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1 Supporting text

1.1 Analytical expression of the bleed-through factor

Here, we work out the analytical expression Equation (2) of the main text, that expresses the bleed-
through factor as a function of the distance from a single luminescence-emitting well. When the
photo-detector is positioned at an offset h from a microplate well w, it still receives luminescence
incoming from the emitting well E5 under a small angle θ, as shown in Figure S2. Calling d the
distance between neighbouring wells, the detector that is positioned x wells away from E5 detects
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a background-subtracted intensity O(t) at a time t that is inversely proportional to the square of
the distance from the source l(x)

O(t, x) ∝ cos θ(x)

l(x)2
. (1)

From trigonometry considerations, the cosine of the angle θ can be expressed by

cos θ(x) =
h√

h2 + (xd)2
(2)

and the distance from the source l(x) by

l(x) =
√
h2 + (xd)2. (3)

We obtain the time-averaged bleed-through factor B(x) by rescaling O(t, x) with respect to the
reference intensity measured above the luminescent well O(t, 0) = 1/h2 and averaging over the
measured time interval T

B(x) ≡ 1

T

T∑
t,t′=0

O(t′, x)

O(t, 0)
=

=
1

T

T∑
t,t′=0

h√
h2 + (xd)2

1

h2 + (xd)2
h2 =

=
h3

(h2 + (xd)2)3/2
(4)

with l(0) = h and cos θ(0) = 1. If rows and columns of the microplates are identified by index m
and n, respectively, where m = 1, . . . , 8 and n = 1, . . . , 12, the distance x from the emitting well
E5 can be explicitly written as

x =
√

(m− 5)2 + (n− 5)2. (5)

Substituting x, we finally obtain

Bm,n =
h3

(h2 + d2((m− 5)2 + (n− 5)2))3/2
. (6)

Equation 6 is the theory prediction of the time-averaged bleed-through factor as a function of the
distance of the emitting well, as stated from Equation (2) in the main text.

1.2 Summary of the optimization algorithm

We give here a brief summary of the optimization algorithm to find the kernel D. We first measure
the luminescence intensities of the calibration plate Om,n(t) as described in the main text and

arrange them by row concatenation into a vector
−−→
O(t). Then, at every iteration step k, we

1. find the bleed-through factor matrix B(t), with entries Bm,n(t) given by Equation (1) in the
main text

Bm,n(t) =
Om,n(t)

O5,5(t)
(7)
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2. time-average B(t) to obtain the time-averaged bleed-through factor matrix B (with entries
Bm,n) and the corresponding matrix of standard deviations σB (with entries σBm,n)

3. assemble the matrix E (with entries Ei,j) and the matrix of standard deviations σE (with
entries σEi,j) from B and σB , respectively, according to

Ei,j =


Bi−3,j−7, if 4 ≤ i ≤ 11, 8 ≤ j ≤ 19

B(x), otherwise, for all (i,j) at distance x =
√

(i− 8)2 + (j − 12)2 from E5

z, otherwise,

(8)
The first line represents the measured time-averaged bleed-through matrix B. B(x) in the
second line represents the average of the measured values of B that are at a distance x =√

(i− 8)2 + (j − 12)2 from E5. This result is used to fill entries at the same distance x outside
the measured plate. All other entries of the extended matrix E are filled with z, computed by
averaging intensities over the wells defined as background (A12-H12). A graphical explanation
of the composition of the entries of E is given in Figure S5.

4. create a matrix Ẽ with entries given by Equation (6) in the main text

Ẽi,j = Ei,j + ri,jσ
E
i,j (9)

where ri,j is a random number generated from a gaussian distribution with mean 0 and
standard deviation 1

5. follow the prescription of Equation (3) in the main text, where E is replaced by Ẽ, to assemble
the kernel D with entries

Da,b = Ẽm−l+8,n−p+12 (10)

where a = 12(m− 1) + n, b = 12(l − 1) + p with m, l = 1, . . . , 8 and n, p = 1, . . . , 12

6. find the vector of deconvolved intensities
−−→
R(t) by applying Equation (5) in the main text

−−→
R(t) = D−1 ·

−−→
O(t) (11)

7. after transforming the vector
−−→
R(t) into a matrix with entries Ri,j(t), compute the difference

between each Ri,j(t) and the instrument sensitivity s (excluding luminescent well E5):

Qi,j = Ri,j(t)− s (12)

8. if every Qi,j ≤ 0, iterations stop; otherwise D is stored as Dbest =
∏
kDk, where the product

is intended as matrix multiplication and for k = 1, D0 is the identity matrix

9. apply the acceptance criteria:

• if R(t) < s or Ri,j(t) < Oi,j(t), the bleed-through has been reduced and Ri,j(t) is
accepted

• otherwise we set Ri,j(t) = Oi,j(t)
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10. assume that the luminescence left-overs are the new observed intensities, by setting Oi,j(t) =
Ri,j(t)

11. repeat from point 1).

The acceptance criteria ensure that the correction affects the wells where there is still present some
residual bleed-through after the deconvolution process.

1.3 Data analysis

In this section, we explain in detail how we analyse and correct for luminescence bleed-through the
microplate reader data. Although we use a 96-wells microplate, the process can be extended to any
microplate. Rows and columns of the microplates are identified by index m and n, respectively,
where m = 1, . . . , 8 (or by using letters m = A, . . . ,H) and n = 1, . . . , 121. We prepare the
calibration plate by inoculating with a luminescent bacterial strain a single well (E5), the other
wells of the plate with a non-luminescent strain, and proceed by

(a) measuring the luminescence of the plate for 2 hours

(b) adding arabinose (at high concentration, 0.2% in our case) in E5 to induce maximal lumines-
cence (at t = 0 h)

(c) measuring the luminescence of the plate for 6 hours. In general, we record the luminescence
signals during the exponential growth phase.

We produce three replicates both of the calibration plate and of the experiment that needs to be
bleed-through corrected. The output files of the microplate reader software are processed by our
algorithm in MATLAB as described in the following and schematically summarized in Figures S20
and S21.

1.3.1 Analysis of the calibration plate

We follow the scheme of Figures S20.

1 Raw luminescence L

We first arrange the raw luminescence data from the microplate reader files into an array L with
entries Lm,n(t, c), where the indexes m and n indicate row and column of the plate, t the time point
(given as machine reading cycle) and c the experimental replicate.

2 Luminescence background b

Next, we compute the background b of the luminescence by averaging the values of the luminescence
in the wells from A12 to H12 (8 wells), before arabinose induction (between t=-2 h and t=0 h, for

1 Notation: We use the indexes (m,n) to identify the entries of matrices which luminescence values come from
direct measurement, such as the bleed-through matrix B; (i, j) to identify the entries of the matrix E, resulting
from the extension of B under mathematical prescription; (a, b) to identify the entries of the matrix D, and (α, β)

indicates the position on the plate of the luminescent well. Vectors are denoted by
−→
V .
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a total time range Tbi = 2 h), and over C-replicates (in our case three replicates):

b =
1

8

1

Tbi

1

C

8∑
m=1

Tbi∑
t=1

C∑
c=1

Lm,12(t, c) (13)

with variance σ2
b

σ2
b =

1

8

1

Tbi

1

C

8∑
m=1

Tbi∑
t=1

C∑
c=1

(Lm,12(t, c)− b)2 (14)

and standard deviation σb =
√
σ2
b .

3 Instrument sensitivity s

We also define an instrument sensitivity s as three times the standard deviation of the background

s = 3σb (15)

with the corresponding variance

σ2
s = 9σ2

b

√
2

8TbiC − 1
(16)

where we used propagation of uncertainty and variance of variance to obtain σ2
s . Any signal beneath

s can not be significantly statistically distinguished from the background value.

4 Background-subtracted luminescence O

The background-subtracted luminescence is obtained by subtracting the background from the raw
luminescence:

Om,n(t, c) = Lm,n(t, c)− b (17)

with the corresponding variance

σ2
O(t, c)m,n = σ2

b . (18)

We arrange the standard deviations computed from the variance in the array σO(t, c) =
√
σ2
O(t, c).

5 Replica average of O

Then, we weight-average the background-subtracted luminescence O over C replicates, such that
O has entries

Om,n(t) =

∑C
c=1 wO(t, c)m,nOm,n(t, c)∑C

c=1 wO(t, c)m,n
(19)

with weights wO(t, c)m,n = 1/σ2
O(t, c)m,n and variance

σ2
O(t)m,n =

∑C
c=1 wO(t, c)m,n(Om,n(t, c)−Om,n(t))2∑C

c=1 wO(t, c)m,n
. (20)

We arrange the standard deviations computed from the variance in the array σO(t) =
√
σ2
O(t).
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6 Bleed-through factor B

The bleed-through factor B in a given well (m,n) at time t is the ratio between the observed
background-subtracted luminescence intensities O in such well and in the luminescent well E5:

Bm,n(t) =
Om,n(t)

O5,5(t)
(21)

σ2
B(t)m,n =

(
Om,n(t)

O5,5(t)

)2
[(

σO(t)m,n
Om,n(t)

)2

+

(
σO(t)5,5
O5,5(t)

)2

− 2
cov(O5,5(t), Om,n(t))

Om,n(t)O5,5(t)

]
. (22)

with σB(t) =
√
σ2
B(t) defined as the array of the standard deviations.

7 Selection of time interval to average B

As discussed in main text (Figure 1C), since for a specific well the bleed-through factor is almost
constant at any time point after induction, we average its value over a time interval T .

8 Time-averaged bleed-through factor B

Then, we time-average the bleed-through factor

Bm,n =

∑
T wB(t)m,nBm,n(t)∑

T wB(t)m,n
(23)

with weights wB(t)m,n = 1/σ2
B(t)m,n and weighted variance

σ2
B,m,n =

∑
T wB(t)m,n(Bm,n(t)−Bm,n)2∑

T wB(t)m,n
. (24)

We arrange the standard deviations into a matrix σB . If we assume for simplicity that all weights
w are equal, Equation 23 becomes the analytical Equation 4.

9 Extended matrix E

The observed luminescence intensity above a given well is given by the sum of the true intensity and
several bleed-through intensities. The assumption that any luminescent well generates a light patter
that resembles the one measured in the case of a single luminescent well corresponds mathematically
to convolve the unknown pattern of real intensities R with the time-averaged bleed-through matrix
B

O(t) = B ∗R(t). (25)

To perform this convolution with a 96-well microplate, it is necessary to extend the matrix of the
bleed-through factors B to a 15x23 matrix E, as shown in Figure S4. We extend B according to
the following prescription:

Ei,j =


Bi−3,j−7, if 4 ≤ i ≤ 11, 8 ≤ j ≤ 19

B(x), otherwise, for all (i,j) at distance x =
√

(i− 8)2 + (j − 12)2 from E5

z, otherwise,

(26)
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where i = 1, . . . , 15 and j = 1, . . . , 23. The first line represents the measured time-averaged bleed-
through matrix B from Equation 23 graphically represented as the coloured central matrix of Figure
S5. The second line contains the average of entries of B located at the same number of well-distance
x =

√
(i− 8)2 + (j − 12)2 from E5, represented as the magenta area of Figure S5. Explicitly

Bi,j ≡ B(x) =

∑
x wB(x),m,nBm,n∑

x wB(x),m,n
(27)

wB(x),m,n = 1/σ2
B,m,n (28)

where indexes m,n refers as before to the wells of the measured matrix. A graphical example of how
such entries are computed is given in Figure S5: measured values at a fixed distance from E5 are
averaged and the result is used to fill the entries at the same distance outside the measured plate.
All other entries of the extended matrix E are filled with z, computed by averaging intensities over
the wells defined as background (A12-H12). This last is the brown area of Figure S5. The final
outcome of such prescription is given in Figure S5. The corresponding variance results

σ2
E,i,j =


σ2
B,i−3,j−7, if 4 ≤ i ≤ 11, 8 ≤ j ≤ 19

σ2
B(x)

, otherwise, for all wells at distance x from E5

σ2
z , otherwise

(29)

with

σ2
B(x),m,n =

∑
x wB(x),m,n(Bm,n −B(x))2∑

x wB(x),m,n
(30)

wB(x),m,n = 1/σ2
B,m,n (31)

where x indicates again the distance from E5 and

z =

∑8
m=1 wB,m,12Bm,12∑8

m=1 wB,m,12
(32)

σ2
z =

∑8
m=1 wB,m,12(Bm,12 − z)2∑8

m=1 wB,m,12
(33)

wB,m,n = 1/σ2
B,m,n. (34)

We arrange the standard deviations of E into a matrix σE with entries σEi,j =
√
σ2
E,i,j . The array

of the observed intensities O is therefore given by the discrete convolution of E and R (Equation
25), with entries

Om,n(t) =

8∑
l=1

12∑
p=1

Em−l+8,n−p+12Rl,p(t). (35)
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10 Kernel D

In order to write Equation 35 as a matrix product, we first arrange O and R into vectors with 96
entries by row concatenation

−−→
O(t) = (O1,1(t), O1,2(t), . . . , O1,12(t), . . . , O8,1(t), . . . , O8,12(t))T (36)
−−→
R(t) = (R1,1(t), R1,2(t), . . . , R1,12(t), . . . , R8,1(t), . . . , R8,12(t))T (37)

and E into a 96× 96 matrix that we called kernel D, with entries given by Equation 35:

Da,b = Em−l+8,n−p+12, (38)

where a = 12(m − 1) + n, b = 8(l − 1) + p with m, l = 1, . . . , 8 and n, p = 1, . . . , 12. A graphical
example of such matrix is given in Figure S5. Equation 35 can be rewritten in matrix form as

−−→
O(t) = D ·

−−→
R(t). (39)

The variance σ2
D follows from the same prescription used to build D. Figure S6 shows a graphical

representation of the entries of the kernel D. We call the kernel assembled from Equation 26 the
average kernel D, since it takes into account only the average values of the bleed-through factor B.

We arrange standard deviations of the kernel into a matrix σD with entries σDf,g =
√
σ2
D,f,g where

f = 1, . . . , (M ·N), g = 1, . . . , (M ·N) and in our case M = 8, N = 12.

10 .1 Generalization of E and D

More generally, for a plate with M rows and N columns, Equation 35 becomes

Om,n(t) =

M∑
l=1

N∑
p=1

Em−l+M,n−p+NRl,p(t). (40)

where E is a matrix with dimension (2M − 1) × (2N − 1). This equation can be rewritten as a
matrix product. We first transform O and R into vectors with M ·N entries by row concatenation

−−→
O(t) = (O1(t), O2(t), . . . , OM ·N (t))T (41)
−−→
R(t) = (R1(t), R2(t), . . . , RM ·N (t))T (42)

where we have re-labelled the entries. Then, if the calibration plate has luminescent well in position
(α, β), we build E according to

Ei,j =


Bi+α−M,j+β−N , if M − α+ 1 ≤ i ≤ 2M − α, N − β + 1 ≤ j ≤ 2N − β
B(x), otherwise, for all wells at distance x from (α, β)

z, otherwise,

(43)

where B(x) represents the average of entries of B at the same distance x =
√

(m− α)2 + (n− β)2

from the luminescent well (α, β) and z is computed by averaging intensities over the wells defined
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in B as background. Finally, we obtain
−→
O from the matrix product

−−−−−−−−−−→
ON ·(m−1)+n(t) =

M∑
l=1

N∑
p=1

EM−l+m,N−p+n
−−−−−−−−−→
RN ·(l−1)+p(t) (44)

with m = 1, . . . ,M and n = 1, . . . , N , or

−−→
O(t) = D ·

−−→
R(t), (45)

where we have arranged the entries of E into a (M · N) × (M · N) matrix called kernel D with
entries

Da,b = EM−l+m,N−p+n (46)

where a = N(m−1) +n, b = N(l−1) +p with m, l = 1, . . . ,M and n, p = 1, . . . , N . The process of
building the kernel D from E corresponds to the creation of the associated block-Toeplitz matrix.

10 .2 A simple example of E and D

We can explicitly work out a simple example with a plate with dimension (M,N) = (3, 4) and
the luminescent well in (α, β) = (2, 3) (in red in the following). The measured time-averaged
bleed-through matrix B is given by Equation 23

B =

 B1,1 B1,2 B1,3 B1,4

B2,1 B2,2 B2,3 B2,4

B3,1 B3,2 B3,3 B3,4


and graphically represented in upper panel of Figure S7. The extended matrix E has dimensions
(2M − 1)× (2N − 1) = 5× 7 and is given by

E =


E1,1 E1,2 E1,3 E1,4 E1,5 E1,6 E1,7

E2,1 B1,1 B1,2 B1,3 B1,4 E2,6 E2,7

E3,1 B2,1 B2,2 B2,3 B2,4 E3,6 E3,7

E4,1 B3,1 B3,2 B3,3 B3,4 E4,6 E4,7

E5,1 E5,2 E5,3 E5,4 E5,5 E5,6 E5,7

 .
The entries are computed according to prescription of Equation 43. Such process is explicitly shown
in the second row of Figure S7. The final outcome is represented in the third row of Figure S7: the
central matrix highlighted in red is the measured B, surrounded by B built by symmetry and in
black the background value z. The kernel D has dimension (M ·N)× (M ·N) = 12× 12 and each
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Toeplitz block has dimension N ×N = 4× 4. Applying Equation 46

D =



B2,3 B2,2 B2,1 E3,1 B1,3 B1,2 B1,1 E2,1 E1,4 E1,3 E1,2 E1,1

B2,4 B2,3 B2,2 B2,1 B1,4 B1,3 B1,2 B1,1 E1,5 E1,4 E1,3 E1,2

E3,6 B2,4 B2,3 B2,2 E2,6 B1,4 B1,3 B1,2 E1,6 E1,5 E1,4 E1,3

E3,7 E3,6 B2,4 B2,3 E2,7 E2,6 B1,4 B1,3 E1,7 E1,6 E1,5 E1,4

B3,3 B3,2 B3,1 E4,1 B2,3 B2,2 B2,1 E3,1 B1,3 B1,2 B1,1 E2,1

B3,4 B3,3 B3,2 B3,1 B2,4 B2,3 B2,2 B2,1 B1,4 B1,3 B1,2 B1,1

E4,6 B3,4 E4,6 B3,2 E3,6 B2,4 B2,3 B2,2 E2,6 B1,4 B1,3 B1,2

E4,7 E4,6 B3,4 B3,3 E3,7 E3,6 B2,4 B2,3 E2,7 E2,6 B1,4 B1,3

E5,4 E5,3 E5,2 E5,1 B3,3 B3,2 B3,1 E4,1 B2,3 B2,2 B2,1 E3,1

E5,5 E5,4 E5,3 E5,2 B3,4 B3,3 B3,2 B3,1 B2,4 B2,3 B2,2 B2,1

E5,6 E5,5 E5,6 E5,3 E4,6 B3,4 B3,3 B3,2 E3,6 B2,4 B2,3 B2,2

E5,7 E5,6 E5,5 E5,4 E4,7 E4,6 B3,4 B3,3 E3,7 E3,6 B2,4 B2,3


that is graphically represented in last row of Figure S7. The vector of the observed intensities

−−→
O(t)

and expected corrected intensities
−−→
R(t) are given by row concatenation

−−→
O(t) = (O1,1, O1,2, O1,3, O1,4, O2,1, O2,2, O2,3, O2,4, O3,1, O3,2, O3,3, O3,4)(t)T

−−→
R(t) = (R1,1, R1,2, R1,3, R1,4, R2,1, R2,2, R2,3, R2,4, R3,1, R3,2, R3,3, R3,4)(t)T .

The final convolution therefore results
−−→
O(t) = D ·

−−→
R(t).

10 .3 A general example of E and D

Given a B matrix with dimension M ×N and luminescent well in (α, β)

B =


B1,1 B1,2 . . . . . . . . . B1,N

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bα,1 Bα,2 . . . Bα,β . . . Bα,N
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
BM,1 BM,2 . . . . . . . . . BM,N


the extended matrix E with dimension (2M − 1)× (2N − 1) reads

E =



E1,1 . . . . . . . . . . . . . . . . . . . . . E1,2N−1
...

...
...

...
...

...
...

...
...

EM−α+1,1 . . . EM−α+1,n−β B1,1 . . . B1,N EM−α+1,2N−β+1 . . . EM−α+1,2N−1
...

...
...

... EM,N

...
...

...
...

E2M−α,1 . . . E2M−α,n−β BM,1 . . . BM,N E2M−α,2N−β+1 . . . E2M−α,2N−1
...

...
...

...
...

...
...

...
...

E2M−1,1 . . . . . . . . . . . . . . . . . . . . . E2M−1,2N−1


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where EM,N ≡ Bα,β . D is then a block-Toeplitz matrix with dimension (M ·N)× (M ·N)

D =



T (EM,N ) T (EM−1,N ) . . . . . . T (E1,N )

T (EM+1,N ) T (EM,N ) T (EM−1,N )
. . .

. . .

T (EM+2,N ) T (EM+1,N ) T (EM,N )
. . .

. . .
...

. . .
. . .

. . .
. . .

T (E2M−1,N )
. . .

. . .
. . . T (EM,N )


where each block T (Ex,y) is again a Toeplitz matrix

T (Ex,y) =



Ex,y Ex,y−1 . . . . . . Ex,1

Ex,y+1 Ex,y Ex,y−1
. . .

. . .

Ex,y+2 Ex,y+1 Ex,y
. . .

. . .
...

. . .
. . .

. . .
. . .

Ex,2N−1
. . .

. . .
. . . Ex,y


.

11 Best kernel D by iteration

To take into account uncertainties in the estimation of the bleed-through factors and time fluctua-
tions of luminescence, we replace the matrix E of the average bleed-through factors introduced by
Equation 26 by a matrix with entries

Ẽi,j = Ei,j + ri,jσ
E
i,j (47)

where σE and r are matrices which contain the standard deviations of the time-averaged bleed-
through factors (obtained by taking the square root of the entries of Equation 29) and the number

of standard deviations added to this last, respectively. The variance of Ẽ is given by

σ2
Ẽ

= σ2
E + r2σ2

E

√
2

T · C − 1
+ 2r · cov(E, σE), (48)

where the second term is the standard deviation of the standard deviation of E, with C the number
of replicates and T the time range over which the bleed-through factor B has been averaged. From
Ẽ, we can compute the kernel D via Equation 38. We have to look for that r that minimizes the
difference between the spurious luminescence signal R after correction by deconvolution and the
instrument sensitivity value s. Since such minimization is not computationally feasible in a single
step, we approach the solution by iteration. The idea is to generate at each iteration a random
kernel D and accept or reject it according to minimization criteria. The deconvolved plate is then
used as luminescence input for the following iteration. The process is repeated till when there is no
luminescence residual above the instrument sensitivity.
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11 .1 Random kernel D

We first generate a random r with entries according to a normal distribution N (0, 1), with average
0 and standard deviation 1. The kernel obtain in such a way, is called random kernel Drnd. An
equivalent solution is obtained by directly generating a random kernel Drnd according to a normal
distribution N with mean the corresponding entries of the average kernel D and standard deviation
σD:

Drnd = N (D,σD) (49)

and use such matrix to deconvolve O and find R. The matrix of standard deviation σDrnd is
obtained by uncertainty propagation. To keep track of the iteration cycle, we add an iteration
index (k) to the notation (Drnd

(k) for the kernel array and R(t)(k) for the real intensities array).

12 Self-correction of the calibration plate

At each iteration, we substitute the array of real intensities R containing the bleed-through left-overs

to the array of observed intensities:
−−→
O(t) ≡

−−−−→
R(t)(k). Thus, by inverting Equation 39

−−−−−−→
R(t)(k+1) = (Drnd

(k) )−1 ·
−−−−→
R(t)(k). (50)

The propagation of uncertainties during matrix inversion process is discussed in Lefebvre et al.[1]
and gives a variance

σ2
D−1 = (D−1)2 · σ2

D · (D−1)2 (51)

that leads to a variance for R:

σ2−→
R

(t) = σ2
D−1 ·

−−→
O(t)2 + (D−1)2 · σ2−→

O
(52)

where we assumed the covariance between O and D to be negligible. Square operation is here

intended as square of each matrix entry (in MATLAB notation x.∧ 2). We can re-arrange
−→
R into

an array R by inverting the row concatenation process.

13 Bleed-through left-over Q

After deconvolution, a perfect self-correction of the calibration plate should produce a plate that
at any time point has only a single luminescent signal in E5 and all other wells have luminescence
value under the instrument sensitivity s. We call I the array resulting from such ideal correction.
I has entries

Im,n(t) =

{
O5,5(t), m = 5, n = 5

s, otherwise,
. (53)

The best correction is achieved after (K) iterations, when there are no more Q left-overs:

Q =

M∑
m=1

N∑
N=1

T∑
t=1

(Rm,n(t)(k+1) − Im,n(t)) ≡ 0. (54)

On the contrary, if after an iteration we still have some left-overs (Q > 0), we proceed by applying
the acceptance criteria to the left-overs intensity array R(k+1).
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14 Acceptance criteria

We apply the acceptance criteria to each entry of the deconvolved R(k+1) independently. If a single
entry of R(k+1) has value that is

a) smaller than the previous iteration Rm,n,(k+1)(t) ≤ Rm,n,(k)(t), we accept and store the new
value since the bleed-through has been reduced

b) larger than the previous iteration Rm,n,(k+1)(t) > Rm,n,(k)(t), we reject the move by setting
back Rm,n,(k+1)(t) = Rm,n,(k)(t).

Standard deviation follows the fate of the corresponding entry of R. Theoretically, at any time point
the bleed-through pattern depends simultaneously on the luminescence of all wells, but here, to guide
the convergence of the minimization algorithm, we accept or reject each entry of R separately. This
is allowed only if each random iteration perturbs minimally the mean value of the bleed-through
factors. We ensure this condition by using instead of r in Equation 47 a much smaller value a · r,
with a� 1 (in our case a = 1/10).

15 Update and iterate

If after (k) iterations there still is some bleed-through (Q > 0), we imagine the pattern of decon-
volved luminescence R(k+1) as the new observed luminescence O (O ≡ R(k+1)), update the iteration
index (k) and repeat the procedure from point 6.

16 Best kernel D

The best correction is achieved at iteration (K) when, after deconvolution, all left-overs are zero at
any time point (Q = 0). From Equation 50, it follows that over the iterations

−−→
O(t) = Drnd

(1)

−−−−−−→
R(t)(2)(t) for k = 1 (55)

−−−−→
R(2)(t) = Drnd

(2)

−−−−→
R(3)(t) for k = 2 (56)

... (57)
−−−−−→
R(K)(t) = Drnd

(K)

−−→
I(t) for k = K (58)

where
−−→
I(t) is the identity matrix transformed into vector by row concatenation. Therefore

−−→
O(t) =

K∏
k=1

Drnd
(k)

−−→
I(t) ≡ Dbest−−→I(t) (59)

where we define the best kernel via the product of the iteration kernels

Dbest ≡
K∏
k=1

Drnd
(k) . (60)

The matrices σR(k)(t) and σDbest containing the standard deviations are obtained from Equation 52
and Equation 48, respectively.
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1.3.2 Analysis of the experiment plate

We follow the scheme of Figures S21.

17 Raw luminescence L of the experiment

Next, we measure the luminescence on the plate that needs to be bleed-through corrected. For
simplicity we refer to it as the test plate. We arrange the raw luminescence data into an array Lexp

with entries Lexp
m,n(t, c), where m and n indicate row and column of the plate, t the time point and

c the experiment replica.

18 Background-subtracted luminescence O of the experiment

Due to the luminescence bleed-through, the background can not be obtained from the test plate.
Instead, we use the cross-talk-free background b from the calibration plate, given by Equation 13.
For such reason, it is better if the two measurements are performed under the same conditions
and with the same machine setup. The variance of the background is obtained from Equation 14.
After subtracting the background from the raw luminescence, we obtain the array of background-
subtracted luminescence Oexp(t, c) with corresponding array of standard deviations σOexp(t, c).

19 Bleed-through correction R of the experiment

The array of observed luminescence is given by the product of the kernel Dbest (Equation 60) and
the array of unknown ”real” intensities R:

−−−−−−→
Oexp(t, c) = Dbest ·

−−−−−−→
Rexp(t, c), (61)

where O and R are transformed into vector by row concatenation. We achieve the most probable
arrangement of real intensities by inverting the previous equation

−−−−−−→
Rexp(t, c) = (Dbest)

−1 ·
−−−−−−→
Oexp(t, c). (62)

Then, we transform back
−−−−−−→
Rexp(t, c) and

−−−−−−→
Oexp(t, c) into arrays Rexp

m,n(t, c) and Oexp
m,n(t, c), respectively

by inverting the row-concatenation process. The array of standard deviation is obtained again by
uncertainty propagation as described by Equation 52.

20 Replica average of the experiment

Finally, we average the luminescence over several replicates. The replica-averaged Rexp(t) has
entries

Rexp
m,n(t) =

∑C
c=1 w

exp
R (t, c)m,nR

exp
m,n(t, c)∑C

c=1 w
exp
R (t, c)m,n

(63)

with weights wexp
R (t, c)m,n = 1/σexp

R
2
(t, c)m,n and variance

σexp
R

2
(t)m,n =

∑C
c=1 w

exp
R (t, c)m,n(Rexp

m,n(t, c)−Rexp
m,n(t))2∑C

c=1 w
exp
R (t, c)m,n

. (64)
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where m = 1, . . . , 8, n = 1, . . . , 12 and t = 1, . . . , T . Standard deviations are arranged in an array
σRexp(t), with entries σRexp

m,n (t).

2 Supporting reference

[1] Lefebvre M, Keeler RK, Sobie R, and White J. Propagation of errors for matrix inversion.
arXiv, 1999.
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3 Supporting figures

Figure S1: Dose-response plot for the E. coli strain GFC0153: luminescence intensity as function of
arabinose concentration for three independent replicates. Luminescence intensities used to assemble
the calibration plates with high and low luminescence are indicated as blue and green points,
respectively. The plot is obtained from the data of Figure 3E, 3F in the main text at 270 minutes
after arabinose induction. In black, the intensities of the non-luminescent E. coli strain SV01, used
as control, with which is filled the calibration plates (excluding well E5).
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Figure S2: Representation of the microplate reader wells and of the detector. A photo-detector
positioned at an offset h from a microplate well w receives luminescence incoming from the emitting
well E5 under an angle θ. If d is the distance between neighbouring wells, xd and l are the distances
between E5 and w and E5 and the detector, respectively.
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Figure S3: Quantification of luminescence bleed-through in the VICTOR plate reader. (A) The
calibration plate was prepared with a single highly luminescent spot in the well E5. All data
are background-subtracted and averaged over three experimental replicates. The background was
obtained by averaging the signal of the wells indicated by the white crosses in the inset over the
time before addition of arabinose (induction time). The 3D-plot shows the observed luminescence
signal at 140 minutes after the induction. (B) Time evolution of the observed luminescence signal
of the E-row. The red line represents the instrument sensitivity value, defined as three times the
standard deviation of the background value. (C) Luminescence bleed-through factor of the two
shells closest to E5, in blue and green. Values were obtained dividing the observed signal from a
specific well by the signal recorded in E5. The dashed lines indicate the time range over which the
bleed-through was averaged to obtain in (D) the bleed-through factor as a function of the distance
from E5 (green dots). The black solid line is the parameter free prediction of the bleed-through
given by Equation 6.
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Figure S4: (A) Representation of a bleed-through matrix B generated by measuring the bleed-
through pattern produced in a plate with a single luminescent well E5. (B) To convolve the
bleed-through matrix B with the array of real intensities R (in yellow), we enlarge B (in color) to
an extended bleed-through matrix E (black grid).
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Figure S5: Graphical representation of the entries of an extended matrix E generated by a calibra-
tion plate with luminescent well in E5. The central part is occupied by the measured bleed-through
factor B (in colors, panel A), the magenta area is filled by symmetry with B(x) and the brown area
with the value z (in panel B). The entries of E that we called B fall in the magenta area. They
are computed by averaging the measured values of B at a same distance x from the luminescent
well E5 (see Equation 26). For example, when x = 4, we average the three measured values in
the wells with yellow crosses to obtain the value represented by the yellow dot, that lies outside
the measured matrix. The entries of E where such symmetry construction is not possible fall in
the brown area. They are given by the value z as indicated in the third line of Equation 26 and
computed by averaging the values of B in the wells indicated by the white crosses. Panel C shows
the final result. 20



Figure S6: Graphical representation of the entries of the kernel D generated by the extended matrix
E of Figure S5. Each pixel corresponds to an entry.
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Figure S7: Graphical representation of the example given in section 10.2. The first row shows a
measured time-averaged bleed-through matrix B. The following rows show step-by-step how we
extended the matrix to obtain E: we averaged the measured values of B at a same distance x from
the luminescent well, first for x =

√
5 ' 2.2 and then for x = 2. Yellow crosses show the measured

values. The results are used to fill the entries of E for that specific distance x outside the measured
matrix, indicated by yellow dots. We highlight in red the measured values of B. The remaining
entries of E are filled with the background value z, in black. The last row shows the corresponding
kernel D, computed following Equation 46.



Figure S8: Quantification of luminescence bleed-through in the black calibration microplate for
a calibration plate with low luminescence intensity. (A) The black calibration plate was prepared
with a single mildly luminescent spot in the well E5. All data are background-subtracted and
averaged over two experimental replicates. The background was obtained by averaging the signal
of the wells indicated by the white crosses in the inset over the time before addition of arabinose
(induction time). The 3D-plot shows the observed luminescence signal at 270 minutes after the
induction with 2 · 10−5% arabinose. (B) Time evolution of the observed luminescence signal of the
E-row. The red line represents the instrument sensitivity value, defined as three times the standard
deviation of the background value. (C) Luminescence bleed-through factor of the two shells closest
to E5, in blue and green. Values were obtained dividing the observed signal from a specific well by
the signal recorded in E5. The dashed lines indicate the time range over which the bleed-through
was averaged to obtain in (D) the bleed-through factor as a function of the distance from E5 (green
dots). The black solid line is the parameter free prediction of the bleed-through given by Equation
6.
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Figure S9: (A, B) Deconvolution of luminescence signals in the calibration microplate with low
luminescence intensity. Luminescence values on the calibration plate 270 minutes after the induction
of E. coli strain GFC0153 (in well E5) with with 2 · 10−5% (A) and its time evolution in the
wells of row E after deconvolving by using the best kernel Dbest (B). (C, D) Deconvolution of
luminescence signals in the test microplate by using the calibration plate with low luminescence
intensity. Luminescence values on the test plate 270 minutes after the induction of E. coli strain
GFC0153 with varying concentrations of arabinose (in wells A5-H5: 0%, 10−6%, 10−5%, 2 · 10−5%,
5 ·10−5%, 10−4%, 10−3%, 2 ·10−1%; in wells A7-H7: 2 ·10−1%, 10−3%, 10−4%, 5 ·10−5%, 2 ·10−5%,
10−5%, 10−6%, 0%; in wells B6 and G6: 0%) in C. The time evolution of luminescence values is
shown in the wells of row B after deconvolving by using either the best kernel Dbest (in D).
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Figure S10: Comparison between deconvolution results and independent measurement. The lumi-
nescence values of wells B6 (panel A) and G6 (panel B) of the deconvolved test plate as compared
to independent measurements in the absence of bleed-through, for which E. coli strain GFC0153
in wells B6 and G6 was not induced with arabinose, as described in the main text Figure 4. Black
and red lines represent the independently measured and the deconvolved signal, respectively.

Figure S11: Comparison between bleed-through factor generated from the strongly induced lu-
minescent strain (induced with 0.2% arabinose, from Figure 1 of the main text) and the weakly
induced luminescent strain (induced with 2 · 10−5% arabinose, from Figure S8) as a function of
the distance from E5 as blue diamonds and green points, respectively. The figure shows that the
bleed-through factor is independent of the luminescence signal strength, for values of the signal
above the background.
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Figure S12: Panel A shows the arrangement of the calibration plate: left half (columns 1 to 5) was
filled with the non-luminescent E. coli strain SV01 and right half (columns 6 to 12) with water.
Water and bacterial strain SV01 have two order of magnitude difference in the measured OD (10−4

and 10−2, respectively), as shown from the OD measured along row E of the plate, in panel B.
Panel C demonstrates that bleed-through factors of water (blue diamonds) and SV01 (magenta
diamonds) have same values of the calibration plate of Figure 1D in the main text (green points).
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Figure S13: Dose-response of the bleed-through signals of the non-luminescent control strains in
column 2, 5 and 10 of the plate in Figure 5 before (points) and after (diamonds) deconvolution
process at 270 minutes after adding arabinose.
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Figure S14: Time evolution of luminescence values of column 1 (no bleed-through, panel A raw
and F deconvolved), of column 6 (medium bleed-through, panel B raw and G deconvolved) and of
column 11 (strong bleed-through, panel C raw and H deconvolved) of Figure 5 in main text. Panels
D, E are the scatter plot of raw luminescence of column 6 and 11 (medium and strong bleed-through,
respectively) as function of raw luminescence of column 1. Panels I, L and M show the scatter plots
of deconvolved luminescence of column 1 (no bleed-through, G), 6 (medium bleed-through, H) and
11 (strong bleed-through, I) as function of luminescence of column 1. Scatter plots are represented
at three time points: 170 minutes in blue, 270 minutes in red and 360 minutes in green. The black
dashed line has slope one.



Figure S15: Calibration microplate in the VICTOR plate reader. Luminescence values on the
calibration plate at 140 minutes after the induction (A, C and E) and its time evolution on the
E-row (B, D and F) for raw signal (A, B), after deconvolving by using either the average kernel D
(C, D) or the best kernel Dbest (E and F).
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Figure S16: Test microplate in the VICTOR plate reader: luminescence values on the test plate at
270 minutes after the induction (A, C and E) and its time evolution on the G-row (B, D and F)
for raw signal (A, B), after deconvolving by using either the average kernel D (C, D) or the best
kernel Dbest (E and F). Panels G H and I show the comparison between deconvolved test plate and
independent measure. The luminescence values of wells B6 and G6 of the deconvolved test plate
(G) were compared to independent measure in the absence of bleed-through (H). Black and red
lines in (I) represent the independently measured and the deconvolved signal, respectively.
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Figure S17: Quantification of luminescence bleed-through in the Tecan plate reader using a trans-
parent microplate. (A) The calibration plate was prepared with a single highly luminescent spot in
the well E5. All data are background-subtracted and averaged over three experimental replicates.
The background was obtained by averaging the signal of the wells indicated by the white crosses in
the inset over the time before addition of arabinose (induction time). The 3D-plot shows the ob-
served luminescence signal at 135 minutes after the induction. (B) Time evolution of the observed
luminescence signal of the E-row. The red line represents the instrument sensitivity value, defined
as three times the standard deviation of the background value. (C) Luminescence bleed-through
factor of the two shells closest to E5, in blue and green. Values were obtained dividing the observed
signal from a specific well by the signal recorded in E5. The dashed lines indicate the time range
over which the bleed-through was averaged to obtain in (D) the bleed-through factor as a function
of the distance from E5 (green dots).
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Figure S18: Calibration microplate in the Tecan plate reader with a transparent microplate. Lu-
minescence values on the calibration plate at 135 minutes after the induction (A, C and E) and its
time evolution on the E-row (B, D and F) for raw signal (A, B), after deconvolving by using either
the average kernel D (C, D) or the best kernel Dbest (E and F).
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Figure S19: Test microplate in the Tecan plate reader with a transparent microplate. Luminescence
values on the test plate at 135 minutes after the induction (A, C and E) and its time evolution
on the E-row (B, D and F) for raw signal (A, B), after deconvolving by using either the average
kernel D (C, D) or the best kernel Dbest (E and F). In the test plate we arranged luminescent wells
to compose the word LUX. In B, D and F the time evolution of the luminescence of L, U, X and
remaining wells are represented in green, blue, red and gray, respectively.

33



Figure S20: Workflow to find the best kernel Dbest from the calibration plate measurement.



Figure S21: Workflow of the luminescence bleed-through correction of the experiment.
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Figure S22: Deconvolved luminescence intensities (A and D), optical density (B and E) and
deconvolved luminescence per optical density (C and F) of the row E of the calibration plate of
Figure 2 in the main text and of the row B of the test plate of Figure 3 in the main text (A, B, C
and D, E, F, respectively).
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Figure S23: Raw (A) and deconvolved luminescence (C) of the row B of the test plate of Figure
3B and 3F in the main text. Panels B and D show the coefficient of variations (standard deviation
over mean) corresponding to the data of A and C, respectively.
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Figure S24: Summary of the plate arrangements used in the experiments.
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Figure S25: Bleed-through factor as a function of the distance from E5 in the case when the distance
between the detector and the plate is minimal (h = 0.9 mm, A), is minimal but the plate mounts
a lid (B), is 3 mm above minimal distance without and with lid (C and D, respectively), is 5
mm above minimal distance without and with lid (E and F, respectively), is 8 mm above minimal
distance (G). Data points and error bars represent mean and standard deviations from either two or
three experimental replicates. The black solid line are the parameter free predictions of the bleed-
through given by Equation (2) in the main text drawn by modifying the parameter h representing
the distance between the plate and detector. (H) Comparison between the minimal distance (green
points) and 8 mm above the minimal distance (blue diamonds), as represented in (A) and in (G),
respectively.
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5 DNA sequence of pSV012
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