropanol/hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $365 \mathrm{~nm}, \mathrm{t}_{1}$ (minor) $=11.82 \mathrm{~min}, \mathrm{t}_{2}$ (major) $=17.83 \mathrm{~min}$.
The relative configuration of the title compound was tentatively assigned by means of NMR NOESY experiments. Irradiation at $2.5 \mathrm{ppm}\left(\mathrm{H}_{5} \mathrm{a}\right)$ gives a signal at $2.93 \mathrm{ppm}\left(\mathrm{H}_{12} \mathrm{~b}\right), 3.49 \mathrm{ppm}\left(\mathrm{H}_{12} \mathrm{~b}\right)$ and $4.17 \mathrm{ppm}\left(\mathrm{H}_{12} \mathrm{a}\right)$. Therefore, a $5 \mathrm{a}, 6,12 \mathrm{a}, 12 \mathrm{~b}$-cis configuration can be assumed.

(5aS,12aS,12bS)-6,12,12a,12b-tetrahydro-5H-naphtho[2,3-a]carbazole-5,1 3(5aH)-dione (4n)

4n Orange solid, 12 mg , yield: 77%; M.P.: $137-139{ }^{\circ} \mathrm{C}$. $[\mathrm{a}]^{20}{ }_{\mathrm{D}}=+233.1^{\circ}\left(\mathrm{c} 0.36, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.09-8.01(\mathrm{~m}, 1 \mathrm{H}), 7.96-7.87(\mathrm{~m}, 1 \mathrm{H})$, $7.77-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.12$ (t, J $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.81$ (dd, $J=16.8,7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.80(\mathrm{~d}$, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 1 \mathrm{H}), 4.33(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{t}, \mathrm{J}=$ $5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.48 (dd, $J=14.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}$), $2.66-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.46$ $(\mathrm{m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 196.79, 195.21, 133.56, 133.11, 131.96,
128.55, 126.16, 125.52, 119.67, 118.96, 111.14, 109.90, 58.61, 47.93, 46.23, 25.55. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 302.1176$, found: 302.1172 . The enantiomeric excess was determined to be 48% by HPLC analysis on Chiralpak IA column (20% isopropanol/hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}_{1}$ $($ minor $)=4.69 \mathrm{~min}, \mathrm{t}_{2}($ major $)=6.30 \mathrm{~min}$.
(5aS,12aS,12bS)-12-(4-methoxyphenyl)-6,12,12a,12b-tetrahydro-5H-napht ho[2,3-a]carbazole-5,13(5aH)-dione (4o)

40

Yellow solid, 18mg, yield: 85\%; M.P.: $132-134{ }^{\circ} \mathrm{C}$. $[\alpha]^{20}{ }_{D}=+221.3^{\circ}\left(\mathrm{c} 0.47, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.04$ (dd, $J=6.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.91-7.87$ (m, $1 \mathrm{H}), 7.75-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.32$ (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.24$ (d, J=8.8 Hz, 2H), 7.09 (t, J = $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 6.90 (d, J = $8.8 \mathrm{~Hz}, 2 \mathrm{H}$), $6.81-6.66$ (m, 2H), 5.72 (d, J = 3.6 Hz , 1 H), $4.79-4.73(\mathrm{~m}, 1 \mathrm{H}), 3.95-3.84(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 2 \mathrm{H}), 3.48$ (ddd, $J=12.2$, $7.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.75 (ddt, $J=14.9,7.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.33(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 198.28,195.04,151.78,138.43,135.46,134.59$, 134.09, 132.44, 129.74, 127.27, 126.53, 125.43, 120.58, 118.33, 114.86, 109.62, 108.52, 65.36, 55.49, 47.50, 46.65, 27.12. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 430.1414$, found: 430.1413 . The enantiomeric excess was determined to be 5% by HPLC analysis on Chiralpak IA column (20% isopropanol/hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}_{1}$ (minor) $=12.41 \mathrm{~min}, \mathrm{t}_{2}$ (major) $=13.49 \mathrm{~min}$.
(5aS,12aS,12bS)-12-(4-methoxybenzyl)-6,12,12a,12b-tetrahydro-5H-napht ho[2,3-a]carbazole-5,13(5aH)-dione (4p)

Orange solid, 20mg, yield: 93\%; M.P.: $133-135{ }^{\circ} \mathrm{C}$. $[\alpha]^{20}{ }_{\mathrm{D}}=+121.7^{\circ}\left(\mathrm{c} 0.86, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{dd}, J=5.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{dd}, J=$ $5.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.70 (dd, $J=5.1,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.25$ (dd, $J=21.8,7.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.14(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.78$ (d, J=8.5 Hz, 2H), 6.71 (t, J = $8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 5.67 (dd, J $=6.9,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{dd}, \mathrm{J}=45.4,15.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.18-4.11(\mathrm{~m}, 1 \mathrm{H}), 3.72$ (s, 3H), $3.49(\mathrm{t}, \mathrm{J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{ddd}, J=12.2,7.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-$ $2.63(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.26(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.36$, 195.07, 158.87, 153.96, 138.73, 135.35, 134.60, 133.94, 132.38, 129.98, 129.83, 128.95, 127.18, 126.35, 126.21, 120.47, 118.18, 113.96, 109.43, 108.94, 64.96, 55.24, 51.72, 47.68, 47.32, 26.92. HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 422.1751$, found: 422.1752 . The enantiomeric excess was determined to be 91% by HPLC analysis on Chiralpak IA column (10\% isopropanol/hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}_{1}$ (minor) $=19.13 \mathrm{~min}, \mathrm{t}_{2}$ (major) $=24.57 \mathrm{~min}$.

