Supporting Information

Photoredox-Catalyzed Multicomponent Petasis Reaction with Alkyltrifluoroborates

Jun Yi*, Shorouk O. Badir*, Rauful Alam, and Gary A. Molander ${ }^{\dagger}$
Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South $34^{\text {th }}$

Street, Philadelphia, Pennsylvania 19104-6323
${ }^{\dagger}$ To whom correspondence should be addressed. E-mail: gmolandr@sas.upenn.edu
*These authors contributed equally to this work

Table of Contents

General Considerations S2
Optimization of the reaction conditions S3
General Procedure for Alkylation S4
Compound Characterization Data S5
Large Scale Reaction and Removal of \boldsymbol{p}-Methoxyphenylamines S36-37
Mechanistic Studies S38
Stern-Volmer Quenching Plot S41
Preparing of Starting Material S42
Spectral Data S45

1. General considerations:

1.1 General

All chemical transformations were conducted under an inert atmosphere of argon utilizing Schlenk line techniques with a 4- or 5-port dual-bank manifold. NMR spectra $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}\right)$ were obtained at 298 K using a $500 \mathrm{MHz} .{ }^{1} \mathrm{H}$ NMR spectra were referenced to residual non-deuterated chloroform ($\delta 7.26$) in $\mathrm{CDCl}_{3} .{ }^{13} \mathrm{C}$ NMR spectra were referenced to $\mathrm{CDCl}_{3}(\delta 77.16$). Coupling constants, J, are reported in hertz (Hz). HRMS data was obtained by either ESI or CI with a TOF spectrometer in $\mathrm{CH}_{3} \mathrm{CN}$ or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Accurate mass measurements were acquired on Waters instruments. Waters software calibrates and reports using neutral atomic masses. The mass of the electron in not included. Reactions were monitored by ${ }^{1} \mathrm{H}$ NMR, and/or by TLC on silica gel plates ($60 \AA$ porosity, $250 \mu \mathrm{~m}$ thickness). TLC analysis was performed using hexanes/EtOAc as the eluent and visualized using p-anisaldehyde stain, and/or UV light. Flash chromatography was accomplished using an automated system (visualizing at 254 nm and 280 nm) with silica cartridges ($60 \AA$ porosity, 20-40 $\mu \mathrm{m}$). Solvents were purified by use of drying cartridges through a solvent delivery system. Melting points are uncorrected. Irradiation of reaction vessels was accomplished using blue LEDs (Light-emitting diode) at a distance of $\sim 3-5 \mathrm{~cm}$. A fan was employed to ensure reactions remained at or near rt when using LEDs.

1.2 Chemicals

Deuterated NMR solvents were purchased and stored over $4 \AA$ molecular sieves. $\mathrm{Na}_{2} \mathrm{SO}_{4}, \mathrm{MgSO}_{4}$, acetone, pentane, hexanes, and EtOAc were used as purchased. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was purchased and dried via a solvent delivery system. NaHSO_{4} was purchased and used after grinding with a pestle and mortar. Anhydrous 1,4-dioxane was purchased and stored over $4 \AA$ molecular sieves. Aldehydes, alkyltrifluoroborates, and amines were purchased
from commercial suppliers and used without further purification. The photocatalyst $\left[\operatorname{Ir}\left\{\mathrm{dFCF}_{3} \mathrm{ppy}\right\}_{2}(\right.$ bpy $\left.)\right] \mathrm{PF}_{6}$ was prepared in-house as reported in the literature. ${ }^{1}$

2. Optimization of the Reaction Conditions

Table 1. Optimization of the reaction conditions ${ }^{[a]}$

[a] 1 (0.1 mmol), $\mathbf{2}$ (0.15 mmol), $\mathbf{3}$ (0.15 mmol), [PC] ($2 \mathrm{~mol} \%$), additive (0.1 $\mathrm{mmol})$ in dry, degassed solvent ($1.0 \mathrm{~mL}, 0.1 \mathrm{M}$) under blue LED irradiation for 24 h . [b] NMR yield using 1,3,5-trimethoxybenzene as internal standard. Isolated yield in parenthesis. [c] 10 equiv $\mathrm{H}_{2} \mathrm{O}$ added [d] No light.
${ }^{1}$ Kelly, C. B.; Patel, N. R.; Primer, D. N.; Jouffroy, M.; Tellis, J. C.; Molander, G. A. Nature Protocols 2017, 12, 472.

3. General Procedure for Alkylation:

Methyl 4-(Cyclohexyl(phenylamino)methyl)benzoate (4)

To an 8 mL reaction vial equipped with a stir bar was added $\left[\operatorname{Ir}\left\{\mathrm{dFCF}_{3} \mathrm{ppy}\right\}_{2}(\mathrm{bpy})\right] \mathrm{PF}_{6}(10.0 \mathrm{mg}, 0.01 \mathrm{mmol}, 2$ $\mathrm{mol} \%$), alkyltrifluoroborate ($140.0 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5$ equiv), aldehyde ($82.0 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv), amine ($68.0 \mu \mathrm{~L}, 0.75 \mathrm{mmol}, 1.5$ equiv), and $\mathrm{NaHSO}_{4}(60.0 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv). The vial was sealed with a cap containing a TFE lined silicone septa and placed under an argon via an inlet needle. The vial was evacuated three times via an inlet needle then purged with argon. Dry and degassed 1,4-dioxane was then added (5.0 mL , 0.1 M). If the amine or aldehyde were in the liquid state, they were added at this point directly via microsyringe. The reaction was placed under blue LED irradiation and vigorously stirred for 24 h . The reaction was maintained at approximately $24^{\circ} \mathrm{C}$ via a fan. After completion, the reaction mixture was taken to dryness and then purified on an automated liquid chromatographic system (24 g column, 100:0 $\rightarrow 85: 15$ hexanes/EtOAc) to obtain the pure product, $4,(136 \mathrm{mg}, 84 \%$ yield $)$ as a solid $\left(\mathrm{mp}=59-61^{\circ} \mathrm{C}\right)$. [Note: In some cases, the reaction forms a slurry. Consistent stirring is imperative for the full conversion of imines to the desired alkylated products].
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.62$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.23-4.12(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-$ $1.61(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.31-1.00(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 167.2,148.5,147.6,129.8,129.2,129.0,127.4,117.4,113.3,63.5,52.1,44.9$, $30.3,29.5,26.5,26.5,26.4$.

FT-IR (cm^{-1}, neat, ATR) 3404, 2924, 2851, 1706, 1600, 1502, 1277, 1103, 747, 691.

HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{2}[\mathrm{M}]^{+}: 323.1885$, found: 323.1871.

4. Compound Characterization Data:

4.1 Alkyltrifluoroborate Scope:

Methyl 4-(Cyclobutyl(phenylamino)methyl)benzoate, $\mathbf{5}$ ($140 \mathrm{mg}, 95 \%$ yield) was prepared according to the general procedure. The desired amine 5 was isolated as a solid $\left(\mathrm{mp}=100-102{ }^{\circ} \mathrm{C}\right)(24 \mathrm{~g}$ column, 100:0 $\rightarrow 85: 15$ hexanes/EtOAc). ${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{~s}$, $3 H), 2.59-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.74(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.2$, 148.3, 147.5, 130.0, 129.2, 129.14 126.7, 117.7, 113.5, 63.8, 52.1, 42.4, 26.2, 25.5, 17.7. FT-IR (cm^{-1}, neat, ATR) $3361,1702,1602,1313,1282,1114,745,691$. HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{2}[\mathrm{M}]^{+}: 295.1572$, found: 295.1565.

Methyl 4-(Cyclopentyl(phenylamino)methyl)benzoate, $\mathbf{6}(81 \mathrm{mg}, 52 \%$ yield) was prepared according to the general procedure. The desired amine $\mathbf{6}$ was isolated as a solid $\left(\mathrm{mp}=103-104{ }^{\circ} \mathrm{C}\right)(24 \mathrm{~g}$ column, $100: 0 \rightarrow 85: 15$ hexanes/EtOAc). ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{~s}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}$, $3 H), 2.22-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.55(\mathrm{~m}, 3 \mathrm{H}), 1.53-1.38(\mathrm{~m}, 3 \mathrm{H}), 1.33-1.24(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 167.2,149.7,147.4,129.9,129.2,129.0,127.1,117.5,113.4,63.1,52.1,47.7$, 30.2, 30.0, 25.3, 25.3. FT-IR (cm^{-1}, neat, ATR) 3350, 2953, 2870, 1702, 1601, 1283, 1114, 745, 691. HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2}[\mathrm{M}]^{+}: 309.1729$, found: 309.1725 .

tert-Butyl 2-((4-(Methoxycarbonyl)phenyl)(phenylamino)methyl)pyrrolidine-1-carboxylate, 7 (72 mg, 35\% yield) was prepared according to the general procedure. The desired amine 7 was isolated as an oil (24 g column, 100:0 $\rightarrow 70: 30$ hexanes/EtOAc). ${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.03(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.27-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H})$, $3.51-3.03(\mathrm{~m}, 2 \mathrm{H}), 1.86(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.75-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 167.0,157.5,148.3,148.0,130.1,129.6,129.1,127.9,116.7,112.7,80.5,63.7,62.0,52.2,47.1,28.6,27.7$,
23.7. FT-IR (cm^{-1}, neat, ATR) $3380,2940,2850,1721,1674,1602,1392,1367,1277,1160$. HRMS (ES+) calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 433.2103$, found: 433.2111.

