SUPPORTING INFORMATION

Cytotoxic Pregnane Steroidal Glycosides from *Chonemorpha megacalyx*

Fang-Yu Yuan,[†] Xiao-Ling Wang,[‡] Tian Wang,[†] Tao Shen,[†] Dongmei Ren,[†] Hong-Xiang Lou,[†] and Xiao-Ning Wang^{*,†}

[†]Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Wen-Hua Road, Jinan 250012, P. R. China

[‡]The Second Hospital of Shandong University, 247 Bei-Yuan Street, Jinan 250033, P. R. China

*Corresponding author

Tel.: +86 531 88382012; fax: +86 531 88382548

E-mail address: wangxn@sdu.edu.cn

Contents

Experimental section

X-ray Crystallographic Analysis

Figures

- Figure S1. Structure of the known compounds.
- Figure S2. Key HMBC (H \rightarrow C) and ¹H⁻¹H COSY (H–H) correlations of 2, 4–8, and 10–14.
- Figure S3. Key NOESY correlations ($H \leftrightarrow H$) of 2 and 4–14.
- Figure S4. ¹H NMR (600 MHz, CDCl₃) spectrum of 1.
- Figure S5. ¹³C NMR (150 MHz, CDCl₃) spectrum of 1.
- Figure S6. HSQC (600 MHz, CDCl₃) spectrum of 1.
- Figure S7. HMBC (600 MHz, CDCl₃) spectrum of 1.
- Figure S8. ¹H–¹H COSY (600 MHz, CDCl₃) spectrum of 1.
- Figure S9. NOESY (600 MHz, CDCl₃) spectrum of 1.
- Figure S10. HRESIMS spectrum of 1.
- Figure S11. IR spectrum of 1.
- Figure S12. ¹H NMR (600 MHz, CDCl₃) spectrum of 2.
- Figure S13. ¹³C NMR (150 MHz, CDCl₃) spectrum of 2.
- Figure S14. HSQC (600 MHz, CDCl₃) spectrum of 2.
- Figure S15. HMBC (600 MHz, CDCl₃) spectrum of 2.
- Figure S16. $^{1}H-^{1}H$ COSY (600 MHz, CDCl₃) spectrum of 2.
- Figure S17. NOESY (600 MHz, CDCl₃) spectrum of 2.
- Figure S18. HRESIMS spectrum of 2.
- Figure S19. IR spectrum of 2.
- Figure S20. ¹H NMR (600 MHz, CDCl₃) spectrum of **3**.
- Figure S21. ¹³C NMR (150 MHz, CDCl₃) spectrum of **3**.
- Figure S22. HSQC (600 MHz, CDCl₃) spectrum of 3.
- Figure S23. HMBC (600 MHz, CDCl₃) spectrum of 3.
- Figure S24. $^{1}H-^{1}H$ COSY (600 MHz, CDCl₃) spectrum of **3**.
- Figure S25. NOESY (600 MHz, CDCl₃) spectrum of 3.
- Figure S26. HRESIMS spectrum of 3.

- Figure S27. IR spectrum of 3.
- Figure S28. ¹H NMR (600 MHz, CDCl₃) spectrum of 4.
- Figure S29. ¹³C NMR (150 MHz, CDCl₃) spectrum of 4.
- Figure S30. HSQC (600 MHz, CDCl₃) spectrum of 4.
- Figure S31. HMBC (600 MHz, CDCl₃) spectrum of 4.
- Figure S32. $^{1}H-^{1}H$ COSY (600 MHz, CDCl₃) spectrum of 4.
- Figure S33. NOESY (600 MHz, CDCl₃) spectrum of 4.
- Figure S34. HRESIMS spectrum of 4.
- Figure S35. IR spectrum of 4.
- Figure S36. ¹H NMR (600 MHz, CDCl₃) spectrum of 5.
- Figure S37. ¹³C NMR (150 MHz, CDCl₃) spectrum of 5.
- Figure S38. HSQC (600 MHz, CDCl₃) spectrum of 5.
- Figure S39. HMBC (600 MHz, CDCl₃) spectrum of 5.
- Figure S40. ¹H–¹H COSY (600 MHz, CDCl₃) spectrum of 5.
- Figure S41. NOESY (600 MHz, CDCl₃) spectrum of 5.
- Figure S42. HRESIMS spectrum of 5.
- Figure S43. IR spectrum of 5.
- Figure S44. ¹H NMR (600 MHz, CDCl₃) spectrum of 6.
- Figure S45. ¹³C NMR (150 MHz, CDCl₃) spectrum of 6.
- Figure S46. HSQC (600 MHz, CDCl₃) spectrum of 6.
- Figure S47. HMBC (600 MHz, CDCl₃) spectrum of 6.
- Figure S48. $^{1}H-^{1}H$ COSY (600 MHz, CDCl₃) spectrum of 6.
- Figure S49. NOESY (600 MHz, CDCl₃) spectrum of 6.
- Figure S50. HRESIMS spectrum of 6.
- Figure S51. IR spectrum of 6
- Figure S52. ¹H NMR (600 MHz, CDCl₃) spectrum of 7.
- Figure S53. ¹³C NMR (150 MHz, CDCl₃) spectrum of 7.
- Figure S54. HSQC (600 MHz, CDCl₃) spectrum of 7.
- Figure S55. HMBC (600 MHz, CDCl₃) spectrum of 7.
- Figure S56. $^{1}H-^{1}H$ COSY (600 MHz, CDCl₃) spectrum of 7.
- Figure S57. NOESY (600 MHz, CDCl₃) spectrum of 7.
- Figure S58. HRESIMS spectrum of 7.

Figure S59. IR spectrum of 7.

- Figure S60. ¹H NMR (600 MHz, CDCl₃) spectrum of 8.
- **Figure S61.** ¹³C NMR (150 MHz, CDCl₃) spectrum of **8**.
- Figure S62. HSQC (600 MHz, CDCl₃) spectrum of 8.
- Figure S63. HMBC (600 MHz, CDCl₃) spectrum of 8.
- Figure S64. $^{1}H-^{1}H$ COSY (600 MHz, CDCl₃) spectrum of 8.
- Figure S65. NOESY (600 MHz, CDCl₃) spectrum of 8.
- Figure S66. HRESIMS spectrum of 8.
- Figure S67. IR spectrum of 8.
- Figure S68. ¹H NMR (600 MHz, CDCl₃) spectrum of 9.
- Figure S69. ¹³C NMR (150 MHz, CDCl₃) spectrum of 9.
- Figure S70. HSQC (600 MHz, CDCl₃) spectrum of 9.
- Figure S71. HMBC (600 MHz, CDCl₃) spectrum of 9.
- Figure S72. ¹H–¹H COSY (600 MHz, CDCl₃) spectrum of 9.
- Figure S73. NOESY (600 MHz, CDCl₃) spectrum of 9.
- Figure S74. HRESIMS spectrum of 9.
- Figure S75. IR spectrum of 9.
- Figure S76. ¹H NMR (600 MHz, methanol- d_4) spectrum of 10.
- Figure S77. ¹³C NMR (150 MHz, methanol- d_4) spectrum of 10.
- Figure S78. HSQC (600 MHz, methanol- d_4) spectrum of 10.
- Figure S79. HMBC (600 MHz, methanol-*d*₄) spectrum of 10.
- Figure S80. $^{1}H-^{1}H$ COSY (600 MHz, methanol- d_{4}) spectrum of 10.
- Figure S81. NOESY (600 MHz, methanol- d_4) spectrum of 10.
- Figure S82. HRESIMS spectrum of 10.
- Figure S83. IR spectrum of 10.
- Figure S84. ¹H NMR (600 MHz, CDCl₃) spectrum of 11.
- Figure S85. ¹³C NMR (150 MHz, CDCl₃) spectrum of 11.
- Figure S86. HSQC (600 MHz, CDCl₃) spectrum of 11.
- Figure S87. HMBC (600 MHz, CDCl₃) spectrum of 11.
- Figure S88. $^{1}H-^{1}H COSY$ (600 MHz, CDCl₃) spectrum of 11.
- Figure S89. NOESY (600 MHz, CDCl₃) spectrum of 11.
- Figure S90. HRESIMS spectrum of 11.

Figure S91. IR spectrum of 11.

- Figure S92. ¹H NMR (600 MHz, CDCl₃) spectrum of 12.
- **Figure S93.** ¹³C NMR (150 MHz, CDCl₃) spectrum of **12**.
- Figure S94. HSQC (600 MHz, CDCl₃) spectrum of 12.
- Figure S95. HMBC (600 MHz, CDCl₃) spectrum of 12.
- **Figure S96.** ¹H–¹H COSY (600 MHz, CDCl₃) spectrum of **12**.
- Figure S97. NOESY (600 MHz, CDCl₃) spectrum of 12.
- Figure S98. HRESIMS spectrum of 12.
- Figure S99. IR spectrum of 12.
- **Figure S100.** ¹H NMR (600 MHz, CDCl₃) spectrum of **13**.
- Figure S101.¹³C NMR (150 MHz, CDCl₃) spectrum of 13.
- Figure S102. HSQC (600 MHz, CDCl₃) spectrum of 13.
- Figure S103. HMBC (600 MHz, CDCl₃) spectrum of 13.
- Figure S104. $^{1}H-^{1}H COSY$ (600 MHz, CDCl₃) spectrum of 13.
- Figure S105. NOESY (600 MHz, CDCl₃) spectrum of 13.
- Figure S106. HRESIMS spectrum of 13.
- Figure S107. IR spectrum of 13.
- Figure S108. ¹H NMR (600 MHz, CDCl₃) spectrum of 14.
- Figure S109. ¹³C NMR (150 MHz, CDCl₃) spectrum of 14.
- Figure S110. HSQC (600 MHz, CDCl₃) spectrum of 14.
- Figure S111. HMBC (600 MHz, CDCl₃) spectrum of 14.
- Figure S112. $^{1}H-^{1}H$ COSY (600 MHz, CDCl₃) spectrum of 14.
- Figure S113. NOESY (600 MHz, CDCl₃) spectrum of 14.
- Figure S114. HRESIMS spectrum of 14.
- Figure S115. IR spectrum of 14.

Experimental section

X-ray Crystallographic Analysis of Compounds 1 and 3: Two suitable crystals of compounds 1 and 3 were obtained by recrystallization in MeOH and were measured on a Bruker D8 venture diffractometer equipped with an APEXII CCD using Cu K α radiation ($\lambda = 1.54178$ Å) at 296(2) K. The APEX2 Software Suite was used for cell refinement and data reduction. The structure was refined with full-matrix least-squares calculations on F^2 using SHELXL-2014/7.¹

Crystal data for 1: C₂₁H₂₈O₅, M = 360.43, triclinic, space group P_1 , a = 6.2053(2) Å, b = 8.5119(2) Å, c = 9.3471(3) Å, $\alpha = 84.014(2)^\circ$, $\beta = 76.948(2)^\circ$, $\gamma = 71.401(2)^\circ$, V = 455.55(2) Å³, Z = 1, $D_{calcd} = 1.314$ g/cm³, μ (Cu K α) = 1.542 mm⁻¹, F(000) = 194, 9181 reflections measured (4.859° $\leq \theta \leq 66.572^\circ$), 3054 unique, which were used in all calculations. The final stage converged to $R_1 = 0.0445$ ($wR_2 = 0.1017$) for 2677 observed reflections [with $I > 2\sigma(I)$] and 239 variable parameters, and $R_1 = 0.0571$ ($wR_2 = 0.1050$) for all unique reflections and GOF = 1.104. The flack parameter was 0.08(18).

Crystal data of 3: C₂₁H₃₀O₅, M = 362.45, monoclinic, space group $P2_1$, a = 5.8958(2) Å, b = 14.3918(5) Å, c = 11.1399(4) Å, $\beta = 103.3550(10)^\circ$, V = 919.67(6) Å³, Z = 2, $D_{calcd} = 1.309$ g/cm³, μ (Cu K α) = 1.542mm⁻¹, F(000) = 392, 11396 reflections measured (4.079° $\leq \theta \leq 72.309^\circ$), 3500 unique, which were used in all calculations. The final stage converged to $R_1 = 0.0618$ ($wR_2 = 0.1552$) for 3322 observed reflections [with $I > 2\sigma(I)$] and 240 variable parameters, and $R_1 = 0.0647$ ($wR_2 = 0.1592$) for all unique reflections and GOF = 1.083. The flack parameter was 0.19(12).

Crystallographic data of **1** and **3** have been deposited with the Cambridge Crystallographic Data Centre with the deposition numbers CCDC 1881130 and 1881135, respectively. The data can be obtained free of charge via www.ccdc.cam.ac.uk/products/csd/request.

^{1.} Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2015, 71, 3-8.

Figure S1. Structure of the known compounds.

Figure S2. Key HMBC (H \rightarrow C) and ¹H⁻¹H COSY (H–H) correlations of 2, 4–8, and 10–14.

Figure S3. Key NOESY correlations ($H \leftrightarrow H$) of 2 and 4–14.

Figure S6. HSQC (600 MHz, CDCl₃) spectrum of 1.

Figure S7. HMBC (600 MHz, CDCl₃₄) spectrum of 1.

Figure S8. ¹H–¹H COSY (600 MHz, CDCl₃) spectrum of **1**.

Figure S9. NOESY (600 MHz, CDCl₃) spectrum of 1.

Figure S15. HMBC (600 MHz, CDCl₃) spectrum of 2.

20

Figure S16. ¹H–¹H COSY (600 MHz, CDCl₃) spectrum of **2**.

Figure S17. NOESY (600 MHz, CDCl₃) spectrum of 2.

%Transmittance HO Ĥ ŌΗ H₃CO сно 1800 1600 Wavenumbers (cm-1)

Figure S22. HSQC (600 MHz, CDCl₃) spectrum of 3.

Figure S23. HMBC (600 MHz, CDCl₃) spectrum of 3.

Figure S24. ¹H–¹H COSY (600 MHz, CDCl₃) spectrum of **3**.

Figure S25. NOESY (600 MHz, CDCl₃) spectrum of 3.

Figure S26. HRESIMS spectrum of 3.

Figure S30. HSQC (600 MHz, CDCl₃) spectrum of 4.

Figure S31. HMBC (600 MHz, CDCl₃) spectrum of 4.

Figure S32. ¹H–¹H COSY (600 MHz, CDCl₃) spectrum of 4.

Figure S33. NOESY (600 MHz, CDCl₃) spectrum of 4.

Figure S34. HRESIMS spectrum of 4.

Figure S38. HSQC (600 MHz, CDCl₃) spectrum of 5.

Figure S40. ¹H–¹H COSY (600 MHz, CDCl₃) spectrum of 5.

Figure S42. HRESIMS spectrum of 5.

5,0 5,8 2.6 2,4 2.2 2.0 5.6 3, 0 2,8 1.8 1.6 3.4 1.2 1.0 5.4 5, 2 4, 2 4, 0 3.6 3.4 f2 (ppn) 3, 2

Figure S46. HSQC (600 MHz, CDCl₃) spectrum of 6.

Figure S48. ¹H–¹H COSY (600 MHz, CDCl₃) spectrum of 6.

Figure S49. NOESY (600 MHz, CDCl₃) spectrum of 6.

Figure S50. HRESIMS spectrum of 6.

Figure S56. ¹H–¹H COSY (600 MHz, CDCl₃) spectrum of 7.

Figure S58. HRESIMS spectrum of 7.

Figure S62. HSQC (600 MHz, CDCl₃) spectrum of 8.

Figure S64. ¹H–¹H COSY (600 MHz, CDCl₃) spectrum of 8.

Figure S74. HRESIMS spectrum of 9.

Figure S78. HSQC (600 MHz, methanol-*d*₄) spectrum of 10.

Figure S82. HRESIMS spectrum of 10.

Figure S89. NOESY (600 MHz, CDCl₃) spectrum of 11.

57

Figure S90. HRESIMS spectrum of 11.

Figure S91. IR spectrum of 11.

Figure S95. HMBC (600 MHz, CDCl₃) spectrum of 12.

Figure S96. ¹H–¹H COSY (600 MHz, CDCl₃) spectrum of **12**.

Figure S103. HMBC (600 MHz, CDCl₃) spectrum of 13.

Figure S102. HSQC (600 MHz, CDCl₃) spectrum of 13.

Figure S104. ¹H–¹H COSY (600 MHz, CDCl₃) spectrum of **13**.

Figure S105. NOESY (600 MHz, CDCl₃) spectrum of 13.

Figure S106. HRESIMS spectrum of 13.

Figure S110. HSQC (600 MHz, CDCl₃) spectrum of 14.

3.2 3.0 f2 (ppn)

2.6 2.4 2. 2 2, 0 1.8 1.6 1.4

2.8

4.0

3, 8

3.6

3, 4

5.0

4.8 4.6 4.4

5.2

5.4

5,6

-200

0.6

1.0 0.8

1.2

Figure S112. ¹H–¹H COSY (600 MHz, CDCl₃) spectrum of 14.

Figure S115. IR spectrum of 14.