Yellow solid, 21mg, yield: 94\%; M.P.: $146-148{ }^{\circ} \mathrm{C}$. $[\alpha]^{20}{ }_{D}=+160.2^{\circ}\left(c 0.62, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, CDCl_{3}) $\delta 8.02$ (dd, $J=6.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.88-7.86$ (m, 1H), 7.72 (ddd, $J=6.1,5.4,3.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.32-$ $7.26(\mathrm{~m}, 5 \mathrm{H}), 7.18(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{dd}, J=$ $12.3,4.9 \mathrm{~Hz}, 2 \mathrm{H}$), 5.69 (dd, $J=7.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.54$ (d, $J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.18$ (dd, $J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.39-3.33(\mathrm{~m}, 2 \mathrm{H}), 2.67$ (ddd, $J=15.6,7.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.32 (ddd, $J=15.6,7.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.21$ (s, 9H). ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.26, 195.01, 153.95, 150.41, 138.66, 135.56, 135.01, 134.51, 133.76, 132.31, 129.81, 127.71, 127.11, 126.26, 126.14, 125.45, 120.46, 118.12, 109.42, 108.77, 65.00, 51.81, 47.67, 47.32, 34.40, 31.21, 26.89, 22.66, 14.12. HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 448.2271, found: 448.2276. The enantiomeric excess was determined to be 96\% by HPLC analysis on Chiralpak IA column (15\% isopropanol/hexane, 1 $\mathrm{mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}_{1}($ minor $)=8.06 \mathrm{~min}, \mathrm{t}_{2}($ major $)=10.37 \mathrm{~min}$.
(5aS,12aS,12bS)-12-(4-chlorobenzyl)-6,12,12a,12b-tetrahydro-5H-naphth o[2,3-a]carbazole-5,13(5aH)-dione (4r)

Yellow solid, 19 mg , yield: 90%; M.P.: $162-164{ }^{\circ} \mathrm{C}$.
$[\alpha]^{20}{ }_{\mathrm{D}}=+220.0^{\circ}\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.08-8.00(\mathrm{~m}, 1 \mathrm{H}), 7.87(\mathrm{dd}, J=5.6,3.2$
$\mathrm{Hz}, 1 \mathrm{H}), 7.72$ (dd, $J=5.6,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}$), $7.24(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.73(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.70$ (dd, $J=7.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{q}, J=16.2$ Hz, 2H), $4.22-4.16(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{t}, \mathrm{J}=4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.43-3.36(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{ddt}, J=14.8,7.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.29(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.12$, 194.91, 153.74, 138.50, 136.87, 135.26, 134.66, 134.06, 133.00, 132.41, 129.87, 128.83, 127.24, 126.36, 126.19, 120.52, 118.48, 109.76, 108.74, 65.49, 51.90, 47.61, 47.27, 26.93. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{CINO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 426.1255$, found: 426.1260. The enantiomeric excess was determined to be 79% by HPLC analysis on Chiralpak IA column (10\% isopropanol/hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}_{1}$ $($ minor $)=15.82 \mathrm{~min}, \mathrm{t}_{2}($ major $)=23.34 \mathrm{~min}$.

4. General procedure for the reduction reaction of $\mathbf{4 d} \mathbf{d}^{6}$

4d ($70 \mathrm{mg}, 0.15 \mathrm{mmol}$) was completely dissolved in EtOAc, and then $10 \mathrm{~mol} \%$ $\mathrm{Pd} / \mathrm{C}(70 \mathrm{mg}, 0.033 \mathrm{~mol})$ was added as a single portion. Anhydrous MeOH was then added by syringe at room temperature under a stream of hydrogen and the mixture was stirred overnight under hydrogen gas. The mixture was filtered through Celite, and the solvents were removed via rotary evaporation. The product was purified by flash chromatography (petroleum ether-ethyl acetate, $3: 1$) to give 50 mg (85%) of a yellow solid.
(5S,5aS,12bS)-12-benzyl-5-hydroxy-5,5a,6,7,12,12b-hexahydro-13H-napht ho[2,3-a]carbazol-13-one (4d-1)