Methyl 4-((Phenylamino)(tetrahydro-2H-pyran-4-yl)methyl)benzoate, $\mathbf{8}$ ($96 \mathrm{mg}, 59 \%$ yield) was prepared according to the general procedure. The desired amine 8 was isolated as an oil (24 g column, 90:10 $\rightarrow 60: 40$ hexanes/EtOAc). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.99(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{t}, J=$ $7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.23-4.06(\mathrm{~m}, 2 \mathrm{H}), 4.02(\mathrm{dd}, J=11.4,3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.95(\mathrm{dd}, J=11.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.40-3.26(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~d}, J=13.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.54-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 167.0,147.6,147.2$, $130.0,129.3,129.3,127.3,117.9,113.5,68.1,63.0,52.2,42.3,29.7$. FT-IR (cm^{-1}, neat, ATR): 3398, 2950, 2844, 1716, 1600, 1277, 1113, 750, 693. HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{3}[\mathrm{M}]^{+}: 325.1678$, found: 325.1674.

tert-Butyl 4-((4-(Methoxycarbonyl)phenyl)(phenylamino)methyl)piperidine-1-carboxylate, 9 ($176 \mathrm{mg}, 83 \%$ yield) was prepared according to the general procedure. The desired amine 9 was isolated as an oil (24 g column, 100:0 $\rightarrow 80: 20$ hexanes $/ E t O A c$). ${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.1 \mathrm{~Hz}$,
$2 \mathrm{H}), 7.06(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.35-3.99(\mathrm{~m}, 4 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H})$, $2.62(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.95-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.37(\mathrm{~m}, 10 \mathrm{H}), 1.35-1.19(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}(126 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 167.0,154.81,147.7,147.2,130.0,129.3,129.3,127.3,117.8,113.5,79.7,62.8,52.2,43.9,43.3,29.5$, 28.9, 28.6. FT-IR (cm^{-1}, neat, ATR) 3385, 2949, 2851, 1673, 1427, 1278, 729. HRMS (ES+) calcd for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 425.2440$, found: 425.2456 .

Methyl 4-((Phenylamino)(1-(pyridin-2-yl)piperidin-4-yl)methyl)benzoate, 10 ($139 \mathrm{mg}, 69 \%$ yield) was prepared according to the general procedure. The desired amine $\mathbf{1 0}$ was isolated as a solid $\left(\mathrm{mp}=163-165^{\circ} \mathrm{C}\right)$ (24 g column, 80:20 $\rightarrow 50: 50$ hexanes/EtOAc). ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.19(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{dd}, J=11.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{t}, J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.62-6.57(\mathrm{~m}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.45-4.14(\mathrm{~m}, 4 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 2.82-2.69(\mathrm{~m}$, $2 H), 2.01-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.40(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.8,159.2,147.9,147.6,147.0$, 137.4, 129.8, 129.1, 127.1, 117.5, 113.3, 112.9, 107.1, 62.6, 52.0, 45.5, 45.4, 43.3, 29.1, 28.4. FT-IR (cm^{-1}, neat, ATR) 3450, 2950, 2850, 1702, 1593, 1477, 1432, 1283, 773. HRMS (EI) calcd for $\mathrm{C}_{25} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}]^{+}: 401.2103$, found: 401.2088 .

Methyl 4-(2-Methyl-1-(phenylamino)propyl)benzoate, 11 ($68 \mathrm{mg}, 48 \%$ yield) was prepared according to the general procedure. The desired amine 11 was isolated as a solid $\left(\mathrm{mp}=84-86^{\circ} \mathrm{C}\right)(24 \mathrm{~g}$ column, $100: 0 \rightarrow 85: 15$ hexanes/EtOAc). ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{~s}$, $3 \mathrm{H}), 2.14-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 167.0, 148.2, 147.3, 129.5, 129.0, 128.8, 127.2, 117.3, 113.2, 63.6, 51.9, 34.7, 19.6, 18.4. FT-IR (cm^{-1}, neat, ATR) 3367, 2951, 1705, 1602, 1283, 1107, 746, 691. HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2}[\mathrm{M}]^{\dagger}: 283.1572$, found: 283.1570.

Methyl 4-(2,2-Dimethyl-1-(phenylamino)propyl)benzoate, 12 ($122 \mathrm{mg}, 82 \%$ yield) was prepared according to the general procedure. The desired amine 12 was isolated as an oil (24 g column, 100:0 $\rightarrow 90: 10$ hexanes/EtOAc). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.08-7.01$ $(\mathrm{m}, 2 \mathrm{H}), 6.61(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.49-6.42(\mathrm{~m}, 2 \mathrm{H}), 4.28(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 167.2,147.5,147.1,129.2,129.2,129.0,128.7,117.4,113.3,67.3,52.2,35.1,27.2$.

FT-IR (cm^{-1}, neat, ATR) 3423, 2955, 1707,1600, 1506, 1315, 1285, 1098, 743. HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{2}[\mathrm{M}]^{+}: 297.1741$, found: 297.1729.

Methyl 4-((Adamantan-1-yl)(phenylamino)methyl)benzoate, 13 (173 mg, 92% yield) was prepared according to the general procedure. The desired amine 13 was isolated as a solid $\left(\mathrm{mp}=92-94{ }^{\circ} \mathrm{C}\right)(24 \mathrm{~g}$ column, 100:0 $\rightarrow 90: 10$ hexanes/EtOAc). ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.05(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.38(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 1 \mathrm{H}), 3.90$ $(\mathrm{s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{dd}, J=11.3,3.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.60(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.52(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 167.3,147.7,146.3,129.2,129.1,129.0,128.9,117.3,113.3,68.1,52.2,39.4,37.0$, 36.7, 28.6. FT-IR (cm^{-1}, neat, ATR) $3361,2899,2847,1703,1600,1517,1430,1290,730$. HRMS (EI) calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{NO}_{2}[\mathrm{M}]^{+}: 375.2198$, found, 375.2207 .

Methyl 4-(1-(Phenylamino)heptyl)benzoate, $\mathbf{1 4}(104 \mathrm{mg}, 64 \%$ yield) was prepared according to the general procedure except for using 34 W blue Kessil lamp as light source. The desired amine $\mathbf{1 4}$ was isolated as an oil (24 g column, 100:0 $\rightarrow 85: 15$ hexanes $/ \mathrm{EtOAc}$). ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.34(\mathrm{t}, J=6.6 \mathrm{~Hz}$,
$1 \mathrm{H}), 4.08(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 1.88-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.19(\mathrm{~m}, 8 \mathrm{H}), 0.87(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) $\delta 167.17,150.13,147.31,130.12,129.29,129.04,126.57,117.61,113.39,58.34,52.17$, 39.01, 31.83, 29.30, 26.37, 22.73, 14.20. FT-IR (cm-1, neat, ATR) 3399, 2927, 2855, 1712, 1601, 1503, 14345, 1275, 1112, 747. HRMS (ES +) calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 326.2120$, found: 326.2140.

Methyl 4-(1-(Phenylamino)hex-5-en-1-yl)benzoate, 15 ($84 \mathrm{mg}, 54 \%$ yield) was prepared according to the general procedure except for using 34 W blue Kessil lamp as light source. The desired amine $\mathbf{1 5}$ was isolated as an oil (24 g column, $100: 0 \rightarrow 85: 15$ hexanes/EtOAc). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.43(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.78(\mathrm{td}, J=$ $16.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.08-4.94(\mathrm{~m}, 2 \mathrm{H}), 4.38(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.91-$ $1.74(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.40(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.1,149.9,147.2,138.2,130.1,129.3$, 129.1, 126.6, 117.7, 115.3, 113.4, 58.2, 52.2, 38.3, 33.6, 25.6. FT-IR (cm^{-1}, neat, ATR) 3400, 2936, 2851, 1600, 1503, 1434, 1275, 1111, 911, 748, 692. HRMS (ES+) calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 310.1807$, found: 310.1797.

Methyl 4-(5-(Benzoyloxy)-1-(phenylamino)pentyl)benzoate, $16(125 \mathrm{mg}, 60 \%$ yield) was prepared according to the general procedure except for using 34 W blue Kessil lamp as light source. The desired amine $\mathbf{1 6}$ was
isolated as an oil (24 g column, $100: 0 \rightarrow 80: 20$ hexanes/EtOAc). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03-7.96(\mathrm{~m}$, $4 \mathrm{H}), 7.56(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.38(\mathrm{dd}, J=7.6,5.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.08(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.37-4.27(\mathrm{~m}, 2 \mathrm{H}), 4.18(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 1.96-$ $1.76(\mathrm{~m}, 4 \mathrm{H}), 1.66-1.45(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.1,166.8,149.7,147.2,133.1,130.4$, 130.2, 129.7, 129.3, 129.2, 128.5, 126.6, 117.7, 113.4, 64.6, 58.1, 52.2, 38.3, 28.7, 22.9. FT-IR $\left(\mathrm{cm}^{-1}\right.$, neat, ATR) $3400,2949,1713,1600,1504,1313,1272,1111,710$. HRMS (ES +) Calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 418.2018, found: 418.2030.

Methyl 4-(2-Phenyl-1-(phenylamino)ethyl)benzoate, 17 (109 $\mathrm{mg}, 66 \%$ yield) was prepared according to the general procedure. The desired amine 17 was isolated as an oil (24 g column, 100:0 $\rightarrow 85: 15$ hexanes/EtOAc). ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.19-$ $7.07(\mathrm{~m}, 4 \mathrm{H}), 6.72(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.71(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~s}, 1 \mathrm{H}), 3.94(\mathrm{~s}$, $3 \mathrm{H}), 3.22-3.04(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.2,149.1,147.1,137.3,130.2,129.4,129.3,128.8$, 127.1, 126.8, 118.1, 113.9, 59.4, 52.2, 45.0. FT-IR (cm^{-1}, neat, ATR) $3380,2940,2863,1717,1602,1504,1313$, 1276, 1098, 1018. HRMS (ES+) Calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 332.1651$, found: 332.1668.

tert-Butyl 4-(2-(4-(Methoxycarbonyl)phenyl)-2-(phenylamino)ethoxy)piperidine-1-carboxylate, 18 (165 $\mathrm{mg}, 73 \%$ yield) was prepared according to the general procedure. The desired amine $\mathbf{1 8}$ was isolated as an oil (24 g column, $100: 0 \rightarrow 85: 15$ hexanes/EtOAc). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{dd}, J=8.3,2.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.49(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.83-6.59(\mathrm{~m}, 1 \mathrm{H}), 6.55-6.36(\mathrm{~m}, 2 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J$ $=7.8,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{dd}, J=9.7,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~m}, 2 \mathrm{H}), 3.56(\mathrm{dd}, J=9.7,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.48$ $(\mathrm{tt}, J=7.7,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{ddq}, J=13.4,5.6,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.93-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 11 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.0,154.9,147.3,146.4,130.1,129.5,129.2,127.0,118.2,114.1,79.6,75.1,72.1,67.2$, 60.5, 58.5, 52.2, 28.5. FT-IR (cm ${ }^{-1}$, neat, ATR) 3380, 2928, 1686, 1419, 1275, 1101. HRMS Calcd for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+1]^{+}: 455.2546$, found: 455.2563 .

