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In this Supporting Information, we provide supporting details of the calculation and further

results of topological heteronanotubes(THTs). We organize into the following sections:

1. Electronic structure calculation and inter-wall distance optimization;

2. Chern number analysis;

3. Small-diameter THT;

4. Multi-period THT;

5. Reverse-ordered THT;

6. Commensurate double-wall heteronanotubes;

7. Zigzag-type THT and chiral-type THT;

8. Topological properties of double-wall CNT.

Section 1: Structure calculation and inter-wall distance optimization

In this work, electronic structures and topological properties are calculated using the real-space

Kohn-Sham density functional theory (KS-DFT) as implemented in the RESCU package.1 In our
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Figure S1: Dependence of total energy on the inter-wall distance in CNT(n,n)@BNNT(n+m,n+m)
when n = 96 and m = 1.

calculations, single-zeta polarized (SZP) atomic orbital basis set and optimized norm conserving

Vanderbilt (ONCV) pseudopotentials2 were employed. The exchange-correlation was treated at

the generalized gradient approximation level (GGA-PBE).3 The real-space resolution was set to

0.3 Bohr and we adopted 15× 1× 1 Monkhorst-Pack k-point sampling. For calculating the Chern

number (topological charge) by integrating the Berry curvature flux, we adopted a fine 666 × 400

k-mesh in the Brillouin zone.

As for the armchair THT, the general form is CNT(n,n)@BNNT(n+m,n+m). Fig.1 in the main

text shows the case of n = 96 and m = 1. We carefully optimized the inter-wall distance d by DFT

relaxation. As shown in Fig.S1, the equilibrium distance d is found to be 3.2 Å where the total

energy reaches minimum. While different n and m values - corresponding to different diameters

of the CNT and BNNT, may take slightly different equilibrium inter-wall distance, we use d = 3.2

Å for all systems for simplicity and for comparing the main moiré related physics. Complicated

geometrical investigation of double-wall moiré nanotubes is another interesting topic which calls

for further studies.

It is noted that a spiral THT has an extremely large supercell. For example, the supercell of

the CNT(16, 16)@BNNT(17, 17) THT in Fig.3 of the main text, shown by the orange rectangle in
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Fig.4(a) of the main text, contains 8448 atoms. Such a large system presents a serious computation-

al challenge which is met by the RESCU method1 that uses the Chebyshev filtering technique4 and

other advanced computational mathematics to drastically increase computational efficiency, mak-

ing it possible for calculating such large moiré systems self-consistently by Kohn-Sham DFT. Our

DFT calculation by RESCU package took 16.5 hours to converge it using 400 computational cores.

Section 2: Chern number analysis

The topological helical channels originate from the valley-dependent Chern number CV vary-

ing over the moiré period on the circumference in the topological heteronanotubes, as shown in

Fig.2(d,e) of the main text. The sign of the CV depends on the local atomic registry between the

CNT and BNNT walls. For THTs with very a large diameter, the curvature effect can be neglected

and the atomic registry and electronic property of local atomic configurations on the 1D tube can

be well described by the corresponding 2D structure when the tube is opened. Here we show the

dependence between CV and local atomic registry by the model of massive Dirac Hamiltonian of

graphene:5

H =

√
3

2
at(qxτzσx +qyσy)+

∆

2
σz, (S1)

where a is the lattice constant, t is the hopping parameter, q is the momentum measured from one

valley point, ∆ is the on-site staggered potential, τ and σ are the Pauli matrices acting in the valley

space and sublattice space of graphene, respectively. Analytically, the Berry’s curvature can be

obtained from its definition:

ΩΩΩn(((kkk))) = ∇∇∇kkk× i〈unkkk|∇∇∇kkk|unkkk〉, (S2)

where |unkkk〉 is the periodic part of the Bloch states of band index n. Berry’s curvature of the

conduction band of Hamiltonian Eq.(S1) can be analytically derived:5

ΩΩΩ(q) = τz
3a2∆t2

2(∆2 +3q2a2t2)3/2 . (S3)
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where τz is the valley index: +1 for K and -1 for K’. The valley-dependent Chern number CV is

obtained by:

CV =
1

2π

∫
d2q ΩΩΩ(q) =

1
2

τzsgn(∆). (S4)

For a certain valley - such as valley K, CV =
1
2

or −1
2

when ∆ is positive or negative, respec-

tively. In double-wall heteronanotubes, the local on-site staggered potential ∆ of the CNT lattice

is given by the inter-wall interaction with the BNNT. We use the corresponding 2D mapping of

Fig.2(b) in the main text to explain how ∆ varies along the moiré period. When carbon atoms

face to boron atoms, nitrogen atoms or hollow sites, we name them as B-site, N-sites and h-sites

respectively. In BN, B (N) atoms are positively (negatively) polarized due to a large difference

in their electronegativity. The π orbital of carbon atoms has attractive and repulsive interactions

with B cations and N anions respectively.6,7 Therefore, electrons in CNT preferentially locate at

B-sites and avoid N-sites to reduce electrostatic energy. This tendency results to the on-site energy

ordering: EN−site > Eh−site > EB−site . The on-site staggered potential ∆, defined by the on-site

energy difference between two carbon sublattice sites, will change its sign along the local atomic

registry which varies in a moiré period. This can be inferred by configurations in the green circles

in Fig.2(b) of the main text. We conclude that the topological phase transition - the change of sign

of CV, is a result of the variation of atomic registry between the CNT and BNNT walls.

The valley-dependent Chern number is by integrating the Berry curvature Ω around particular

valley point of the k-space, as shown in Eq.(S4). The calculation of the Berry curvature usually has

two equivalent formulas: Eq.(2) in the main text and Eq.(S2) in this Supporting Information. The

equivalence of these two can be proved by the perturbation theory and Kubo formula.8,9 Eq.(S2)

is a much simpler form and usually used to calculate the Berry curvature analytically. The other

formula, Eq.(2) in the main text is usually used in the numerical calculation of the Berry curvature

to avoid gauge problem (random phase of numerical wavefunctions).8 In this method, the velocity

operators vx and vy are exploited, the elements of which are defined as:
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〈ψqkkk|vα |ψpkkk〉=
〈

uqkkk|
∂H(kkk)

∂kα

|upkkk

〉
, (S5)

where α can be taken as x or y, H(kkk) = e−ikkk·rrrHeikkk·rrr, |ukkk〉 is the periodic part of the Bloch states

and other notations are the same as in the main text.

Section 3: Small-diameter THT

CNT(22, 22)@BNNT (23, 23)

2.98 nm

𝝍 𝟐

(a) (b)

(c) (d)

(e)

Figure S2: (a) Geometric structure of CNT(22,22)@BNNT(23,23), with the inner diameter of
2.98 nm as shown in the cross-section view of (b). (c) Dependence of total energy on the inter-wall
distance. (d)Band structure of this THT. Gray lines are bulk bands and red (green) lines are helical
channels - same as those of Fig.1 in the main text. (e) Spatial distribution of modular squared
wave functions |ψ|2 along the circumference of the topological helical channels in (d). The plotted
isosurfaces are 7×10−8 a.u.
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The general form of armchair THT is CNT(n,n)@BNNT(n+m,n+m). In the Fig.1 of the main

text, to be specific but without losing generality, we study a particular case of n = 96 as an ex-

ample to demonstrate the topological physics and phenomenon in THTs. In the experiment, the

small-diameter CNTs, typically with the diameter below 4-5 nm, are most common and easily

fabricated due to their stable circular geometric structures.10,11 As a result, in this section we in-

vestigate a small-diameter case: CNT(22,22)@BNNT(23,23), with the diameter of 2.98 nm as

shown in Fig.S2(b). Structural relaxation of Fig.S2(c) shows that the optimized inter-wall distance

is around 3 Å. In Fig.S2(d) and (e), it is shown that the topological helical channels still appear in

the band structure and their wavefunctions are located at two different regions (topological con-

ducting pathways), similarly as the large-diameter THT in Fig.1 of main text. In the small-diameter

THT, the geometric curvature effect is much larger than that in the large-diameter case. Our result

reveals that the scheme of THT is general to a broad range of tube diameters, as well as structural

robustness against the curvature effect in small-diameter tubes. We note that in previous study

the similar property of topological structural robustness has also been found in 2D free-standing

wavelike moiré patterns where the moiré -induced topological valleytronics can be against huge

structural corrugations.12

Section 4: Multi-period THT

The general form of armchair THT is CNT(n,n)@BNNT(n+m,n+m), where various nanotube in-

dexes (m and n) can provide essentially infinite possibilities for the type of THTs. When m = 1 as

discussed in the Fig.1-2 of the main text, one moiré period locates along one circumference, which

we shall name as 1-THT (single-period THT). In Fig.S3, we investigate several multi-period THTs

with m = 2, 3, 4. Shown in the 2D mappings of Fig.S3(a-c), the value of m equals the number

of moiré periods along one circumference, and each moiré period is n/m unit-cell length which

includes two topological phase transition points (two topological moiré edges). Thus, the number

of helical states is also determined by m. The calculated band structures in Fig.S3(d-f) show that

besides the linear helical channels, there are also gapped ones arising inside the bulk band gap,
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Figure S3: (a-c) 2D mapping of THTs with different values of m. n = 96 for all cases. (d-e)
Band structures of the corresponding THT where insets focus on the topological bands near the
Fermi level. Gray lines are bulk bands and red (green) lines are helical channels similar to those in
Fig.1. E1, E2 and E3 are different chemical potentials. (g-i) Spatial distribution of modular squared
wave functions |ψ|2 along the circumference of the topological helical channels in (d), (e) and (f),
respectively. The plotted isosurfaces are 2.2×10−9 a.u.
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and the total number of helical channels equals m (note that in Fig.S3(e,f) the group of helical

states nearest to the Fermi level is two-fold degenerate). The wave functions in Fig.S3(g-i) show

the circular distributions and numbers of the the conducting pathways (topological moiré edges)

in the THTs. This result suggest that the modulation of chemical potential can provide a practical

way to tune the quantized conductance of the multi-period THTs: for 2-THT (m = 2) in Fig.S3(d),

G = 2G0,4G0 when µ = E1,E2; for 3-THT in Fig.S2(e), G = 2G0,6G0 when µ = E1,E2; and for

4-THT in Fig.S2(f), G = 2G0,6G0,8G0 when µ = E1,E2,E3.

Section 5: Reverse-ordered THT

In the main text we focus on the THT formed by inner CNT and outer BNNT. On the experimental

side, another system with a reversed order, outer CNT and inner BNNT, is also feasible.13 In this

case, m is usually negative of the general form CNT(n,n)@BNNT(n+m,n+m). In such systems, the

key condition of the moiré topological physics, i.e. the moiré atomic registries varying along the

circumference, still exists. As a result, the helical channels arise as shown in Fig.S4.

// //

Figure S4: Band structure of the reverse-ordered THT: CNT(n, n)@BNNT(n+m,n+m) with n = 96
and m = −1. Gray lines are bulk bands and red (green) lines are helical channels - same as those
of Fig.1 in the main text.
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Section 6: Sublattice symmetry and commensurate double-wall heteronan-

otubes

The pristine metallic CNT is gapless, due to the sublattice symmetry (or spatial inversion sym-

metry) of the hexagonal lattice, as in the pristine graphene.14 When an extra on-site staggered

potential ∆ is added, the sublattice symmetry is broken so that the two sublattices of CNT become

located at different chemical environments, giving rise to a finite bulk band gap in CNT. In the C-

NT@BNNT heteronanotubes, BNNT wall can practically provide the on-site staggered potential,

due to the large difference of electronegativity between boron and nitrogen atoms. A similar phe-

nomenon was known in 2D systems.7,12,15 Therefore, a bulk band gap opens in the CNT@BNNT

heteronanotube systems, as shown in Fig.1(f) of the main text.

When m = 0 in the general form CNT(n,n)@BNNT(n+m,n+m), along the circumference the

atomic registry is commensurate rather than a moiré structure. A bulk band gap still appears in the

Dirac point as shown in Fig.S5, due to the sublattice symmetry breaking. However, no topological

helical state appears since no moiré structure is formed in such a tube.

// //

Figure S5: Band structure of the commensurate double-wall heteronanotubes: CNT(n,
n)@BNNT(n+m,n+m) with n = 96 and m = 0.
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Section 7: Zigzag-type THT and chiral-type THT

For zigzag-type THT, i.e. CNT(n, 0)@BNNT(n+m, 0), as shown in Fig.S6(a) no helical state

appears inside the band gap. This is because indices K and K’ are mixed together due to folding of

the reciprocal space.12,16 We conclude that zigzag heteronanotubes are not topological.

For chiral-type THT, the topological moiré edges are along the chiral direction. The topological

helical states appear as shown in Fig.S6(b), similarly as the armchair-type THT in Fig.1 of the main

text.

(a) (b)

Figure S6: (a) Band structure of zigzag THT: CNT(n, 0)@BNNT(n+m, 0) with n=96 and m=1.
b is the lattice constant of the transnational vector with a value of 4.26 Å. (b) Band structure of
chiral THT: CNT(100, 25)@BNNT(104, 26) a is the lattice constant of the transnational vector
with a value of 6.50 Å. Gray lines are bulk bands and red (green) lines are helical channels - same
as those of Fig.1 in the main text.

Section 8: Topological properties of double-wall CNT

In the main text we focus on the most representative THT: CNT@BNNT. In fact, similar topo-

logical physics occurs in other tubular materials, here we investigate a double-wall CNT system

where two opposite local stackings (AB and BA) locate on the circumference of the double-wall

tube, according to the 2D mapping in Fig.S7(b). Due to its excellent mechanical strength and ther-

mal/chemical stability, double-wall CNT is considered a promising material for nano-devices.17
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With an electric field pointing along the radial direction, the AB and BA local stacking con-

figurations obtain opposite staggered potentials: ∆AB = −∆BA. According to Eq.(4) above, one

obtains:

CV (AB) =−CV (BA). (S6)

We therefore conclude that between these two local stacking configurations, the topological moiré

edges emerge to support helical channels. All the topological properties in the THT of CN-

T@BNNT discussed in the main text can be established in double-wall CNT. The double-wall

CNT is not a heteronanotube since both walls are carbon, therefore the topological moiré edges

require a radial electric field to establish: such as field can be produced by a charged wire threading

the CNT.

AB BA

(a)

E

(b)

(c)

Figure S7: (a) Armchair double-wall CNT of CNT(n,n)@CNT(n+m,n+m). Here we take m=1 for
example. The carbon atoms of outer CNT are plotted by purple balls to distinguish from those of
the inner CNT wall (grey color). (b) The 2D mapping of (a). AB and BA are two local stackings.
(c) A schematic plot of a radial electric field (orange arrows) that induces the topological states.
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