Light yellow solid, 34mg, yield: 85\%; M.P.: 190 - 192 ${ }^{\circ} \mathrm{C} .[\alpha]^{20}{ }_{\mathrm{D}}=+193.7^{\circ}\left(\mathrm{c} 0.32, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.66(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.41 (t, J = 7.5 Hz, 1H), 7.26-7.19 (m, 4H), 7.15 (t, J $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}$), 5.61 (dd, J = 44.3, 17.5 Hz, 2H), 5.27 (s, 1H), 3.75 (d, J = $3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.92 (dd, $J=16.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.76 (dd, $J=16.5,10.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~d}, J=$ $5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.14 (dd, $J=13.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{dt}, J=12.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 195.28,143.61,138.70,137.39,134.64,132.64$, 130.11, 128.76, 127.85, 127.45, 127.14, 126.71, 125.96, 125.68, 121.70, 119.08, 118.35, 110.52, 109.69, 69.82, 47.14, 45.99, 43.71, 29.73, 20.46, 18.78. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 394.1802, found: 394.1800. The enantiomeric excess was determined to be 93% by HPLC analysis on Chiralpak IA column (20% isopropanol/hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}_{1}$ $($ minor $)=11.00 \mathrm{~min}, \mathrm{t}_{2}($ major $)=13.50 \mathrm{~min}$.
The relative configuration of the title compound was tentatively assigned by means of NMR NOESY experiments. Irradiation at $2.14 \mathrm{ppm}\left(\mathrm{H}_{7}\right)$ gives signals at $1.43 \mathrm{ppm}\left(\mathrm{H}_{6}\right)$ and $2.76 \mathrm{ppm}\left(\mathrm{H}_{5} \mathrm{a}\right)$ and at $2.92 \mathrm{ppm}\left(\mathrm{H}_{12} \mathrm{~b}\right)$. Irradiation at $2.76 \mathrm{ppm}\left(\mathrm{H}_{5} \mathrm{a}\right)$ gives signals at $2.92 \mathrm{ppm}\left(\mathrm{H}_{12} \mathrm{~b}\right)$. Therefore, a 5a,12b-cis configuration can be assumed.

5. A detailed synthetic method example at a minimum 1 mmol scale

A representative example: $4 \AA$ MS (30 mg) was added to a reaction tube and flame dried in situ. The tube was back-filled with argon and substrate 1a (1 equiv, 1 mmol), catalyst $\mathrm{Mg}[\mathrm{P} 4]_{2}$ ($360 \mathrm{mg}, 5 \mathrm{~mol} \%$) and 2a (1.5 equiv, 1.25 $\mathrm{mmol})$ were added. The resulting mixture was stirred at $-25^{\circ} \mathrm{C}$ for 10 min . Then anhydrous methylcyclohexane (100 mL) was added via a syringe. The mixture was then stirred overnight at the same temperature to give the crude product. The crude product was purified by washing with hexane and MeOH to give the product 3a. Then the product 3a was analyzed by HPLC. Yellow solid, 353 mg , yield: 90%, The enantiomeric excess was determined to be 93% by HPLC analysis on Chiralpak AD column (20% isopropanol/hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}_{1}($ minor $)=12.4 \mathrm{~min}, \mathrm{t}_{2}$ (major) $=14.9 \mathrm{~min}$. The ee value has a slight decrease from 96% to 93%.

(5aS,12aS,12bS)-12-benzyl-6,12,12a,12b-tetrahydro-5H-naphtho[2,3-a]car bazole-5,13(5aH)-dione (3a)
Yellow solid, 353mg, Yield: 90\%, The enantiomeric excess was determined to be 93% by HPLC analysis on Chiralpak AD column (20% isopropanol/hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}_{1}$ (minor) $=12.5 \mathrm{~min}, \mathrm{t}_{2}$ (major) $=14.9 \mathrm{~min}$. The ee value has a slight decreased from 96% to 93%.

6. References

(1) Klussmann, M.; Ratjen, L.; Hoffmann, S.; Wakchaure, V.; Goddard, R.; Benjamin List. Synthesis of TRIP and Analysis of Phosphate Salt Impurities. Synlett 2010, 14, 2189-2192.
(2) Nguyen, T. N.; Nguyen, T. S.; May, J. A. Brønsted Acid Catalyzed Homoconjugate Addition of Organotrifluoroborates to Arylated Cyclopropyl Ketones. Org. Lett. 2016, 18, 3786-3789.
(3) Cao, Y. J.; Cheng, H. G.; Lu, L. Q.; Zhang, J. J.; Cheng, Y.; Chen, J. R.; Xiao, W. J. Organocatalytic Multiple Cascade Reactions: A New Strategy for the Construction of Enantioenriched Tetrahydrocarbazoles. Adv. Synth. Catal. 2011, 353, 617-623
(4) Gioia, C.; Hauville, A.; Bernardi, L.; Fini, F.; Ricci, A. Organocatalytic Asymmetric Diels-Alder Reactions of 3-Vinylindoles. Angew. Chem., Int. Ed. 2008, 47, 9236-9239.
(5) Terada, M.; Moriya, K.; Kanomata, K.; Sorimachi, K. Chiral Brønsted acid catalyzed stereoselective addition of azlactones to 3-vinylindoles for facile access to enantioenriched tryptophan derivatives. Angew. Chem., Int. Ed. 2011, 50, 12586-12590.
(6) Peat, A. J.; Buchwald, S. L.; Novel Syntheses of Tetrahydropyrroloquinolines: Applications to Alkaloid Synthesis. J. Am. Chem. Soc. 1996, 118, 1028-1030.
7. Copies of NMR spectra and HPLC Chromatograms 1-benzyl-3-vinyl-1H-indole (2a)
Figure $\mathrm{S} 1 .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2 a