Methyl 4-(1-(Phenylamino)-2-((tetrahydro-2H-pyran-4-yl)methoxy)ethyl)benzoate, 19 (135 mg, 73\% yield) was prepared according to the general procedure. The desired amine 19 was isolated as an oil (24 g column, 100:0 $\rightarrow 70: 30$ hexanes/EtOAc). ${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.08(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.01-3.93(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H})$, $3.68(\mathrm{dd}, J=10.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=10.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.46-3.30(\mathrm{~m}, 3 \mathrm{H}), 2.00-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.76-$ $1.51(\mathrm{~m}, 4 \mathrm{H}), 1.44-1.17(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.8,147.2,146.2,129.9,129.3,129.0$,

Methyl 4-(2-(2-(Benzyloxy)ethoxy)-1-(phenylamino)ethyl)benzoate, 20 ($152 \mathrm{mg}, 75 \%$ yield) was prepared according to the general procedure. The desired amine 20 was isolated as an oil (24 g column, 100:0 $\rightarrow 70: 30$ hexanes/EtOAc). ${ }^{1} \mathbf{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.04-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.28(\mathrm{~m}, 5 \mathrm{H})$, $7.18-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.75-6.60(\mathrm{~m}, 1 \mathrm{H}), 6.55-6.35(\mathrm{~m}, 2 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{dd}$, $J=10.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.67-3.57(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.0,147.5$, $146.4,138.2,130.1,129.5,129.2,128.6,127.9,127.9,127.0,118.0,114.0,75.3,73.5,70.6,69.5,58.2,52.2$. FT-IR $\left(\mathrm{cm}^{-1}\right.$, neat, ATR) $3027,2950,1717,1601,1503,1277,1112$. HRMS (ES+) calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{NO}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}: 406.2018$, found: 406.2038.

Methyl 4-(2-(Benzyloxy)-1-(phenylamino)ethyl)benzoate, 21 ($121 \mathrm{mg}, 67 \%$ yield) was prepared according to the general procedure. The desired amine 21 was isolated as an (24 g column, 100:0 $\rightarrow 85: 15$ hexanes/EtOAc). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.18(\mathrm{~m}$, 5H), $7.14-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.68(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.56-6.40(\mathrm{~m}, 2 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 4.63-4.48(\mathrm{~m}, 3 \mathrm{H}), 3.91$
$(\mathrm{s}, 3 \mathrm{H}), 3.77(\mathrm{dd}, J=10.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=9.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.1$, $147.3,146.4,137.7,130.1,129.5,129.2,128.7,128.1,127.9,127.0,118.1,114.0,74.1,73.2,58.2,52.2$. FT-IR $\left(\mathrm{cm}^{-1}\right.$, neat, ATR) $3380,2940,2850,1716,1601,1503,1312,1275,1099$. HRMS Calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{3}[\mathrm{M}]^{+}$: 361.1678, found: 361.1665

4.2 Aldehyde Scope:

\boldsymbol{N}-(Cyclohexyl(4-(trifluoromethyl)phenyl)methyl)aniline, 22 ($133 \mathrm{mg}, 80 \%$ yield) was prepared according to the general procedure. The desired amine 22 was isolated as an oil $(24 \mathrm{~g}$ column, 100:0 $\rightarrow 85: 15$ hexanes/EtOAc). ${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{t}, J=$ $7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.04-4.32(\mathrm{~m}, 2 \mathrm{H}), 1.89(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H})$, $1.85-1.67(\mathrm{~m}, 4 \mathrm{H}), 1.58(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.30-1.05(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.2$, 147.0, 129.1, $129.0(\mathrm{q}, J=32.3 \mathrm{~Hz}), 127.5,125.2(\mathrm{q}, J=3.7 \mathrm{~Hz}), 124.2(\mathrm{q}, J=272.2 \mathrm{~Hz}), 117.3,113.1,63.1$, 44.7, 30.1, 29.2, 26.2, 26.2. ${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.23. FT-IR (cm^{-1}, neat, ATR) $3425,2926,2853$, 1502, 1322, 1118, 747. HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}]^{+}: 333.1704$, found: 333.1716.

N-(Cyclohexyl(4-(methylsulfonyl)phenyl)methyl)aniline, 23 (119 mg, 69% yield) was prepared according to the general procedure. The desired amine 23 was isolated as a solid $\left(\mathrm{mp}=177-179{ }^{\circ} \mathrm{C}\right)(24 \mathrm{~g}$ column, 80:20 \rightarrow

40:60 hexanes/EtOAc). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.30-4.13(\mathrm{~m}, 2 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H}), 1.62-1.90$ $(\mathrm{m}, 5 \mathrm{H}), 1.53(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.27-1.01(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.8,147.2,139.2$, 129.3, 128.3, 127.6, 117.7, 113.3, 63.3, 44.9, 44.7, 30.3, 29.3, 26.4, 26.4. FT-IR (cm^{-1}, neat, ATR) 3368 , 2925, 2851, 1600, 1503, 1600, 1147, 748. HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}]^{+}: 343.1606$, found: 343.1619.

1-(4-(Cyclohexyl(phenylamino)methyl)phenyl)ethan-1-one, 24 ($77 \mathrm{mg}, 50 \%$ yield) was prepared according to the general procedure. The desired amine 24 was isolated as a solid $\left(\mathrm{mp}=93-95^{\circ} \mathrm{C}\right)(24 \mathrm{~g}$ column, $100: 0 \rightarrow$ 85:15 hexanes/EtOAc). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.14-4.24(\mathrm{~m}, 2 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~d}, J=$ $12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.64(\mathrm{~m}, 4 \mathrm{H}), 1.56(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.29-1.02(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.7,148.5,147.3,135.9,129.0,128.3,127.4,117.2,113.1,63.2,44.7,30.1,29.2,26.5,26.2,26.2$. FT-IR $\left(\mathrm{cm}^{-1}\right.$, neat, ATR) $3388,2922,2850,1667,1601,1267,745$. HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}[\mathrm{M}]^{+}: 307.1936$, found: 307.1931.

N-((4-Bromophenyl)(cyclohexyl)methyl)aniline, $\mathbf{2 5}$ (129 mg, 75% yield) was prepared according to the general procedure. The desired amine $\mathbf{2 5}$ was isolated as an oil (24 g column, 100:0 $\rightarrow 85: 15$ hexanes/EtOAc).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.64$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{~s}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.83-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.30-1.00(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 147.3,141.7,131.2,129.0,128.9,120.4,117.2,113.1,62.8,44.7,30.0,29.3,26.3,26.2,26.2$. FT-IR $\left(\mathrm{cm}^{-1}\right.$, neat, ATR) $3425,2922,2850,1599,1501,1484,1317,1071,746,690$. HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{BrN}$ $[\mathrm{M}]^{+}: 343.0936$, found: 343.0908.

N-(Cyclohexyl(4-iodophenyl)methyl)aniline, $26(125 \mathrm{mg}, 64 \%$ yield) was prepared according to the general procedure. The desired amine $\mathbf{2 6}$ was isolated as an oil (24 g column, 100:0 $\rightarrow 85: 15$ hexanes/EtOAc). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.12-7.03(\mathrm{~m}, 4 \mathrm{H}), 6.64(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 4.17-4.04(\mathrm{~m}, 2 \mathrm{H}), 1.87(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.53(\mathrm{~m}$, $1 \mathrm{H}), 1.27-1.00(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.3,142.4,137.2,129.2,129.0,117.2,113.1,91.9$, 62.9, 44.7, 30.0, 29.2, 26.3, 26.2, 26.2. FT-IR (cm^{-1}, neat, ATR) $3425,2922,2850,1599,1501,1480,1004$, 746, 690. HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NI}[\mathrm{M}]^{+}: 391.0797$, found: 391.0792.

N-((2-Chlorophenyl)(cyclohexyl)methyl)aniline, 27 (101 mg, 67% yield) was prepared according to the general procedure. The desired amine 27 was isolated as a solid $\left(\mathrm{mp}=94-96^{\circ} \mathrm{C}\right)(24 \mathrm{~g}$ column, 100:0 $\rightarrow 90: 10$
hexanes/EtOAc). ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.07(\mathrm{~m}, 4 \mathrm{H}), 6.66(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.53(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.70(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~s}, 1 \mathrm{H}), 1.95(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.67-1.97(\mathrm{~m}$, $4 \mathrm{H}), 1.58(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.37-1.11(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 147.5, 140.4, 133.7, 129.7, 129.3, 128.5, 128.0, 127.0, 117.4, 113.2, 59.5, 43.9, 30.4, 29.0, 26.7, 26.6, 26.6. FT-IR (cm^{-1}, neat, ATR) 3399, 2923, 2852, 1598, 1505, 1320, 1032, 746, 690. HRMS (ES+) calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{ClN}[\mathrm{M}+\mathrm{H}]^{+}: 300.1519$, found: 300.1542 .

N-(Cyclohexyl(2,6-difluoro-4-methoxyphenyl)methyl)aniline, 28 (108 mg, 65% yield) was prepared according to the general procedure. The desired amine 28 was isolated as an oil (24 g column, 100:0 $\rightarrow 85: 15$ hexanes/EtOAc). ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.12(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.67-6.58(\mathrm{~m}, 3 \mathrm{H}), 6.38(\mathrm{~d}, J=10.5$ $\mathrm{Hz}, 2 \mathrm{H}), 4.50(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~s}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.74$ $-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.32-1.17(\mathrm{~m}, 3 \mathrm{H}), 1.12-0.97(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 162.0(\mathrm{dd}, J=243.9,12.7 \mathrm{~Hz}), 159.7(\mathrm{t}, J=14.6 \mathrm{~Hz}), 147.8,129.4,117.4,113.1,110.5(\mathrm{t}, J=18.4$ $\mathrm{Hz}), 98.2(\mathrm{~d}, J=30.4 \mathrm{~Hz}), 55.8,54.0,42.7,31.2,30.3,26.6,26.2,26.2 .{ }^{19} \mathbf{F} \mathbf{N M R}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-113.96$. FT-IR $\left(\mathrm{cm}^{-1}\right.$, neat, ATR) $3412,2924,2850,1635,1496,1137,747$. HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~F}_{2} \mathrm{NO}[\mathrm{M}]^{+}$: 331.1748, found: 331.1736 .

3-(Cyclohexyl(phenylamino)methyl)benzonitrile, 29 ($64 \mathrm{mg}, 44 \%$ yield) was prepared according to the general procedure. The desired amine 29 was isolated as a solid $\left(\mathrm{mp}=135-137^{\circ} \mathrm{C}\right)(24 \mathrm{~g}$ column, $100: 0 \rightarrow 85: 15$ hexanes/EtOAc). ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{dd}, J=17.2,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.09(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H})$, $1.88-1.74(\mathrm{~m}, 3 \mathrm{H}), 1.72-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.30-1.01(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}(126 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 146.9,144.4,131.7,130.8,130.6,129.1,129.0,119.0,117.5,113.1,112.3,62.9,44.7,30.0,29.1$, 26.2, 26.1, 26.1. FT-IR (cm^{-1}, neat, ATR) 2925, 2852, 2228, 1601, 1503, 1317, 907, 730, 692. HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2}[\mathrm{M}]^{+}: 290.1783$, found: 290.1788 .

N-((3-Bromophenyl)(cyclohexyl)methyl)aniline, $\mathbf{3 0}$ ($93 \mathrm{mg}, 54 \%$ yield) was prepared according to the general procedure. The desired amine $\mathbf{3 0}$ was isolated as an oil (24 g column, 100:0 $\rightarrow 90: 10$ hexanes/EtOAc). ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.27-3.94(\mathrm{~m}, 2 \mathrm{H}), 1.88(\mathrm{~d}, J=11.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.83-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.28-1.01(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.3,145.4,130.1,129.9,129.7,129.0,125.9,122.5,117.2,113.1,63.0,44.8,30.1,29.2,26.3$, 26.2, 26.2. FT-IR (cm^{-1}, neat, ATR) 3420, 2922, 2850, 1600, 1501, 1616, 1252, 747, 690. HRMS (ES+) calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NBr}[\mathrm{M}+\mathrm{H}]^{+}: 344.1014$, found: 344.0996.

N-(Cyclohexyl(phenyl)methyl)aniline, $31(122 \mathrm{mg}, 92 \%$ yield) was prepared according to the general procedure. The desired amine $\mathbf{3 1}$ was isolated as an oil (24 g column, 100:0 $\rightarrow 90: 10$ hexanes/EtOAc). ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.53(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.26-4.04(\mathrm{~m}, 2 \mathrm{H}), 1.93(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.64(\mathrm{~m}, 4 \mathrm{H}), 1.58(\mathrm{~d}, J=12.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.30-1.05(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 147.7,142.6,129.0,128.1,127.2,126.7,116.8$, 113.1, 63.3, 44.8, 30.2, 29.4, 26.4, 26.3, 26.3. FT-IR (cm ${ }^{-1}$, neat, ATR) 3425, 2922, 2850, 1599, 1501, 1317, 745, 700, 690. HRMS (ES+) calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 266.1909$, found, 266.1913.

N-(Cyclohexyl(4-phenoxyphenyl)methyl)aniline, 32 ($93 \mathrm{mg}, 52 \%$ yield) was prepared according to the general procedure. The desired amine $\mathbf{3 2}$ was isolated as an oil (24 g column, 100:0 $\rightarrow 90: 10$ hexanes/EtOAc). ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{t}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.04$ (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.29-4.08(\mathrm{~m}$, $2 \mathrm{H}), 1.94(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.59(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.33-$ $1.04(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 157.2,155.9,147.7,137.4,129.6,129.0,128.4,123.1,118.8$, 118.5, 116.9, 113.1, 62.8, 44.9, 30.1, 29.5, 26.4, 26.3, 26.3. FT-IR (cm^{-1}, neat, ATR) 3423, 2922, 2850, 1600, 1501, 1487, 745, 689. HRMS (EI) calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}[\mathrm{M}]^{+}: 357.2093$, found: 357.2093.

2-(4-(Cyclohexyl(phenylamino)methyl)phenoxy)acetamide, $\mathbf{3 3}$ ($105 \mathrm{mg}, 62 \%$ yield) was prepared according to the general procedure. The desired amine 33 was isolated as a solid $\left(\mathrm{mp}=104-106{ }^{\circ} \mathrm{C}\right)(24 \mathrm{~g}$ column, 80:20 $\rightarrow 30: 70$ hexanes/EtOAc). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.87$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H})$, $4.16(\mathrm{~s}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.54$ $(\mathrm{d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.28-1.00(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 171.1,155.9,147.6,136.3,129.0$, 128.4, 116.9, 114.3, 113.1, 67.1, 62.6, 44.9, 30.0, 29.4, 26.3, 26.3, 26.2. FT-IR (cm^{-1}, neat, ATR) 3440,3180 , 2932, 2852, 1683, 1598, 1506, 1238, 752. HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}]^{+}: 338.1994$, found: 338.2002.

N-(Cyclohexyl(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)methyl)aniline, 34 ($113 \mathrm{mg}, 70 \%$ yield) was prepared according to the general procedure. The desired amine 34 was isolated as a solid ($\mathrm{mp}=127-128{ }^{\circ} \mathrm{C}$) $(24 \mathrm{~g}$ column, 100:0 $\rightarrow 70: 30$ hexanes/EtOAc). ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.08(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.74-6.82(\mathrm{~m}$, $3 \mathrm{H}), 6.62(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{~s}, 4 \mathrm{H}), 4.09-4.17(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $1 \mathrm{H}), 1.91(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.52(\mathrm{~m}, 3 \mathrm{H}), 1.28-0.98(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.9,143.4,142.4,136.2,129.2,120.4,117.0,117.0,116.0,113.4,64.5,64.4,63.0,45.0,30.3$, 29.8, 26.6, 26.5, 26.5. FT-IR (cm^{-1}, neat, ATR) 3435, 2931, 2848, 1603, 1504, 1286, 1065, 749. HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{2}[\mathrm{M}]^{+}: 323.1885$, found: 323.1895.

2-(Cyclohexyl(phenylamino)methyl)-6-methoxyphenol, 35 ($120 \mathrm{mg}, 77 \%$ yield) was prepared according to the general procedure. The desired amine 35 was isolated as an oil (24 g column, 100:0 $\rightarrow 60: 40$ hexanes/EtOAc). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.14(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.88-6.80(\mathrm{~m}, 2 \mathrm{H}), 6.80-6.74(\mathrm{~m}$, $1 \mathrm{H}), 6.74-6.64(\mathrm{~m}, 3 \mathrm{H}), 4.95-4.05(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.66$ $-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.35-1.10(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.8,146.7$, 144.1, 129.0, 127.6, 120.7, 119.1, 117.7, 113.9, 109.1, 60.2, 55.78, 43.4, 30.1, 29.9, 26.4, 26.3. FT-IR (cm^{-1}, neat, ATR) $3625,3412,2922,2849,1601,1476,1248,1074,746,691$. HRMS (ES+) calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}: 312.1964$, found: 312.1986 .

N-(Cyclohexyl(2,3,4-trimethoxyphenyl)methyl)aniline, $\mathbf{3 6}(93 \mathrm{mg}, 52 \%$ yield) was prepared according to the general procedure. The desired amine 36 was isolated as an oil (24 g column, 100:0 $\rightarrow 70: 30$ hexanes/EtOAc). ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.09(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.63-6.55(\mathrm{~m}, 4 \mathrm{H}), 4.39(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{~d}, J=11.3$ $\mathrm{Hz}, 1 \mathrm{H}), 1.76-1.65(\mathrm{~m}, 3 \mathrm{H}), 1.49(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.32-1.01(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $152.3,151.7,148.0,141.9,129.0,128.2,122.2,116.6,113.0,106.8,60.7,60.5,58.2,55.8,44.0,30.7,29.8$, 26.5, 26.4, 26.3. FT-IR (cm^{-1}, neat, ATR) 3400, 2924, 2849, 1600, 1492, 1278, 1092, 746, 691. HRMS (EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{2} \mathrm{NO}_{3}[\mathrm{M}]^{+}: 355.2147$, found: 355.2143 .

N-((2-Bromo-4,5-dimethoxyphenyl)(cyclohexyl)methyl)aniline, 37 ($176 \mathrm{mg}, 87 \%$ yield) was prepared according to the general procedure. The desired amine 37 was isolated as an oil (24 g column, 100:0 $\rightarrow 70: 30$ hexanes/EtOAc). ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.08(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.48(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~d}, J$ $=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.53(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.31-1.09(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 148.8,148.4,147.6,133.9,129.3,117.4,115.5,113.9,113.4,111.1,61.8,56.2,56.1,44.3,30.3,29.0$, 26.7, 26.5. FT-IR (cm^{-1}, neat, ATR) 3404, 2925, 2850, 1600, 1499, 1436, 1317, 1249, 1154, 730. HRMS (ES+) calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{BrNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 404.1225$, found: 404.1244 .

N-((4-(1H-Pyrazol-1-yl)phenyl)(cyclohexyl)methyl)aniline, $\mathbf{3 8}$ (146 $\mathrm{mg}, 88 \%$ yield) was prepared according to the general procedure. The desired amine 38 was isolated as an oil (24 g column, 100:0 $\rightarrow 70: 30$ hexanes/EtOAc). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $6.47-6.42(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.91(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.64(\mathrm{~m}, 4 \mathrm{H}), 1.60(\mathrm{~d}, J=12.8$ $\mathrm{Hz}, 1 \mathrm{H}), 1.29$ - $1.03(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 147.7, 141.2, 141.1, 139.2, 129.2, 128.4, 126.8, 119.4, 117.4, 113.5, 107.6, 63.2, 45.1, 30.3, 29.6, 26.6, 26.5, 26.5. FT-IR (cm^{-1}, neat, ATR) 3406, 2923, 2850, 1600, 1522, 1501, 1393, 746, 691. HRMS (EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{3}[\mathrm{M}]^{+}: 331.2048$, found: 331.2046.

N-((4-(1,2,4-Oxadiazol-3-yl)phenyl)(cyclohexyl)methyl)aniline, 39 (123 $\mathrm{mg}, 74 \%$ yield) was prepared according to the general procedure. The desired amine 39 was isolated as a solid ($\mathrm{mp}=119-121^{\circ} \mathrm{C}$) $(24 \mathrm{~g}$ column, 100:0 $\rightarrow 70: 30$ hexanes/EtOAc). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.70(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.45(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.35-4.05$ $(\mathrm{m}, 2 \mathrm{H}), 1.90(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.63(\mathrm{~m}, 4 \mathrm{H}), 1.58(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.28-1.04(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 167.8,164.7,147.6,146.8,129.3,128.0,127.7,125.0,117.5,113.4,63.5,45.0,30.3$, 29.5, 26.5, 26.5, 26.4. FT-IR (cm^{-1}, neat, ATR) 3340, 2929, 2850, 1599, 1497, 1333, 1273, 1119, 751, 695. HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}[M]^{+}: 333.1841$, found: 333.1844.

N-(Cyclohexyl(6-(trifluoromethyl)pyridin-3-yl)methyl)aniline, 40 ($126 \mathrm{mg}, 75 \%$ yield) was prepared according to the general procedure. The desired amine 40 was isolated as a solid ($\left.\mathrm{mp}=131-133{ }^{\circ} \mathrm{C}\right)(24 \mathrm{~g}$ column, 100:0 $\rightarrow 80: 20$ hexanes/EtOAc). ${ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.67(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.60$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 2 \mathrm{H}), 4.26(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~s}, 1 \mathrm{H})$, $1.89-1.65(\mathrm{~m}, 5 \mathrm{H}), 1.58(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.27-1.03(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.7$, $147.0(\mathrm{q}, J=34.6 \mathrm{~Hz}), 146.8,141.9,136.1,129.4,121.8(\mathrm{q}, J=273.9 \mathrm{~Hz}), 120.3(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 118.1,113.4$, 61.2, 44.8, 30.1, 29.3, 26.3, 26.3, 26.3. ${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-67.63. FT-IR (cm^{-1}, neat, ATR) 3320 ,

2938, 2849, 1601, 1496, 1334, 1180, 1081, 747. HRMS (ES+) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 335.1735$, found: 335.1745 .

N-(Cyclohexyl(3-phenylisoxazol-5-yl)methyl)aniline, 41 (133 mg, 80% yield) was prepared according to the general procedure. The desired amine 41 was isolated as a solid $\left(\mathrm{mp}=127-128^{\circ} \mathrm{C}\right)(24 \mathrm{~g}$ column, 100:0 $\rightarrow 80: 20$ hexanes/EtOAc). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{dd}, J=6.5,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{dd}, J$ $=8.2,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90$ $-4.24($ brs, 1 H$), 2.02-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{t}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.36-1.12(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 174.4,162.3,147.0,130.07,129.5,129.3,129.0,127.0,118.4,113.5,100.2,56.8$, 42.8, 29.7, 29.4, 26.4, 26.3, 26.2. FT-IR (cm^{-1}, neat, ATR) 3329, 2925, 2853, 1598, 1497, 1324, 765, 688. HRMS (EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}]^{+}: 332.1889$, found: 332.1885.

N-(Benzofuran-2-yl(cyclohexyl)methyl)aniline, 42 ($86 \mathrm{mg}, 56 \%$ yield) was prepared according to the general procedure. The desired amine 42 was isolated as a solid $\left(\mathrm{mp}=109-111{ }^{\circ} \mathrm{C}\right)(24 \mathrm{~g}$ column, $100: 0 \rightarrow 90: 10$ hexanes/EtOAc). ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48(\mathrm{dd}, J=11.9,7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.11(\mathrm{~m}, 4 \mathrm{H}), 6.73-$ $6.63(\mathrm{~m}, 3 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~s}, 1 \mathrm{H}), 2.02-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.35$ $-1.14(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.3,154.6,147.3,129.1,128.3,123.4,122.5,120.6,117.6$,
113.3, 111.0, 103.7, 57.5, 42.4, 29.8, 29.4, 26.3, 26.1, 26.1. FT-IR (cm^{-1}, neat, ATR) $3395,2928,2852,1598$, 1501, 1454, 1248, 750, 692. HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}[\mathrm{M}]^{+}: 305.1780$, found: 305.1769.

1-(2-(Cyclohexyl(phenylamino)methyl)-1H-indol-1-yl)ethan-1-one, 43 ($49 \mathrm{mg}, 28 \%$ yield) was prepared according to the general procedure. The desired amine 43 was isolated as an oil (24 g column, 100:0 $\rightarrow 80: 20$ hexanes/EtOAc). ${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.47(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.23(\mathrm{~m}, 3 \mathrm{H})$, $7.10(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.48(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~s}, 1 \mathrm{H})$, $2.58(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.85-1.66(\mathrm{~m}, 4 \mathrm{H}), 1.31-1.11(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.4,147.7,136.3,129.5,129.07,125.1,123.8,123.4,122.8,119.3,117.4,116.8,113.1,56.2,43.5,30.4$, 29.2, 26.3, 24.0. FT-IR (cm^{-1}, neat, ATR) 3398, 2924, 2851, 1694, 1600, 1448, 1328, 1218, 746, 730. HRMS (EI) calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}]^{+}: 346.2045$, found: 346.2048.

Ethyl 2-Cyclohexyl-2-(phenylamino)acetate, $44(101 \mathrm{mg}, 77 \%$ yield) was prepared according to the general procedure. The desired amine 44 was isolated as an oil (24 g column, $100: 0 \rightarrow 85: 15$ hexanes/EtOAc). ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.72(\mathrm{tt}, J=7.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.66-6.56(\mathrm{~m}, 2 \mathrm{H}), 4.24-4.05(\mathrm{~m}$, $3 \mathrm{H}), 3.86(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.72(\mathrm{~m}, 3 \mathrm{H}), 1.72-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.00(\mathrm{~m}$, $8 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 173.8,147.6,129.4,118.2,113.6,62.2,60.9,41.5,29.8,29.3,26.3,26.3$,
26.2, 14.5. FT-IR (cm^{-1}, neat, ATR) 2980, 2926, 2853, 1728, 1602, 1505, 1256, 1178, 1146. HRMS (ES+) calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: \mathbf{2 6 2 . 1 8 0 7}$, found: 262.1804.

4.3 Amine Scope:

Methyl 4-(((4-Chlorophenyl)amino)(cyclohexyl)methyl)benzoate, 45 ($77 \mathrm{mg}, 43 \%$ yield) was prepared according to the general procedure. The desired amine 45 was isolated as an oil (24 g column, 100:0 $\rightarrow 85: 15$ hexanes/EtOAc). ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.37(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~d}, J=12.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.81-1.56(\mathrm{~m}, 4 \mathrm{H}), 1.58-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.28-0.87(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 167.1$, 147.9, 146.0, 129.8, 129.1, 129.0, 127.4, 122.0, 114.4, 63.6, 52.2, 44.8, 30.2, 29.5, 26.4, 26.4, 26.4. FT-IR $\left(\mathrm{cm}^{-1}\right.$, neat, ATR) 3406, 2927, 2853, 1710, 1599, 1498, 1312,1281. HRMS (ES+) calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{ClNO}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}: 358.1574$, found: 358.1583.

Methyl 4-(((3-Chlorophenyl)amino)(cyclohexyl)methyl)benzoate, 46 ($118 \mathrm{mg}, 66 \%$ yield) was prepared according to the general procedure. The desired amine 46 was isolated as an oil (24 g column, 100:0 $\rightarrow 85: 15$
hexanes/EtOAc). ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.29(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.57(\mathrm{ddd}, J=7.9,2.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{ddd}, J=8.3,2.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~s}$, $1 \mathrm{H}), 4.14(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.57(\mathrm{~m}, 4 \mathrm{H}), 1.51(\mathrm{dd}, J=12.8$, $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.34-0.81(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.1,148.6,147.7,134.9,130.2,129.8$, 129.2, 127.3, 117.3, 113.1, 111.5, 67.2, 63.3, 52.2, 44.8, 30.3, 29.4, 26.4, 26.37. FT-IR (cm^{-1}, neat, ATR) 2927, $1710,1596,1576,1499,1484,1278,1114,907,730$. HRMS $(\mathrm{ES}+)$ calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{ClNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 358.1574$, found: 358.1574.

Methyl 4-(Cyclohexyl((3-(trifluoromethyl)phenyl)amino)methyl)benzoate, 47 (125 mg , 64% yield) was prepared according to the general procedure. The desired amine 47 was isolated as an oil ($24 \mathrm{~g} \mathrm{column}, 100: 0 \rightarrow$ 85:15 hexanes/EtOAc). ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.26-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{t}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{dd}, J=8.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J$ $=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 2.06-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.53-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.36-0.71(\mathrm{~m}, 5 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.1,147.6,147.5,131.5(\mathrm{q}, J=31.8 \mathrm{~Hz}), 129.9,129.7,129.2,127.3,124.3(\mathrm{q}$, $J=272.4 \mathrm{~Hz}), 115.9,113.8(\mathrm{q}, J=3.7 \mathrm{~Hz}), 109.9(\mathrm{q}, J=4.0 \mathrm{~Hz}), 63.4,52.2,44.8,30.3,29.6,26.4,26.4,26.3$. ${ }^{19}$ F NMR (471 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-62.96$. FT-IR (cm^{-1}, neat, ATR) $2929,2854,1709,1612,1436,1341,1313$, 1280, 1162, 1116. HRMS (ES+) calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 392.1837$, found: 392.1847.

Methyl 3-((Cyclohexyl(4-(methoxycarbonyl)phenyl)methyl)amino)benzoate, 48 ($123 \mathrm{mg}, 68 \%$ yield) was prepared according to the general procedure. The desired amine 48 was isolated as an oil (24 g column, 100:0 \rightarrow 70:30 hexanes/EtOAc). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30$ $7.24(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{dd}, J=8.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 1 \mathrm{H}), 4.21$ $(\mathrm{d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.51(\mathrm{~d}, J=12.9$ $\mathrm{Hz}, 1 \mathrm{H}), 1.35-0.96(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 167.5,167.1,147.9,147.5,131.0,129.8,129.2$, 129.1, 127.3, 118.5, 117.3, 114.4, 63.3, 52.1, 52.1, 44.8, 30.3, 29.5, 26.4, 26.4, 26.3. FT-IR (cm^{-1}, neat, ATR) 2928, 2853, 1717, 1605, 1436, 1330, 1278, 1108. HRMS (ES+) calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 382.2018$, found: 382.2037.

Methyl 4-(Cyclohexyl((3,4-dichlorophenyl)amino)methyl)benzoate, 49 ($133 \mathrm{mg}, 68 \%$ yield) was prepared according to the general procedure. The desired amine 49 was isolated as an oil (24 g column, 100:0 $\rightarrow 85: 15$ hexanes/EtOAc). ${ }^{1} \mathbf{H}$ NMR (500 MHz, CDCl_{3}) $\delta 8.09-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.53(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{dd}, J=8.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~s}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H})$, $1.83(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.50(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.31-0.88(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.0,147.2,146.9,132.7,130.6,129.9,129.3,127.2,119.9,114.5,112.8,63.4,52.2,44.7$,

Methyl 4-(Cyclohexyl((3,5-dichlorophenyl)amino)methyl)benzoate, 50 ($110 \mathrm{mg}, 56 \%$ yield) was prepared according to the general procedure. The desired amine 50 was isolated as an oil (24 g column, 100:0 $\rightarrow 85: 15$ hexanes/EtOAc). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.99(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.32(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.90(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.91-1.59(\mathrm{~m}, 5 \mathrm{H}), 1.48(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.32-0.75(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.0,149.1,147.0,135.4,129.9,129.3,127.2,117.2,111.5,63.2,52.2,44.7,30.2,29.4,26.3$, 26.3, 26.3. FT-IR (cm^{-1}, neat, ATR) 2927, 2853, 1706, 1589, 1572, 1451, 1436, 1280, 1112. HRMS (ES+) calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 392.1184$, found: 392.1176 .

Methyl 4-(Cyclohexyl(naphthalen-2-ylamino)methyl)benzoate, 51 ($77 \mathrm{mg}, 41 \%$ yield) was prepared according to the general procedure. The desired amine 51 was isolated as an oil (24 g column, 100:0 $\rightarrow 85: 15$ hexanes/EtOAc). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.64-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.34(\mathrm{~m}$,
$3 \mathrm{H}), 7.34-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{ddd}, J=7.9,6.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{dd}, J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.34(\mathrm{~s}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.63-$ $1.55(\mathrm{~m}, 1 \mathrm{H}), 1.33-0.96(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.1,148.2,145.0,135.1,129.8,129.0$, $129.0,127.6,127.5,127.4,126.3,126.0,122.1,118.0,105.6,63.5,52.1,44.9,30.3,29.5,26.5,26.5,26.4$. FT-IR (cm^{-1}, neat, ATR) 2925, 2852, 1710, 1629, 1520, 1278, 1113, 827, 732. HRMS (ES+) calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 374.2120$, found: 374.2119 .

Methyl 4-(([1,1'-Biphenyl]-2-ylamino)(cyclohexyl)methyl)benzoate, $\mathbf{5 2}$ ($80 \mathrm{mg}, 40 \%$ yield) was prepared according to the general procedure. The desired amine 52 was isolated as an oil (24 g column, 100:0 $\rightarrow 85: 15$ hexanes/EtOAc). ${ }^{1} \mathbf{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.09-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.41(\mathrm{tt}, J=6.5,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{dd}, J=7.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{td}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{td}, J=7.4,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.33(\mathrm{dd}, J=8.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 1.71-1.50(\mathrm{~m}, 5 \mathrm{H})$, $1.50-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.20-0.65(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 167.2,148.5,144.2,139.6,130.1$, 129.7, 129.6, 129.1, 129.0, 128.6, 127.9, 127.5, 127.3, 117.0, 111.4, 63.5, 52.1, 44.9, 30.5, 29.0, 26.5, 26.4, 26.4. FT-IR (cm^{-1}, neat, ATR) 2925, 2852, 1720, 1508, 1489, 1435, 1277, 1105. HRMS (ES+) calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 400.2277$, found: 400.2277.

Methyl 4-(((2-Benzylphenyl)amino)(cyclohexyl)methyl)benzoate, $\mathbf{5 3}$ ($114 \mathrm{mg}, 55 \%$ yield) was prepared according to the general procedure. The desired amine 53 was isolated as an oil (24 g column, 100:0 $\rightarrow 85: 15$ hexanes/EtOAc). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{dd}, J=8.3,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.21$ (m, 3H), $7.13(\mathrm{dd}, J=7.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{td}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{td}, J=7.3,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{dd}, J=20.7,9.4 \mathrm{~Hz}$, $3 \mathrm{H}), 1.41$ (dddd, $J=15.3,12.5,6.5,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.29(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.16-0.91(\mathrm{~m}, 3 \mathrm{H}), 0.82-0.61(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 167.2,148.4,145.2,139.8,131.1,129.6,129.0,128.7,128.7,127.9,127.2$, 126.9, 124.5, 116.8, 111.4, 62.6, 52.1, 44.9, 39.4, 30.2, 28.5, 26.5, 26.4, 26.3. FT-IR (cm^{-1}, neat, ATR) 2925, 2852, 1718, 1605, 1510, 1450, 1435, 1277, 1113, 1103. HRMS (ES+) calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 414.2433$, found: 414.2450 .

Methyl 4-(Cyclohexyl((4-methoxyphenyl)amino)methyl)benzoate, 54 ($88 \mathrm{mg}, 50 \%$ yield) was prepared according to the general procedure with 2 equivalents of NaHSO_{4}. The desired amine $\mathbf{5 4}$ was isolated as an oil (24 g column, 100:0 $\rightarrow 80: 20$ hexanes $/ E t O A c) .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.41(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 1 \mathrm{H}), 3.89$
$(\mathrm{s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.53(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.25-0.99(\mathrm{~m}$, $5 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) $\delta 167.2,152.0,148.8,141.8,129.7,128.9,127.5,114.9,114.5,64.3,55.9$, 52.1, 45.0, 30.3, 29.5, 26.5, 26.5, 26.4. FT-IR (cm ${ }^{-1}$, neat, ATR) 2925, 2852, 1713, 1509, 1277, 1234, 1178, 1106, 818. HRMS (ES+) calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 354.2069$, found: 354.2055 .

4.4 Bioactive molecule modification:

Methyl 2-(1-(4-(Cyclohexyl(phenylamino)methyl)benzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetate, 55 $(127.5 \mathrm{mg}, 81 \%$ yield) was prepared according to the general procedure in 0.3 mmol scale. The desired amine was isolated as a solid $\left(\mathrm{mp}=68-70^{\circ} \mathrm{C}\right)\left(12 \mathrm{~g}\right.$ column, $100: 0 \rightarrow 70: 30$ hexanes/EtOAc). ${ }^{\mathbf{1}} \mathbf{H}$ NMR $(500 \mathrm{MHz}$, Chloroform- d) $\delta 7.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.79$ $(\mathrm{d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{dd}, J=9.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.52-4.18$ (m, 2H), $3.85(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.66(\mathrm{~m}, 4 \mathrm{H})$, $1.59(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.30-1.07(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.4,169.4,155.8,148.2$, $147.2,136.0,134.1,131.0,130.5,129.6,129.0,127.7,117.3,115.0,113.2,112.0,111.4,101.0,63.4,55.6,52.0$, $44.6,30.1,30.1,29.4,26.3,26.2,26.2,13.2$. FT-IR (cm^{-1}, neat, ATR) $3400,2927,1600,1477,1312,1223,734$. HRMS (ES+ + calcd for $\mathrm{C}_{33} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 525.2753$, found: 525.2758.

Isopropyl 2-(4-(4-(Cyclohexyl(phenylamino)methyl)benzoyl)phenoxy)-2-methylpropanoate, 56 (114 mg, 74% yield) was prepared according to the general procedure in 0.3 mmol scale. The desired amine was isolated as a solid $\left(\mathrm{mp}=58-60{ }^{\circ} \mathrm{C}\right)\left(12 \mathrm{~g}\right.$ column, $100: 0 \rightarrow 80: 20$ hexanes/EtOAc). ${ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz}$, Chloroform- $d) \delta$ $7.76(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.16-5.00(\mathrm{~m}, 1 \mathrm{H}), 4.36-4.15(\mathrm{~m}, 2 \mathrm{H}), 1.88(\mathrm{~d}$, $J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.61(\mathrm{~m}, 10 \mathrm{H}), 1.57(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.25-1.06(\mathrm{~m}, 11 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right){ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.4,173.3,159.6,147.6,136.9,132.2,130.9,130.1,129.3,127.3$, 117.4, 117.3, 113.3, 79.5, 69.4, 63.4, 45.0, 30.4, 29.5, 26.5, 26.4, 25.6, 25.5, 21.7. FT-IR (cm^{-1}, neat, ATR) 3395, 2926, 1728, 1598, 1248, 1145, 735. HRMS (ES+) calcd for $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 514.2957$, found: 514.2950.

Methyl 4-(Cyclohexyl((4-(N-(2,6-dimethoxypyrimidin-4-yl)sulfamoyl)phenyl)amino)methyl)benzoate, 57
($97 \mathrm{mg}, 36 \%$ yield) was prepared according to the general procedure. The desired amine was isolated as a solid $\left(\mathrm{mp}=212-214{ }^{\circ} \mathrm{C}\right)(24 \mathrm{~g}$ column, $60: 40 \rightarrow 20: 80$ hexanes $/ E t O A c) .{ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz}$, Chloroform $-d) \delta 7.99(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.46(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 4.85$
$(\mathrm{d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.80-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.48(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.24-0.98(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.6$, 166.7, 164.7, 158.8, 151.4, 146.4, 129.8, 129.4, 129.2, 127.0, 125.4, 112.2, 85.3, 62.8, 54.6, 55.0, 52.0, 44.3, 30.0, 29.3, 26.1, 26.0, 26.0. FT-IR (cm ${ }^{-1}$, neat, ATR) 3260, 2928, 1718, 1592, 1347, 1280, 1148, 1088, 574. HRMS (ES+) calcd for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 541.2121, found: 541.2131.

Methyl 4-(Cyclohexyl((6-(4-(trifluoromethyl)-1H-pyrazol-1-yl)pyridin-3-yl)amino)methyl)benzoate, 60 (133 mg, 58% yield) was prepared according to the general procedure. The desired amine was isolated as a viscous oil (24 g column, $90: 10 \rightarrow 70: 30$ hexanes/EtOAc). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.61(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{dd}$, $J=8.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~s}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.64$ $(\mathrm{m}, 4 \mathrm{H}), 1.54(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.28-1.03(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform- d) δ 166.7, 146.5, 142.7, 142.0, $137.6(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 132.8,129.7,129.2,127.1,125.3(\mathrm{q}, J=3.7 \mathrm{~Hz}), 122.5(\mathrm{q}, J=266.0 \mathrm{~Hz})$, $122.1,114.5(\mathrm{q}, ~ J=38.5 \mathrm{~Hz}), 113.1,63.3,51.9,44.5,29.8,29.4,26.1,26.1,26.0 .{ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-56.75$. FT-IR (cm^{-1}, neat, ATR) 3380, 2929, 2850, 1708, 1495, 1402, 1263, 1114, 967, 733. HRMS (ES +) calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 459.2008$, found: 459.2001 .

5. Large Scale Reaction and Removal of \boldsymbol{p}-Methoxyphenylamines:

To an oven dried, 50 mL round bottom flask equipped with a stir bar were added $\left[\operatorname{Ir}\left\{\mathrm{dFCF}_{3} \mathrm{ppy}\right\}_{2}(\mathrm{bpy})\right] \mathrm{PF}_{6}$ ($60.6 \mathrm{mg}, 0.06 \mathrm{mmol}, 2 \mathrm{~mol} \%$), aldehyde ($0.4925 \mathrm{~g}, 3.0 \mathrm{mmol}$, 1.0 equiv), alkyltrifluoroborate ($0.8553 \mathrm{~g}, 4.5$ mmol, 1.5 equiv), $\mathrm{NaHSO}_{4}(0.7203 \mathrm{~g}, 6.0 \mathrm{mmol}, 2.0$ equiv), and amine ($0.5542 \mathrm{~g}, 4.5 \mathrm{mmol}, 1.5$ equiv). The flask was sealed with a rubber septum, evacuated, and purged with argon three times via an inlet needle. The flask was then charged with dry and degassed 1,4-dioxane ($30 \mathrm{~mL}, 0.1 \mathrm{M}$). The reaction mixture was then stirred vigorously under light irradiation (blue LEDs) as shown below. The reaction temperature was maintained at approximately $24^{\circ} \mathrm{C}$ via a fan. Once judged complete by crude ${ }^{1} \mathrm{H}$ NMR ($\sim 24 \mathrm{~h}$), the reaction was taken to dryness and then purified on an automated liquid chromatographic system to obtain the pure product, 541 mg , (51\%) as an oil.

6. Representative Procedure for Deprotection of \boldsymbol{p}-Methoxyphenylamines

Methyl 4-(Amino(cyclohexyl)methyl)benzoate, 61 ($75 \mathrm{mg}, 61 \%$ yield) was prepared according to the following procedure: To a solution of amine (0.50 mmol) in $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(28 \mathrm{~mL})$ was added CAN (3.0 equiv) at $0^{\circ} \mathrm{C}$. The reaction was stirred at this temperature for 1 hour, then allowed to warm up to room temperature overnight. Upon completion, the mixture was washed with $\mathrm{DCM}(5 \mathrm{~mL})$ then the aqueous later was made alkaline by adding 2 N NaOH . The solution was extracted with ethyl acetate $(4 \times 20 \mathrm{~mL})$ and then washed with brine, dried over MgSO_{4}, and isolated by flash chromatography (silica gel, hexane: ethyl acetate $\left(1: 1,2 \% \mathrm{Et}_{3} \mathrm{~N}\right)$. The desired amine was isolated as a viscous yellow oil. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.53-6.91(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-0.46(\mathrm{~m}, 14 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform- d) $\delta 167.2,150.8,129.7,128.9,127.5,127.3,61.6,52.1,45.3,30.1,29.4,26.5,26.3$. FT-IR (cm^{-1}, neat, ATR) $3375,2923,2850,1717,1275,1111,770$. HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 248.1651$, found: 248.1647.

7. Mechanistic Studies:

6.1 Ring-opening Radical Clock: To an 8 mL reaction vial equipped with a stir bar were added $\left[\operatorname{Ir}\left\{\mathrm{dFCF}_{3} \mathrm{ppy}\right\}_{2}(\mathrm{bpy})\right] \mathrm{PF}_{6}(10.0 \mathrm{mg}, 0.01 \mathrm{mmol}, 2 \mathrm{~mol} \%)$, potassium (cyclopropylmethyl)trifluoroborate (121.5 $\mathrm{mg}, 0.75 \mathrm{mmol}$, 1.5 equiv), methyl 4-formylbenzoate ($82.0 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv), and NaHSO_{4} (60.0 mg , $0.5 \mathrm{mmol}, 1.0$ equiv). The vial was sealed with a cap containing a TFE lined silicone septa and placed under an argon via an inlet needle. The vial was evacuated three times via an inlet needle then purged with argon. Dry and degassed 1,4-dioxane was then added ($5.0 \mathrm{~mL}, 0.1 \mathrm{M}$). Aniline ($68.0 \mu \mathrm{~L}, 0.75 \mathrm{mmol}, 1.5$ equiv) was added via microsyringe. The reaction was placed under 34 W blue Kessil lamp irradation and vigorously stirred for 24 h. The reaction was maintained at approximately $24^{\circ} \mathrm{C} v i a$ a fan. After completion, the reaction mixture was taken to dryness and then purified on an automated liquid chromatographic system (12 g column, 100:0 $\rightarrow 90: 10$ hexanes $/ \mathrm{EtOAc}$) to obtain the pure product 62, $(49.0 \mathrm{mg}, 33 \%$ yield $)$ as an oil.

Methyl 4-(1-(Phenylamino)pent-4-en-1-yl)benzoate. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.44(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.85(\mathrm{td}, J=$ $16.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.15-4.98(\mathrm{~m}, 2 \mathrm{H}), 4.42(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 2.24-2.11(\mathrm{~m}, 2 \mathrm{H})$, 1.98 - $1.84(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.9,149.5,146.9,137.4,129.9,129.1,128.9,126.4$, $117.5,115.6,113.2,57.5,51.9,37.6,30.3$. FT-IR (cm^{-1}, neat, ATR) $3398,2950,2848,1600,1503,1275,1112$, 748, 692. HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{2}[\mathrm{M}]^{+}: 295.1572$, found: 295.1567 .
6.2 TEMPO Quenching Reaction: To an 8 mL reaction vial equipped with a stir bar were added
$\left[\operatorname{Ir}\left\{\mathrm{dFCF}_{3} \text { ppy }\right\}_{2}(\mathrm{bpy})\right] \mathrm{PF}_{6}(10.0 \mathrm{mg}, 0.01 \mathrm{mmol}, 2 \mathrm{~mol} \%)$, potassium cyclohexyltrifluoroborate $(140.0 \mathrm{mg}, 0.75$ mmol, 1.5 equiv), methyl 4-formylbenzoate ($82.0 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv), TEMPO
[(2,2,6,6-tetramethylpiperidin-1-yl)oxyl] ($156.0 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{NaHSO}_{4}(60.0 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv). The vial was sealed with a cap containing a TFE lined silicone septa and placed under an argon via an inlet needle. The vial was evacuated three times via an inlet needle then purged with argon. Dry and degassed 1,4-dioxane was then added ($5.0 \mathrm{~mL}, 0.1 \mathrm{M}$). Aniline ($68.0 \mu \mathrm{~L}, 0.75 \mathrm{mmol}, 1.5$ equiv) was added via microsyringe. The reaction was placed under blue LED irradiation and vigorously stirred for 24 h . The reaction was maintained at approximately $24^{\circ} \mathrm{C} v i a$ a fan. After completion, the reaction mixture was taken to dryness and then purified on an automated liquid chromatographic system (12 g column, 100:0 $\rightarrow 80: 20$ hexanes/EtOAc) to obtain the $\mathbf{6 3},(57.5 \mathrm{mg}, 48 \%$ yield) as an oil and $\mathbf{6 4}(110 \mathrm{mg}, 92 \%$ yield $)$.

1-(Cyclohexyloxy)-2,2,6,6-tetramethylpiperidine, 63. It was isolated as a pale yellow oil. ${ }^{1}$ H NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.65-3.50(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.42(\mathrm{~m}, 6 \mathrm{H}), 1.29-1.07$ $(\mathrm{m}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 81.9,59.7,40.4,34.6,33.0,26.1,25.2,20.4,17.5$.

Methyl 4-((Phenylimino)methyl)benzoate, 64, was isolated as a white solid. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.53(\mathrm{~s}, 1 \mathrm{H}), 8.19-8.13(\mathrm{~m}, 2 \mathrm{H}), 8.03-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.21(\mathrm{~m}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.49,158.98,151.44,139.92,132.26,129.89,129.14,128.55,126.41,120.81$, 52.23.
6.3 Imine as starting material: To an 8 mL reaction vial equipped with a stir bar were added $\left[\operatorname{Ir}\left\{\mathrm{dFCF}_{3} \mathrm{ppy}\right\}_{2}(\mathrm{bpy})\right] \mathrm{PF}_{6}(10.0 \mathrm{mg}, 0.01 \mathrm{mmol}, 2 \mathrm{~mol} \%)$, alkyltrifluoroborate $(140.0 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5$ equiv), 64 ($120 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv), and $\mathrm{NaHSO}_{4}(60.0 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv). The vial was sealed with a cap containing a TFE lined silicone septa and placed under an argon via an inlet needle. The vial was evacuated three times via an inlet needle then purged with argon. Dry and degassed 1,4-dioxane was then added ($5.0 \mathrm{~mL}, 0.1 \mathrm{M}$). Aniline ($68.0 \mu \mathrm{~L}, 0.75 \mathrm{mmol}, 1.5$ equiv) was added at this point directly via microsyringe. The reaction was placed under blue LED irradiation and vigorously stirred for 24 h . The reaction was maintained at approximately $24^{\circ} \mathrm{C}$ via a fan. After completion, the reaction mixture was taken to dryness and then purified on an automated liquid chromatographic system (24 g column, $100: 0 \rightarrow 85: 15$ hexanes/EtOAc) to obtain $4(142 \mathrm{mg}$, 88% yield) as a white solid.

Stern-Volmer Quenching Studies:

Stern-Volmer experiments were conducted on a Horiba Fluorolog ${ }_{\circledR}$ Spectrofluorometer. Stock solutions of substrates, photocatalyst, and base were prepared with dry dioxane. For cyclohexyl BF3K, the solution was prepared using MeCN as an alternative solvent due to solubility issues of the reagent. The solutions were mixed and purged with argon for 30 sec right before measurement. The samples were excited at 420 nm , and emission data were recorded at $473 \mathrm{~nm} . \mathrm{I}_{0} / \mathrm{I}$ values of each sample were calculated from the average of three scans per data point. Linear regression of $\mathrm{I}_{0} / \mathrm{I}$ against concentration was carried out to yield Ksv.

As shown below, strong quenching of the photocatalyst by alkyltrifluoroborate is observed. In comparison, no significant quenching of the photocatalyst is observed by the imine, with or without additives.

8. Preparation of Starting Material:

5-Nitro-2-(4-(trifluoromethyl)-1H-pyrazol-1-yl)pyridine, $\mathbf{5 8} \quad(95 \%$ yield) A mixture of 4-(trifluoromethyl)-1H-imidazole ($1048 \mathrm{mg}, 7.7 \mathrm{mmol}$), 2-chloro-5-nitropyridine (1.110 g .14 .7 mmol), and $\mathrm{K}_{2} \mathrm{CO}_{3}(2070 \mathrm{mg}, 15.0 \mathrm{mmol})$ in $\mathrm{MeCN}(8 \mathrm{~mL})$ was heated at $85^{\circ} \mathrm{C}$. overnight. The reaction was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc $(3 \times 25 \mathrm{~mL})$. The combined organic layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered with Celite, and concentrated to generate a white solid (1.717 g). ${ }^{1} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 9.31(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.98-8.90(\mathrm{~m}, 1 \mathrm{H}), 8.67(\mathrm{dd}, J=9.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $8.00(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.5,1448,142.8,140.4(\mathrm{q}, J=2.6 \mathrm{~Hz}), 134.5,127.6(\mathrm{q}, J=3.9$ $\mathrm{Hz}), 121.9(\mathrm{q}, J=266.9 \mathrm{~Hz}), 117.0(\mathrm{q}, J=38.9 \mathrm{~Hz}), 112.6 .{ }^{19} \mathbf{F} \mathbf{N M R}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-57.47$.

6-(4-(Trifluoromethyl)-1H-pyrazol-1-yl)pyridin-3-amine, 59 (98\% yield) $10 \mathrm{wt} \%$ Palladium on carbon (250 mg) was added to the solution of 5-nitro-2-(4-(trifluoromethyl)-1H-pyrazol-1-yl)pyridine (1.717 g) in 20 mL of EtOAc. The mixture was heated to $50^{\circ} \mathrm{C}$. The reaction was filtered through Celite, rinsing with MeOH. The filtrate was concentrated to give 6-(4-(trifluoromethyl)-1H-imidazol-1-yl)pyridin-3-amine as an oil (1.487 g). ${ }^{1} \mathbf{H}$ NMR (500 MHz, CDCl 3) $\delta 8.69(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=9.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.82(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.0,142.0,137.8(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 134.3,125.6(\mathrm{q}, J=3.5$ $\mathrm{Hz}), 124.3,122.6(\mathrm{q}, J=266.1 \mathrm{~Hz}), 114.7(\mathrm{q}, J=37.8 \mathrm{~Hz}), 113.2 .{ }^{19} \mathbf{F} \mathbf{N M R}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-56.75$.

Isopropyl 2-(4-(4-Formylbenzoyl)phenoxy)-2-methylpropanoate, To an oven-dried 20 mL -Schlenk tube equipped with a stir bar was added $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(9.6 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(97.7 \mathrm{mg}, 0.3 \mathrm{mmol}), 4 \mathrm{CzIPN}$ ($7.9 \mathrm{mg}, 0.01 \mathrm{mmol}$), dtbbpy ($12.8 \mathrm{mg}, 0.024 \mathrm{mmol}$), and Fenofibrate ($72 \mathrm{mg}, 0.2 \mathrm{mmol}$). Then, DMF (10 mL) was added, and 2,2-diethoxyacetic acid ($45 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) was injected into the tube by syringe under a N_{2} atmosphere. The mixture was degassed for 30 min by bubbling an N_{2} stream, then sealed with Parafilm. The solution was then stirred at rt under the irradiation of a blue LED strip for 24 h . After completion of the reaction, the mixture was quenched by addition of 0.5 mL of 3.0 M HCl , stirred for 2 h , and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (three times). The combined organic layers were washed with brine and then dried(anhyd $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and evaporated in vacuum. The desired products were obtained after purification by flash chromatography on silica gel (12 g column, $100: 0 \rightarrow 80: 20$ hexanes/EtOAc $)$. The desired aldehyde was isolated as a white solid ($80 \mathrm{mg}, 75 \%$). ${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.10(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.97-5.13(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 6 \mathrm{H}), 1.19(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}(126 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 194.6,191.8,173.1,160.3,143.4,138.3,132.3,130.1,129.9,129.6,117.4,79.6,69.5,25.5,21.7$.

Methyl 2-(1-(4-Formylbenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetate, To an oven-dried 20 $\mathrm{mL}-$ Schlenk tube equipped with a stir bar was added $\mathrm{NiCl}_{2} \bullet 6 \mathrm{H}_{2} \mathrm{O}(9.6 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(97.7 \mathrm{mg}, 0.3$
$\mathrm{mmol}), 4$ CzIPN ($7.9 \mathrm{mg}, 0.01 \mathrm{mmol}$), dtbbpy ($12.8 \mathrm{mg}, 0.024 \mathrm{mmol}$), and Indomethacin methyl ester (74 mg , $0.2 \mathrm{mmol})$. Then, DMF (10 mL) was added, and 2,2-diethoxyacetic acid ($45 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) was injected into the tube by syringe under a N_{2} atmosphere. The mixture was degassed for 30 min by bubbling N_{2} stream, then sealed with Parafilm. The solution was then stirred at rt under the irradiation of a blue LED strip for 24 h . After completion of the reaction, the mixture was quenched by addition of 0.5 mL of 3.0 M HCl , stirred for 2 h , and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (three times). The combined organic layers were washed with brine and then dried (anhyd $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and evaporated in vacuum. The desired products were obtained after purification by flash chromatography on silica gel (12 g column, 100:0 $\rightarrow 70: 30$ hexanes/EtOAc). The desired aldehyde was isolated as an oil $(79 \mathrm{mg}, 72 \%) .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.13(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{dd}, J=9.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}$, $3 \mathrm{H}), 3.67(\mathrm{~s}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 191.5,171.4,168.4,156.4,141.0,138.9,136.0$, $131.0,130.8,130.1,130.0,115.3,113.3,111.9,101.6,55.9,52.3,30.3,13.7$.

9. NMR Spectrum

${ }^{1} \mathrm{H}$ NMR spectrum of compound $4\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $4\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $5\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $5\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $6\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $6\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $7\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $7\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $8\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{8}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $9\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $9\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 0}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 0}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 1}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $11\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 2}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.
(
${ }^{13} \mathrm{C}$ NMR spectrum of compound $12\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $13\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 3}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $14\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 4}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $15\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $15\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $16\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 6}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $17\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $17\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $18\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 8}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $19\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $19\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $20\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $20\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $21\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $21\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $22\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $22\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{19} \mathrm{~F}$ NMR spectrum of compound $22\left(\mathrm{CDCl}_{3}, 471 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $23\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $23\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $24\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $24\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $25\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $25\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $26\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $26\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $27\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $27\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 8}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $28\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{19} \mathrm{~F}$ NMR spectrum of compound $28\left(\mathrm{CDCl}_{3}, 471 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $29\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $29\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 0}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $30\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $31\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $31\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $32\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $33\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $33\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 4}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $34\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $35\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $35\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 6}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $36\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $37\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $37\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 8}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $38\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $39\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $39\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $40\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $40\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{19} \mathrm{~F}$ NMR spectrum of compound $\mathbf{4 0}\left(\mathrm{CDCl}_{3}, 471 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $41\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $41\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $42\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $42\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $43\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $43\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $44\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $44\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $45\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 5}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $46\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $46\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $47\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $47\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{19} \mathrm{~F}$ NMR spectrum of compound $47\left(\mathrm{CDCl}_{3}, 471 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $48\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $48\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $49\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $49\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $50\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $50\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $51\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $51\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $52\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $52\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $53\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $53\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $54\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $54\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $55\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $55\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

[^0]${ }^{1} \mathrm{H}$ NMR spectrum of compound $56\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $56\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

[^1]${ }^{1} \mathrm{H}$ NMR spectrum of compound $57\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

\qquad

${ }^{13} \mathrm{C}$ NMR spectrum of compound $57\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

[^2]${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 0}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

11

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 0}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{19} \mathrm{~F}$ NMR spectrum of compound $60\left(\mathrm{CDCl}_{3}, 471 \mathrm{MHz}\right)$.
\[

$$
\begin{gathered}
\text { 命 } \\
\text { in }
\end{gathered}
$$
\]

${ }^{1} \mathrm{H}$ NMR spectrum of compound $61\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 1}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $62\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $62\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $63\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 3}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $64\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $64\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

[^3]${ }^{1} \mathrm{H}$ NMR spectrum of compound $58\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 8}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{19} \mathrm{~F}$ NMR spectrum of compound $58\left(\mathrm{CDCl}_{3}, 471 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $59\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $59\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.
\[

$$
\begin{aligned}
& \text { ñ } \\
& \stackrel{0}{0} \\
& i
\end{aligned}
$$
\]

${ }^{19} \mathrm{~F}$ NMR spectrum of compound $59\left(\mathrm{CDCl}_{3}, 471 \mathrm{MHz}\right)$.

[^4]${ }^{1} \mathrm{H}$ NMR spectrum of compound of aldehyde corresponding to $55\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound aldehyde corresponding to $\mathbf{5 5}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound of aldehyde corresponding to $\mathbf{5 6}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound of aldehyde corresponding to $\mathbf{5 6}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$.

$\stackrel{y y}{9} \stackrel{20}{4}$

[^5]
[^0]:

[^1]:

[^2]:

[^3]:

[^4]:

[^5]:

