Supporting Information

# Mechanistic Investigation with Kinetic Parameters on Water Oxidation Catalyzed by Manganese Oxide Nanoparticles Film

Hongmin Seo<sup>†</sup>, Kyoungsuk Jin<sup>†</sup>, Sunghak Park<sup>†</sup>, Kang Hee Cho<sup>†</sup>, Heonjin Ha<sup>†</sup>, Kang-Gyu

Lee<sup>†</sup>, Yoon Ho Lee<sup>†</sup>, Dang Thanh Nguyen<sup>‡</sup>, Hyacinthe Randriamahazaka<sup>#</sup>, Jong-Sook Lee<sup>\*,‡</sup>,

and Ki Tae Nam\*,<sup>†</sup>

<sup>†</sup>Department of Materials Science and Engineering, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea

<sup>‡</sup>School of Materials Science and Engineering, Chonnam National University, 77 Yongbongro, Buk-gu, Gwangju, 61186, Korea

<sup>#</sup>Université Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, SIELE Group, 15 rue Jean Antoine de Baïf, 75013 Paris, France

## **Supporting Information Content**

Pages: S1-S9 Figures: S1-S4 Table: S1

E-mail: jongsook@jnu.ac.kr, nkitae@snu.ac.kr

#### 1. Materials and basic characterization

#### 1. Materials

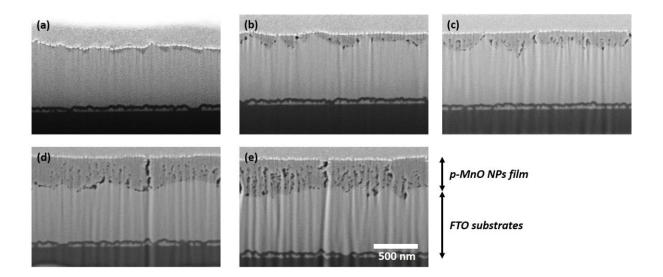
Mn(CH<sub>3</sub>COO)<sub>3</sub>-4H<sub>2</sub>O (99 %), 1-octadecene (90%), myristic acid (CH<sub>3</sub>(CH<sub>2</sub>)<sub>12</sub>COOH) (99%), decanol (CH<sub>3</sub>(CH<sub>2</sub>)<sub>9</sub>OH), Na<sub>2</sub>HPO<sub>4</sub>-7H<sub>2</sub>O (ACS reagent, 98.0-102.0 %), and NaH<sub>2</sub>PO<sub>4</sub>-2H<sub>2</sub>O (99.0 %) were purchased from Sigma Aldrich and used as received without further purification. Fluorine-doped-tin-oxide-coated glass (FTO, TEC-8) with the surface resistivity of 15  $\Omega$  sq<sup>-1</sup> was manufactured by Pilington Company.

#### 2. Scanning electron microscopy (SEM)

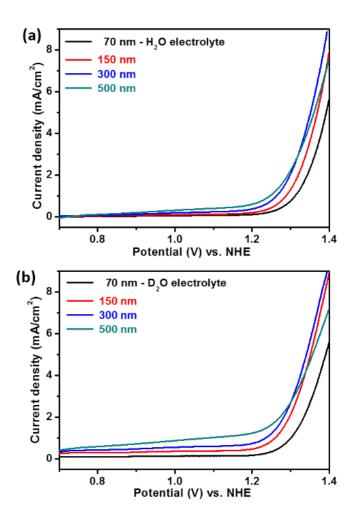
The morphology of the p-MnO NPs films on the FTO substrates was characterized with a high resolution scanning electron microscope (Supra 55VP, Carl Zeiss, Germany). After deposition of the MnO NPs, the substrate was gently rinsed in deionized water at least 3 times and dried with nitrogen gas. Images were taken with an acceleration voltage of 2 kV, and EDX spectra with a 15 kV.

#### **3.** Transmission electron microscopy (TEM)

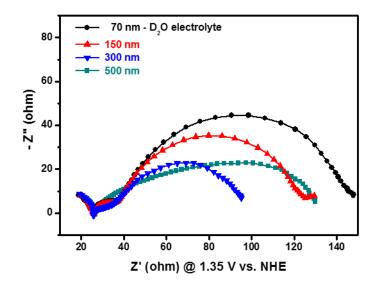
TEM images and selected area electron diffraction (SAED) patterns were obtained using a high resolution transmission electron microscope (JEM-3000F, JEOL, Japan) with the acceleration voltage of 300 kV. To prepare TEM samples, the MnO NPs dispersed in hexane were dropped on the TEM grid and dried in air.


# 2. Estimation of turnover frequency (TOF) for 300 nm-thickness p-MnO NPs

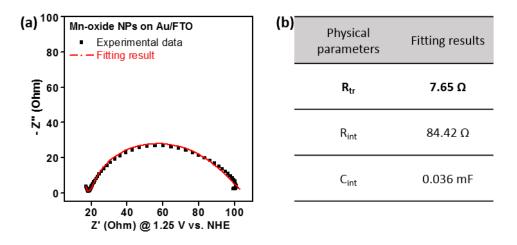
The number of active sites for 300 nm-thickness p-MnO NPs film was calculated with the assumption that all Mn atoms on the surface of nanoparticles serve as the active sites. The number of active sites for 300 nm-thickness Mno NPs film was calculated by the following equation with assumption that the surface of p-MnO NPs was (100) facet. The crystal structure and lattice parameter for MnO were face-centered cubic structure and  $4.43 \times 10^{-8}$  cm.


(The number of active sites) = 
$$(ECSA) \times (the moles of Mn atoms / cm^2)$$
  
=  $(147.8) \times \left(\frac{2}{(4.43 \times 10^{-8})^2 \times (6.02 \times 10^{23})}\right)$   
=  $2.502 \times 10^{-7} \text{ moles } / cm^2$  (S1)

TOF at 1.35 V vs. NHE can be calculated by calculated by the following equation based on the above values.


$$(\text{TOF}) = \frac{(current \ denistiy \ at \ 1.35 \ V \ vs. \ NHE)}{4 \cdot F \cdot (the \ number \ of \ active \ sites)}$$
$$= \frac{0.00496 \ A/cm^2}{4 \cdot (96485 \ A \cdot s \ /mol) \cdot (2.502 \times 10^{-7} \ \text{moles} \ / \ cm^2)} = 0.052 \ s^{-1}$$
(S2)




**Figure S1.** Cross-sectional scanning electron microscopy (SEM) images for p-MnO NPs films on FTO substrates for (a) 20 nm- (b) 70 nm- (c) 150 nm- (d) 300 nm- and (e) 500 nm-thickness



**Figure S2.** Polarization-corrected cyclic voltammetry curves from 0.7 V to 1.4 V vs. NHE for p-MnO NPs film of various thicknesses (70, 150, 300 and 500 nm) at 0.5M phosphate buffer solution under pH 7. (a)  $H_2O$  electrolyte (b)  $D_2O$  electrolyte



**Figure S3.** Nyquist plots for several thickness (70, 150, 300 and 500 nm) of p-MnO NPs film at 1.35 V vs. NHE in D<sub>2</sub>O electrolyte. The black, red, blue and dark cyan spectra were for 70, 150, 300 and 500 nm-thickness, respectively



**Figure S4.** (a) Nyquist plot for 150 nm-thickness Mn-oxide NPs film on Au/FTO substrates at 1.25 V vs. NHE in 0.5 M phosphate buffer solution. The black dots and red line indicated experimental data and fitting result using our proposed circuit model. (b) The values for physical parameters (R<sub>tr</sub>, R<sub>int</sub> and C<sub>int</sub>) from fitting with our circuit model.

| Nature of Mn-oxide                             | Preparation method                               | Mass of electroactive<br>materials (mg/cm <sup>2</sup> ) | Electrolyte                                  | Capacitance<br>(F/g) | Reference |
|------------------------------------------------|--------------------------------------------------|----------------------------------------------------------|----------------------------------------------|----------------------|-----------|
| p-MnO NPs                                      | Spin-coating                                     | 0.24                                                     | 0.5 M PBS                                    | 8.97                 | This work |
| Mn <sub>3</sub> O <sub>4</sub> film            | Electrostatic spray deposition                   | 0.116                                                    | $0.1~\mathrm{M~Na_2SO_4}$                    | 150                  | Ref. 1    |
| Mn <sub>3</sub> O <sub>4</sub> film            | Chemical bath deposition                         | 0.57                                                     | $1~{\rm M~Na_2SO_4}$                         | 193                  | Ref. 2    |
| MwCNT/Mn <sub>3</sub> O <sub>4</sub> film      | Dip-casting method                               | 10.1                                                     | $0.5 \mathrm{M} \mathrm{Na}_2 \mathrm{SO}_4$ | 143                  | Ref. 3    |
| Graphene/Mn <sub>3</sub> O <sub>4</sub> powder | Hydrothermal                                     | 2.0                                                      | 1 M Na <sub>2</sub> SO <sub>4</sub>          | 114                  | Ref. 4    |
|                                                | Precipitation from<br>MnO <sub>2</sub> organosol | 0.75                                                     | $1~{\rm M~Na_2SO_4}$                         | 175                  | Ref. 5    |

 Table S1. Summary for reported capacitance for several Mn-oxide electrodes.

### References

1. Nam, K.-W.; Kim, K.-B., Manganese oxide film electrodes prepared by electrostatic spray deposition for electrochemical capacitors. *J. Electrochem. Soc.* **2006**, *153* (1), A81-A88, DOI 10.1149/1.2131821.

2. Jang, K.; Lee, S.-w.; Yu, S.; Salunkhe, R. R.; Chung, I.; Choi, S.; Ahn, H., Facile Lowtemperature Chemical Synthesis and Characterization of a Manganese Oxide/multi-walled Carbon Nanotube Composite for Supercapacitor Applications. *Bull. Korean Chem. Soc* **2014**, *35* (10), 2975, DOI 10.5012/bkcs2014.35.10.2974.

3. Cui, X.; Hu, F.; Wei, W.; Chen, W., Dense and long carbon nanotube arrays decorated with Mn<sub>3</sub>O<sub>4</sub> nanoparticles for electrodes of electrochemical supercapacitors. *Carbon* **2011**, *49* (4), 1225-1234, DOI 10.1016/j.carbon.2010.11.039.

4. Lee, J. W.; Hall, A. S.; Kim, J.-D.; Mallouk, T. E., A facile and template-free hydrothermal synthesis of  $Mn_3O_4$  nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. *Chem. Mater.* **2012**, *24* (6), 1158-1164, DOI 10.1021/cm203697w.

5. Wang, B.; Park, J.; Wang, C.; Ahn, H.; Wang, G., Mn<sub>3</sub>O<sub>4</sub> nanoparticles embedded into graphene nanosheets: preparation, characterization, and electrochemical properties for supercapacitors. *Electrochimica Acta* **2010**, *55* (22), 6812-6817, DOI 10.1016/j.electacta.2010.05.086.