Figure S2. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2a

1-benzyl-4-bromo-3-vinyl-1H-indole (2b)
Figure S3. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{2 b}$

2b

Figure S4. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{2 b}$

1-benzyl-4-chloro-3-vinyl-1H-indole (2c)

Figure S5. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2c

2c

Figure S6. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2 c

2c

[^0]1-benzyl-5-bromo-3-vinyl-1H-indole (2d)
Figure S7. ${ }^{1} \mathrm{H}$ NMR (400MHz, CDCl_{3}) spectrum of 2d

2d

Figure S8. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2 d

1-benzyl-5-chloro-3-vinyl-1H-indole (2e)
Figure S9. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{2 e}$

Figure $\mathrm{S} 10 .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2 e

1-benzyl-6-bromo-3-vinyl-1H-indole (2f)
Figure S11. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $2 f$

$2 f$

Figure $\mathrm{S} 12 .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2 f

1-benzyl-6-fluoro-3-vinyl-1H-indole (2g)
Figure S13. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{2 g}$

$2 g$

Figure $\mathbf{S 1 4} .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2 g

1-benzyl-5-methyl-3-vinyl-1H-indole (2h)
Figure S15. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2 h

Figure $\mathrm{S} 16 .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2 h

1-benzyl-5-methoxy-3-vinyl-1H-indole (2i)
Figure S17. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{2 i}$

$2 i$

Figure S18. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{2 i}$

1-benzyl-6-methoxy-3-vinyl-1H-indole (2j)
Figure S19. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{2 j}$

1-benzyl-7-methyl-3-vinyl-1H-indole (2k)
Figure S21. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{2 k}$

Figure S22. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2 k

$\begin{array}{lllllllllllllllllll}145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 \\ \text { chemical shift }\end{array}$

1-benzyl-3-(prop-1-en-2-yl)-1H-indole (2I)
Figure S23. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 21

Figure S24. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 21

(E/Z)-1-benzyl-3-(prop-1-en-1-yl)-1H-indole (2m)
Figure S25. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2 m

Figure S26. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2 m

$\begin{array}{lllllllllllllllll}140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & 65 \\ \text { chemical shift }\end{array}$

3-vinyl-1H-indole (2n)

Figure S27. ${ }^{1} \mathrm{H}$ NMR (400MHz, CDCl_{3}) spectrum of 2 n

Figure S28. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2 n

2n

1-(4-methoxyphenyl)-3-vinyl-1H-indole (20)
Figure S29. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2 o

Figure S30. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 20

1-(4-methoxybenzyl)-3-vinyl-1H-indole (2p)
Figure S31. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $2 p$

Figure $\mathrm{S} 32 .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2 p

1-(4-(tert-butyl)benzyl)-3-vinyl-1H-indole (2q)

Figure S33. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{2 q}$

Figure $\mathrm{S} 34 .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $2 q$

1-(4-chlorobenzyl)-3-vinyl-1H-indole (2r)
Figure S35. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2 r

Figure $\mathrm{S} 36 .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2 r

(5aS,12aS,12bS)-12-benzyl-6,12,12a,12b-tetrahydro-5H-naphtho[2,3-a]car bazole-5,13(5aH)-dione (3a)
Figure $\mathrm{S} 37 .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3 a

Figure $\mathrm{S} 38 .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3a

Figure S39. HPLC spectrum of 3a
3 B (The top one is racemic, and the bottom one is chiral)
mV

Peak\#	Ret. Time	Area	Height	Conc.	Area\%
1	11.718	4924652	108350	49.796	49.796
2	13.908	4965098	89467	50.204	50.204
Total		9889750	197817		100.000

mV

Peak\#	Ret. Time	Area	Height	Conc.	Area\%
1	12.352	1171623	22960	1.818	1.818
2	14.852	63284870	980067	98.182	98.182
Total		64456493	1003026		100.000

(4aS,11aS,11bS)-11-benzyl-5,11,11a,11b-tetrahydro-1H-benzo[a]carbazol e-1,4(4aH)-dione (3b)
Figure S40. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3 b

3b

Figure S41. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3 b

[^1]Figure S42. HPLC spectrum of 3b

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	22.965		1.2827	1.15252 e 4	149.75708	49.3014
2	34.147		2.0614	1.18518 e 4	95.82256	50.6986

Totals :
$2.33770 \mathrm{e} 4 \quad 245.57964$

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	22.084	MM	1.9017	63.66054	5.57939e-1	1.4867
2	33.259	MM	1.8366	4218.44775	38.28151	98.5133

Totals :
4282.1082938 .83945
(4aS,11aS,11bS)-11-benzyl-2,3-dimethyl-5,11,11a,11b-tetrahydro-1H-benz o[a]carbazole-1,4(4aH)-dione (3c)
Figure S43. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3 c

Figure $\mathrm{S} 44 .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3 c

Figure S45. HPLC spectrum of 3c

3c (The top one is racemic, and the bottom one is chiral) mV

Detector A Channel 1 254nm

Peak	Ret. Time	Area	Height	Area\%	Conc.
1	11.444	2887145	104188	49.983	49.983
2	13.479	2889104	82711	50.017	50.017
Total		5776249	186898	100.000	

