Influence of Al and Al₂O₃ Nanoparticles on the Thermal Decay of 1,3,5-Trinitro-1,3,5-triazinane (RDX): Reactive Molecular Dynamics Simulations

Weizhe Hao, ^{†,‡} Liangliang Niu,^{*‡} Ruijun Gou,^{*†} and Chaoyang Zhang^{*‡,\$}

[†]College of Environment and Safety Engineering, North University of China, Taiyuan 030051, China

[‡]Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), P. O. Box 919-311, Mianyang, Sichuan 621900, China.

^{\$}Beijing Computational Science Research Center, Beijing 100048, China.

Supporting Information

T(V)	Madal	t_D (ps)		
<i>I</i> (K)	Widdel	50 %	100 %	
	Al-RDX	1.85	125	
1500	Al ₂ O ₃ -RDX	10.1	137.35	
1500	Void-RDX	26.95	197.45	
	RDX	29.9	189.5	
	Al-RDX	0.72	47.8	
2000	Al ₂ O ₃ -RDX	3.45	36.75	
2000	Void-RDX	4.3	37.7	
	RDX	3.3	22.85	
2500	Al-RDX	0.78	26	
	Al ₂ O ₃ -RDX	1.9	18.15	
	Void-RDX	1.6	17.3	
	RDX	0.95	8.85	
	Al-RDX	0.77	14.8	
2000	Al ₂ O ₃ -RDX 1.1	1.15	11.15	
3000	Void-RDX	0.9	7.95	
	RDX	0.7	3.8	
	Al-RDX	0.67	9.6	
3500	Al ₂ O ₃ -RDX	0.82	8.3	
	Void-RDX	0.6	4.8	
	RDX	0.46	2.4	

Table S1. Moment (t_D) at which RDX molecules undergo 50 % and 100 % decomposition.

<i>T</i> (K)	Model	Ν
2500	Al-RDX	2424
	Al ₂ O ₃ -RDX	2692
	Void-RDX	2820
	RDX	3443
3500	Al-RDX	2544
	Al ₂ O ₃ -RDX	2875
	Void-RDX	2930
	RDX	3565

 Table S2. Total number (N) of molecules of the four models approaching the final equilibrium state at 2500 and 3500 K.

Video 1. ReaxFF-MD simulations of a single RDX molecule adsorbing onto the Al (001) surface at 1 K for 6 ps.

Video 2. ReaxFF-MD simulations of a single RDX molecule adsorbing onto the Al (001) surface at 5 K for 6 ps.

Video 3. ReaxFF-MD simulations of a single RDX molecule adsorbing onto the Al_2O_3 (0001) surface for 6 ps. Programmed heating was performed from 1 K to 1000 K within 6 ps.

Video 4. ReaxFF-MD simulations of a single RDX molecule adsorbing onto the Al_2O_3 (0001) surface at 300 K for 6 ps.

Video 5. ReaxFF-MD simulations of a single RDX molecule in vacuum at 2000 K for 10 ps.

1500 K		3500 K	
Reactions	Freqs.	Reactions	Freqs.
$CH_2ON_2 => CH_2O + N_2$	19	$N_2O =>N_2 + O$	48
$CH_2O_2N_2 \Longrightarrow CH_2O + N_2 + O$	10	$CHON_2 => CHO + N_2$	43
$N_2O =>N_2 + O$	9	$CH_2N_2 => CH_2 + N_2$	19
$CH_3ON_2 => CH_3O + N_2$	9	$CON_2 =>CO + N_2$	18
$CH_2O_3N_3 => CH_2O + N_2 + NO_2$	5	$HN_2 + O_2 => HO_2 + N_2$	18
$C_{3}H_{6}O_{2}N_{6} = C_{3}H_{6}O_{2}N_{4} + N_{2}$	5	$HON_2 =>HO + N_2$	18
$CHON_4 => CHON_2 + N_2$	5	$CHO_2 + N_2 => CO_2 + HN_2$	17
$CHON_2 => CHO + N_2$	5	$CHON+CN_3 => C_2HON_2+N_2$	15
$CH_2O_2N_2 \Longrightarrow CH_2O_2 + N_2$	5	$CHON + HN_2 => CH_2ON + N_2$	14
$CH_2ON_3 \Longrightarrow CH_2ON + N_2$	5	$CO_2N_2 = >CO_2 + N_2$	12
$C_3H_5O_3N_6 = C_3H_5O_3N_4 + N_2$	5	$HN_2 + HO => H_2O + N_2$	12

Table S3. High frequent reactions leading to the final generation of N₂.

$CH_{3}O_{2}N_{2} => CH_{3}O_{2} + N_{2}$	4	$CON_3 =>CON + N_2$	12
$HON_2 =>HO + N_2$	4	$CH_2ON_3 => CH_2ON + N_2$	11
$CH_3O_2N_3 => CH_2ON + HO + N_2$	4	$H_2O + HN_2 => H_3O + N_2$	11
$C_2H_4O_2N_5 => C_2H_4O_2N_3 + N_2$	4	$CH_2ON_2 => CH_2O + N_2$	11
$C_2H_4O_2N_6 => C_2H_4O_2N_4 + N_2$	4	$CON + HN_2 => CHON + N_2$	10