$m V$

Detector A Channel 1 254nm

Peak	Ret. Time	Area	Height	Area\%	Conc.
1	11.496	47770	1870	0.819	0.819
2	13.411	5782979	167468	99.181	99.181
Total		5830749	169338	100.000	

(4aS,11aS,11bS)-11-benzyl-3-methyl-5,11,11a,11b-tetrahydro-1H-benzo[a]carbazole-1,4(4aH)-dione and
(4aS,11aS,11bS)-11-benzyl-2-methyl-5,11,11a,11b-tetrahydro-1H-benzo[a]carba-zole-1,4(4aH)-dione (3d and 3d')
Figure S46. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3 d and 3 d '

Figure S47. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3 d and 3 d '

Figure S48. HPLC spectrum of 3d and 3d'
3d and 3d' (The top one is racemic, and the bottom one is chiral)

Detector A Channel 1 254nm

Peak\#	Ret. Time	Area	Height	Conc.	Area\%
1	7.091	2717134	277432	45.524	45.524
Peak\#	Ret. Time	Area	Height	Conc.	Area\%
2	7.708	2707090	250094	45.356	45.356
3	8.781	271620	22759	4.551	4.551
4	9.298	272688	21752	4.569	4.569
Total		5968532	572036		100.000

Peak\#	Ret. Time	Area	Height	Conc.	Area\%
1	7.789	317341	28955	5.740	5.740
2	8.551	3265517	278780	59.066	59.066
3	9.950	42335	3202	0.766	0.766
4	10.584	1903352	118724	34.428	34.428
Total		5528545	429661		100.000

(5aS,12aS,12bS)-12-benzyl-4-hydroxy-6,12,12a,12b-tetrahydro-5H-naphth o[2,3-a]carbazole-5,13(5aH)-dione and
(5aS,12aS,12bS)-12-benzyl-1-hydroxy-6,12,12a,12b-tetrahydro-5H-naphth o[2,3-a]carbazole-5,13(5aH)-dione (3e and 3e')
Figure S49. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3 e and 3 e '

and

Figure S50. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3 e and 3 e '
\circ
त्र
合
1

$3 e$ and $3 e^{\prime}$

Figure S51. HPLC spectrum of $3 e$ and $3 e^{\prime}$
$3 e$ and $3 e^{\prime}$ (The top one is racemic, and the bottom one is chiral)

Signal 2: DAD1 B, Sig=365,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	8.996	BB	0.2121	2841.61572	204.51073	42.6091
2	10.037	BB	0.2481	446.62421	27.40537	6.6970
3	11.397	BB	0.2749	2897.87451	160.30252	43.4527
4	13.162	BB	0.3389	482.91556	21.59663	7.2412

Totals :

Signal 2: DAD1 B, Sig=365,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	9.065	MM	0.2078	10.39936	8.34021e-1	0.1736
2	10.133	MM	0.3292	94.03818	4.76059	1.5697
3	11.481	MM	0.3166	426.49530	22.44905	7.1192
4	13.230	MM	0.3748	5459.86328	242.75932	91.1375

Totals : $5990.79612 \quad 270.80299$
(5aS,12aS,12bS)-12-benzyl-1,4-dihydroxy-6,12,12a,12b-tetrahydro-5H-na phtho[2,3-a]carbazole-5,13(5aH)-dione (3f)

Figure S52. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3 f

Figure $\mathbf{S 5 3 .}{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3 f

Figure S54. HPLC spectrum of 3f

$3 \mathbf{f}$ (The top one is racemic, and the bottom one is chiral)

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	8.978	MM	0.2428	2.33431 e 4	1602.43994	50.5501
2	11.433	MM	0.3260	2.28351 e 4	1167.54492	49.44

Totals :
$4.61782 \mathrm{e} 4 \quad 2769.98486$

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \text { s }]} \end{gathered}$	Height [mAU]	Area \%
1	8.962	MM	0.2403	1989.16333	137.96635	7.6068
2	11.210	MM	0.3329	2.41606 e 4	1209.45483	92.3932
Total				2.61498 e 4	1347.42119	

(4aS,11aS,11bS)-11-benzyl-2,3-dichloro-5,11,11a,11b-tetrahydro-1H-benz
o[a]carbazole-1,4(4aH)-dione (3h)
Figure S55. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3 h

Figure $\mathbf{S 5 6} .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3 h

Figure S57. HPLC spectrum of 3h

3 h (The top one is racemic, and the bottom one is chiral)

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*}\right]} \end{gathered}$	Height [mAU]	Area \%
1	7.347		0.1603	1428.26379	136.19902	49.0044
2	8.077	VB	0.1760	1486.30042	127.52252	50.9956

Totals :
$2914.56421 \quad 263.72154$

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	7.879	BV	0.1811	2436.79175	204.38507	35.5032
2	8.816	VB	0.2029	4426.79883	333.43723	64.4968
Totals				6863.59058	537.82230	

(5aS,12aS,12bS)-12-benzyl-8-bromo-6,12,12a,12b-tetrahydro-5H-naphtho
[2,3-a]carbazole-5,13(5aH)-dione (4b)
Figure S58. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 4 b

Figure S59. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 4b

Figure S60. HPLC spectrum of 4b

$\mathbf{4 b}$ (The top one is racemic, and the bottom one is chiral)

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	9.808	BV	0.2290	2.90761 e 4	1938.37561	49.5564
2	10.650	VBA	0.2501	2.95966 e 4	1797.44495	50.4436

Totals :
$5.86726 \mathrm{e} 4 \quad 3735.82056$

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	9.667	MM	0.2334	2424.0472	238.15424	4.6713
2	10.527	MM	0.2818	4.94683 e 4	2925.92139	95.3287
Total	s :			5.18923 e 4	3164.07562	

(5aS,12aS,12bS)-12-benzyl-8-chloro-6,12,12a,12b-tetrahydro-5H-naphtho
[2,3-a]carbazole-5,13(5aH)-dione (4c)
Figure S61. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 4c

Figure $\mathrm{S} 62 .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 4c

Figure S63. HPLC spectrum of 4c

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \text { s }]} \end{gathered}$	Height [mAU]	Area \%
1	9.292		0.2021	2.17722 e 4	1648.36963	48.9440
2	10.028	VBA	0.2237	2.27117e4	1543.62305	51.0560

Totals :
$4.44839 \mathrm{e} 4 \quad 3191.99268$

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1						
1	25	BV	1997	1111	85	3.6090
2	10.004	VBA	0.2208	2.96744 e 4	2051.11548	96.3910
Total				3.07854 e 4	2136.55039	

(5aS,12aS,12bS)-12-benzyl-9-bromo-6,12,12a,12b-tetrahydro-5H-naphtho
[2,3-a]carbazole-5,13(5aH)-dione (4d)
Figure S64. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 4 d

Figure $\operatorname{S65} .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 4 d

Figure S66. HPLC spectrum of 4d

$\mathbf{4 d}$ (The top one is racemic, and the bottom one is chiral)

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	10.448		0.2833	7363.11133	398.92404	49.8553
2	13.971		0.3705	7405.85742	303.64636	50.1447

```
Totals :
    1.47690e4 702.57040
```


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \text { s }]} \end{gathered}$	Height [mAU]	Area \%
1	11.010	MM	0.3688	602.62848	27.23625	2.3272
2	15.312	MM	0.4909	2.52922 e 4	858.64404	97.6728
Total				2.58948 e 4	885.88029	

Figure $\mathbf{S 6 7}$. NOESY NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 4 d

(5aS,12aS,12bS)-12-benzyl-9-chloro-6,12,12a,12b-tetrahydro-5H-naphtho
[2,3-a]carbazole-5,13(5aH)-dione (4e)
Figure S68. ${ }^{1} \mathrm{H}$ NMR (400MHz, CDCl_{3}) spectrum of 4 e

Figure S69. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 4 e

Figure S70. HPLC spectrum of 4 e

$\mathbf{4 e}$ (The top one is racemic, and the bottom one is chiral)

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	11.561	VB R	0.2896	1.36232 e 4	710.90973	49.9336
2	15.700	BB	0.3979	1.36595 e 4	521.02631	50.06

Totals :
$2.72827 e 4 \quad 1231.93604$

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	11.610	VB R	0.2971	541.36572	24.35772	2.1802
2	15.700	BB	0.3982	2.42892 e 4	925.33527	97.8198
Total	s :			2.48306 e 4	949.69299	

(5aS,12aS,12bS)-12-benzyl-10-bromo-6,12,12a,12b-tetrahydro-5H-naphth
o[2,3-a]carbazole-5,13(5aH)-dione (4f)
Figure S71. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 4 f

Figure S72. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 4 f

Figure $\mathbf{S 7 3}$. HPLC spectrum of 4 f

$4 \mathbf{f}$ (The top one is racemic, and the bottom one is chiral)

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	14.443	VV R	0.6657	5958.07080	135.87486	50.4273
2	21.069	BB	1.390	5857.10205	62.18026	49.57

Totals : $\quad 1.18152 \mathrm{e} 4198.05512$

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	14.573	MM	0.7275	1.10375 e 4	252.85777	94.9152
2	21.782		1.0906	591.29822	9.03622	5.0848

Totals :
$1.16288 \mathrm{e} 4 \quad 261.89399$
(5aS,12aS,12bS)-12-benzyl-10-fluoro-6,12,12a,12b-tetrahydro-5H-naphth
o[2,3-a]carbazole-5,13(5aH)-dione (4g)
Figure S74. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 4 g

Figure S75. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{4 g}$

Figure S76. HPLC spectrum of 4 g

$\mathbf{4 g}$ (The top one is racemic, and the bottom one is chiral)

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak RetTime Type	Width [min]	Area $[\mathrm{min}]$	Height $\left[\mathrm{mAU}^{*} \mathrm{~s}\right]$	Area $[\mathrm{mAU}]$	$\%$

Totals : 7.06363e4 1343.55212

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	12.738		0.6232	8451.62891	226.03871	92.6269
2	19.193		0.9740	672.75415	11.51143	7.3731

Totals : $9124.38306 \quad 237.55014$
(5aS,12aS,12bS)-12-benzyl-9-methyl-6,12,12a,12b-tetrahydro-5H-naphtho
[2,3-a]carbazole-5,13(5aH)-dione (4h)
Figure S77. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 4 h

Figure S78. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 4 h

Figure S79. HPLC spectrum of 4h

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak RetTime Type | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# Width | [min] | Area | Height | Area |
| [min] | [mAU*s] | [mAU] | $\%$ | |

Totals :
1.39494 e 4707.22903

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	10.593	BB	0.2563	493.92798	29.36253	3.8812
2	15.503	VBA	0.3658	1.22321 e 4	506.34439	96.1188

ho[2,3-a]carbazole-5,13(5aH)-dione (4i)
Figure S80. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 4 i

Figure S81. ${ }^{13} \mathrm{C}$ NMR (151MHz, CDCl_{3}) spectrum of 4 i

Figure S82. HPLC spectrum of $\mathbf{4 i}$

$4 \mathbf{i}$ (The top one is racemic, and the bottom one is chiral)

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	13.699		0.3661	1.41247 e 4	584.19623	50.1368
2	19.385	BB	0.5138	1.40476 e 4	416.22028	49.8632

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \text { s }]} \end{gathered}$	Height [mAU]	Area \%
1	13.482	MM	0.3396	2000.60400	98.17230	7.6662
2	18.988	MM	0.5202	2.40957 e 4	772.01215	92.3338
Tota	ls :			2.60963 e 4	870.18445	

(5aS,12aS,12bS)-12-benzyl-10-methoxy-6,12,12a,12b-tetrahydro-5H-naph
tho[2,3-a]carbazole-5,13(5aH)-dione (4j)
Figure S83. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 4 j

4j

Figure S84. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 4 j

Figure S85. HPLC spectrum of $4 \mathbf{j}$

$4 \mathbf{j}$ (The top one is racemic, and the bottom one is chiral)

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	20.831	BV R	0.5674	1.50683 e 4	406.31296	49.2364
2	29.026	BB	1.4313	1.55356 e 4	156.88506	50.7636

Totals :
3.06039 e 4
563.19801

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type	Width	Area	Height	Area	
$\#$	$[\mathrm{~min}]$	$[\mathrm{min}]$	$\left[\mathrm{mAU}^{*} \mathrm{~s}\right]$	$[\mathrm{mAU}]$	$\%$

o[2,3-a]carbazole-5,13(5aH)-dione (4k)
Figure S86. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 4 k

Figure S87. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 4 k

Figure S88. HPLC spectrum of $4 k$

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak R \#	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area \%
1	8.657	VV R	0.1997	1.13524 e 4	845.34369	49.5303
2	9.386	VB	0.2194	1.15677 e 4	796.47290	50.4697
Totals :				2.29201 e 4	1641.81659	
mAU			$\stackrel{\text { \% }}{\substack{0}}$			
-	17	-1 ${ }_{8}$	-1!	い'10 ${ }_{10}$	11×12	$\cdots{ }_{13}^{13}$ min

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	8.733	BV E	0.7853	112.09278	1.77371	1.5031
2	9.449	VB R	0.2217	7345.20850	499.02661	98.4969
Total	ls :			7457.30128	500.80032	

(5aS,12aS,12bS)-12-benzyl-7-methyl-6,12,12a,12b-tetrahydro-5H-naphtho
[2,3-a]carbazole-5,13(5aH)-dione (4I)
Figure S89. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 4 I

Figure S90. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 41

Figure S91. HPLC spectrum of 41

41 (The top one is racemic, and the bottom one is chiral)

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \text { s }]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	10.662	BV R	0.2457	1.24332 e 4	764.22131	49.6393
2	16.045	VV R	0.4014	1.26139 e 4	481.14987	50.3607

Totals :
2.50471 e 41245.37119

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

(5aS,12aS,12bS)-12-benzyl-6-methyl-6,12,12a,12b-tetrahydro-5H-naphtho

[2,3-a]carbazole-5,13(5aH)-dione (3am)

Figure S92. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3am

Figure S93. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 4 m

Figure S94. HPLC spectrum of $4 m$

4 m (The top one is racemic, and the bottom one is chiral)
mV

Detector A Channel 2 365nm

Peak	Ret. Time	Area	Height	Area\%	Conc.
1	10.942	2364876	52549	49.655	49.655
2	16.958	2397699	48054	50.345	50.345
Total		4762576	100604	100.000	

mV

Detector A Channel 2 365nm

Peak	Ret. Time	Area	Height	Area\%	Conc.
1	11.816	741878	26012	8.186	8.186
2	17.834	8320937	131985	91.814	91.814
Total		9062815	157997	100.000	

Figure S95. NOESY NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 4 m

(5aS,12aS,12bS)-6,12,12a,12b-tetrahydro-5H-naphtho[2,3-a]carbazole-5,1

3(5aH)-dione (4n)
Figure S96. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 4 n

Figure S97. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 4 n

Figure S98. HPLC spectrum of $4 n$

$\mathbf{4 n}$ (The top one is racemic, and the bottom one is chiral)

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	4.701	MM	0.1032	2256.42188	364.25891	48.5430
2	6.249	MM	0.1332	2391.87671	299.35306	51.4570

Totals : 4648.29858663 .61197

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

(5aS,12aS,12bS)-12-(4-methoxyphenyl)-6,12,12a,12b-tetrahydro-5H-napht
ho[2,3-a]carbazole-5,13(5aH)-dione (40)
Figure S99. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 40

40

Figure S100. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 40

Figure S101. HPLC spectrum of 40

40 (The top one is racemic, and the bottom one is chiral)

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	12.432		0.3221	6603.14502	341.71100	49.6960
2	13.423		0.3743	6683.92480	297.60675	50.3040

Totals : $\quad 1.32871 \mathrm{e} 4 \quad 639.31775$

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	12.413	MM	0.3190	700.04437	36.57253	47.3318
2	13.491	MM	0.3679	778.97064	35.28646	52.6682
Total	s :			1479.01501	71.85899	

(5aS,12aS,12bS)-12-(4-methoxybenzyl)-6,12,12a,12b-tetrahydro-5H-napht
ho[2,3-a]carbazole-5,13(5aH)-dione (4p)
Figure S102. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 4 p

Figure S103. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 4 p

Figure S104. HPLC spectrum of $4 p$

$4 p$ (The top one is racemic, and the bottom one is chiral)

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	19.226	MM	1.0601	3.29921 e 4	518.70599	50.1117
2	23.941	MM	1.3308	3.28451 e 4	411.34277	49.8883

Totals :
$6.58373 \mathrm{e} 4 \quad 930.04877$

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	19.132	MM	0.5128	2668.26953	86.72807	4.4186
2	24.570	MM	1.3377	5.77183 e 4	719.12042	95.5814

Totals :
6.03865 e 4805.84850
(5aS,12aS,12bS)-12-(4-(tert-butyl)benzyl)-6,12,12a,12b-tetrahydro-5H-nap
htho[2,3-a]carbazole-5,13(5aH)-dione (4q)
Figure S105. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 4 q

Figure S106. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 4 q

Figure S107. HPLC spectrum of $4 q$

$\mathbf{4 q}$ (The top one is racemic, and the bottom one is chiral)

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak RetTime Type	Width	Area	Height	Area	
\#	[min]	[min]	[mAU*s]	[mAU]	$\%$

Totals :
8102.20752458 .12520

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	8.055	BB	0.2533	110.80417	6.55222	1.9271
2	10.367	BB	0.3464	5639.04834	245.14120	98.0729
Total				5749.85251	251.69343	

(5aS,12aS,12bS)-12-(4-chlorobenzyl)-6,12,12a,12b-tetrahydro-5H-naphth o[2,3-a]carbazole-5,13(5aH)-dione (4r)
Figure S108. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 4 r

Figure S109. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{4 r}$

Figure S110. HPLC spectrum of $4 \mathbf{r}$

$4 \mathbf{r}$ (The top one is racemic, and the bottom one is chiral)

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type	Width	Area	Height	Area	
\#	[min]	[min]	[mAU*s]	[mAU]	$\%$

Totals : 6726.00781224 .70193

Signal 2: DAD1 B, Sig=254,4 Ref=360,100

Peak RetTime Type	Width	Area	Height	Area	
$\#$	$[$ min]	$[$ min]	[mAU*s]	[mAU]	$\%$

(5S,5aS,12bS)-12-benzyl-5-hydroxy-5,5a,6,7,12,12b-hexahydro-13H-napht ho[2,3-a]carbazol-13-one (4d-1)
Figure S111. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $4 \mathrm{~d}-1$

Figure $\mathrm{S} 112 .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $4 \mathrm{~d}-1$

Figure S113. HPLC spectrum of $\mathbf{4 d} \mathbf{d} \mathbf{- 1}$

$\mathbf{4 d - 1}$ (The top one is racemic, and the bottom one is chiral)

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	10.995	BV	0.2874	1.76746 e 4	939.91205	49.4886
2	13.515	VV R	0.3543	1.80398 e 4	766.24023	50.5114

Totals :
$3.57144 \mathrm{e} 4 \quad 1706.15228$

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*}\right]} \end{gathered}$	Height [mAU]	Area \%
1	11.003	MM	0.1947	1707.68250	146.18575	3.7717
2	13.501	MM	0.3888	4.35690 e 4	1867.72107	96.2283
Total	s			4.52767e4	2013.90681	

Figure S114. NOESY NMR (600MHz, CDCl_{3}) spectrum of 4d-1

Figure S115. HPLC spectrum of 3 a at a minimum 1 mmol scale
mV

Peak\#	Ret. Time	Area	Height	Conc.	Area\%
1	12.482	2040286	37118	3.567	3.567
2	14.777	55155904	864956	96.433	96.433
Total		57196190	902073		100.000

[^0]: $\begin{array}{llllllllllllllll}140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & 65 \\ \text { chemical shift }\end{array}$

[^1]:

