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Supplementary Method 1 | Materials and Methods 

General methods. To increase the field of view, we employed a wide-field epi-fluorescence 

microscopy capable of scanning the objective lens along the z-axis (Figures. S1A and S11)1. The 

signal from every UCNP between these two planes can be detected, which is advantageous over 

conventional techniques where movements of fluorescent probes out of one objective focal plane 

cause signal disappearance. The UCNP coordinates were determined by a Gaussian point-spread 

function2, 3. With this double-plane imaging, the mean trajectory length is estimated to be 70–120 

seconds for our system (Figure S12). 

Chemicals. Yttrium (III) acetate hydrate (99.9 %), ytterbium (III) acetate tetrahydrate (99.9 %), 

erbium (III) acetate hydrate (99.9 %), 1-octadecene (technical grade, 90 %), oleic acid (technical 

grade, 90 %), ammonium fluoride (≥ 98 %), and sodium hydroxide (≥ 98 %) were purchased from 

Sigma-Aldrich. 1,2- dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene 

glycol)-2000] (mPEG) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-

[amino(polyethylene glycol)-2000] (DSPE-PEG-NH2) were sourced from Avanti Polar Lipids, Inc. 

The other reagents and organic solvents used were of sufficient quality and grade. All chemical 

reagents were used without further purification. 

Preparation of PEG-Phospholipid functionalized UCNPs (β-NaYF4: 20 mol% Yb3+, 2 mol% 

Er3+). The β-NaYF4: Yb3+, Er3+ UCNPs were synthesized as previously reported with minor 

modification4. Y(CH3COO)3•xH2O (0.78 mmol), Yb(CH3COO)3•4H2O (0.20 mmol) and 

Er(CH3COO)3•xH2O (0.02 mmol) were mixed in a 100 mL three-neck round-bottom flask 

containing oleic acid (6 mL) and 1-octadecene (15 mL). The mixture was heated to 160°C and 

stirred for 40 min. After stirring, the solution was cooled to room temperature. A methanol mixture, 

containing a solution of ammonium fluoride (4.0 mmol) and sodium hydroxide (2.5 mmol) 
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dissolved in methanol (5 mL) was added to the reaction flask and stirred for 40 minutes at 50°C. 

To remove the methanol, the reaction mixture was heated to 100°C under vacuum with 15 minutes 

of stirring. Subsequently, the reaction flask was placed under a moderate flow of Argon and heated 

to 300°C for 1 h. After cooling to room temperature again, ethanol was added to the reaction flask 

to precipitate the NaYF4: Yb3+, Er3+ nanoparticles. The precipitated UCNPs were isolated by 

centrifugation and washed several times with ethanol. The synthesized nanoparticles were 

redispersed in n-hexane. 

The surface of the synthesized UCNPs were functionalized with PEG-Phospholipid 

according to a previously published method with minor modifications4. UCNPs dissolved in 

chloroform (2 mg/mL, 5 mL) were added to a mixture of mPEG (15 mg) and DSPE-PEG-NH2 (5 

mg) in chloroform (10 mL) and the reaction mixture was stirred for 30 minutes. After evaporating 

the solvent in the reaction mixture, the residue was incubated at 65°C under a vacuum for 1 hour. 

To make a colorless and transparent suspension, 10 mL deionized water was added to the residue. 

The reaction mixture was filtered through a 0.45 μm cellulose acetate syringe filter. The amine-

functionalized nanoparticles were washed twice with deionized water by centrifugation. The 

washed amine-functionalized UCNPs were then dispersed in 2 mL deionized water. 

Characterization of UCNPs. The shape, uniformity, and size distribution of synthesized 

nanoparticles were determined by transmission electron microscope (TEM) (Tecnai G2 F30 S-

Twin, Fei). The size of the synthesized UCNPs was about 24.2 ± 0.7 nm as shown in Figure S13. 

The ratio of lanthanide ions in the UCNPs was analyzed using inductively coupled plasma-mass 

spectroscopy (ICP-MS) (NexION 350D, Perkin-Elmer SCIEX). The ratio was Y: 78.573 %, Yb: 

19.276 %, and Er: 2.151 % (Table S1). The crystal structure of UCNPs was assessed by the X-ray 

diffraction (XRD) pattern obtained from an X-ray diffractometer (SmartLab, RIGAKU). The XRD 
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pattern was consistent with the reported β type (hexagonal phase) UCNPs (Figure S14). The 

emission spectrum of the UCNPs was obtained using a spectrometer (QE 65000, Ocean Optics) 

with excitation with a 980 nm diode laser (1999CHP, 3SP Technologies) (Figure S15). 

Cell culture and inhibition of dynein. SH-SY5Y neuroblastoma cells (Korea Cell Line Bank) 

were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM, Hyclone) supplemented with 10 % 

fetal bovine serum (FBS, Hyclone), 100 units/mL penicillin, and 100 μg/mL streptomycin at 37°C 

in a humidified 5 % CO2 incubator. The cell suspension (1 mL at 1 × 104 cells/mL) was seeded 

onto a poly-D-lysine (Sigma-Aldrich) treated cover glass bottom dish (SPL) and incubated for 24 

hours. For cell differentiation, 10 mM of retinoic acid (RA, Sigma-Aldrich) added to the cultured 

cells. Differentiation was allowed to proceed for more than ten days, and fresh culture medium 

containing 10 mM RA was added every two days. For dynein inhibition, cells were treated with 1 

mM EHNA (Sigma-Aldrich) for 2 hours. 

Wide-field Epi-Fluorescence Microscopy and Live Cell Imaging. The UCNPs in live 

neuroblastoma cells were imaged using an inverted microscope (IX73, Olympus). The wide-field 

epi-fluorescence microscope system (Figure S11) was comprised of EMCCD camera (iXON3, 

Andor Technology), a 980 nm diode laser (P161-600-980A, EM4 Inc.), and a live cell incubation 

chamber (TC-L-10, Live Cell Instrument). The incubation chamber controller maintained the 

temperature and CO2 concentration at 37°C and 5 % respectively during live cell imaging. For 

imaging, the dynein inhibited SH-SY5Y cells were washed three times with PBS (Gibco) and then 

treated with UCNPs for 30 min. Cells were washed three times using PBS to remove surplus 

UCNPs and phenol-red free DMEM medium was added to cover the glass bottom dish before 

imaging. 
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Image Processing. For z-sectioning of UCNPs, the piezo-electric stage was controlled using 

custom LabVIEW based sectioning software. The 2D section area and sectioning width were 102 

µm × 37 µm (1024 pixels × 371 pixels with 0.101 µm/pixel) and 500 nm (covering range of z-

axis) respectively. The scanning time (temporal resolution for SPT) was 100 ms (50 ms for each 

section image), which was set using built-in sectioning software. The two images obtained from 

one scan constituted one stack. The image acquisition process was carried out using Andor Solis 

software. The exposure time for EMCCD camera (iXON3, Andor Technology) was 50 ms. Figure 

S1  depicts the image sectioning and acquisition procedure through the z position vs. time ( nt ). 

The trajectories of UCNPs were obtained from the series of image stacks using DiaTrack particle 

tracking software. 

Data analysis. To explain the experimental data of the mean square displacement (MSD) and non-

Gaussian parameter (NGP) using our models, we derived the analytic expressions of the second 

moment and the fourth moment of vesicle displacement along the microtubule for each model. 

Their explicit expressions are respectively given by 

2 2 2( ) ( )x xd t R t x        , (M0-1) 

4 4 4 2 2( ) ( ) 6 ( )x x xd t R t x R t x             , (M0-2) 

where 2(4) ( )xR t   denotes the second (fourth) moment of the MPM displacement distribution (See 

Method 2 for their explicit expressions in each model). 
2(4)x   is the second (fourth) moment for 

the relative displacement of vesicles with respect to the MPM, whose values are respectively given 

by 
3 21.26 10 μm  and 

6 43.81 10 μm  (See Method 2, Section 2). Using the two moment 

expressions, we can calculate the NGP defined as 4 2 2[ ( ) 3 ( ) ] 1x xd t d t     . We optimize our models 

against the MSD and NGP data of vesicle displacement in the first 20 seconds, calculated from 
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119 vesicle transport trajectories. We also analyze the motion of vesicle in the microtubule-

orthogonal direction; detailed methods are given in Method 2. (See also Figure S16). 

To calculate the mean-first-passage time in Figure 3A, we perform accurate stochastic 

simulations for each of Model 1 and Model 2 with the optimized values of the adjustable 

parameters given in Table 1 or 2. The first passage times, at which a vesicle with the initial position 

identified as x = 0 reaches x =  L or L for the first time, are collected from 104 simulation 

trajectories (See Method 3 for the detailed algorithms).  

In Figure 3B, we compare the best-fitted result of eq 1 and experimental results of the 

mean-first-passage time. We obtain eq 1 for Model 1 by assuming that a mode-transition can occur 

only once. Each term on the right hand side of the equation can be calculated from  

 
 

2

0 2
0

sinh
( )

2 cosh

L
L

D




 
  ,   (

2

1,0 02k L D  ) (M0-3) 

  0 1 0 1( ) 1 sech
L

L t
v

  

 
     
 

, (M0-4) 

1 0,1( ) exp
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L k
v v


 

  
 

, (M0-5) 
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   

  
        

   

, (M0-6) 

where  

 
   
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1
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 

 
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 1 0
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   2 1 2

1 0 2

0,1

2
1 1 2 expt

k
  


       
 

. (M0-9) 

Here, 0D , v , and 
1,0 0,1( )k k  denote, respectively, the diffusion coefficient characterizing random 

motion of the MPM in the bidirectional mode, the speed of the MPM motion in the unidirectional 

mode, and the transition rate from the bidirectional (a unidirectional) mode to a unidirectional (the 

bidirectional) mode. A derivation of eq 1 is presented in Method 4. 
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Supplementary Method 2 | A detailed description of Model I and Model II 

One can represent the cargo position vector r  as ( )  r R r R , where R  represents the 

position of the motor protein multiplex. r R  designates the relative position of cargo with 

respect to the motor protein multiplex. Active motion of the motor protein multiplex affects the 

dynamics of R , whereas passive thermal motion of cargo around the motor protein multiplex 

affects the dynamics of r R . We assume the dynamics of R  is not strongly correlated with the 

dynamics of r R . In this section, we first present detailed descriptions of our model and the 

corresponding transport equations for both R  and r R . We then discuss how these two 

components comprise the dynamics of the cargo position, r .  

1. Dynamics of the motor protein multiplex 

The motor protein multiplex (MPM) moves along the microtubule using chemical energy 

obtained from ATP-hydrolysis. Since catalytic activity of ATP-hydrolysis is dependent on the 

microscopic state of the motor protein multiplex, so too is the multiplex’s transport dynamics. To 

provide a quantitative description of transport dynamics of the multi-mode MPM along the 

microtubule, let us first consider the following model for incremental motion of the MPM at mode 

  from position x to adjacent position x x  along the microtubule: 

MPM( , ) MPM*( , ) MPM( , )x x x x     . Here, MPM( , )x    and MPM*( , )x 

designate, respectively, an MPM at mode   at position x  along the microtubule and an activated 

MPM ready to perform mechanical motion by possibly multiple ATP-hydrolysis reactions of 

kinesins and dyneins in the MPM.  

(a) ATP-hydrolysis dynamics 

To describe the MPM mode-dependent dynamics of the ATP-hydrolysis coupled activation 

and subsequent mechanical motion along the microtubule, we extend the generalized enzyme 



 

 

9 

 

kinetics developed in refs.5, as it provides a successful quantitative explanation of recent 

experimental data showing enzyme-state dependent catalytic activity6. In our model, each of the 

ATP-hydrolysis induced activation of MPM and the subsequent reactions of the activated MPM is 

modeled as Cox’s renewal process7, in which dynamics of an elementary reaction process is 

represented by the reaction time distribution. A schematic representation of this model is given by  

1,

1,

2,

( )

( )

( )

(a) MPM( , ) MPM*( , )

(b) MPM*( , ) MPM( , )

(c) MPM*( , ) MPM( , )

t

t

t

x x

x x

x x x









 



  

  

   

                         (M0-10) 

In (M2-1), 
1 ( )t  denotes the reaction time distribution (RTD) of ATP-hydrolysis induced MPM 

activation; that is, 
1 ( )t dt  designates the probability that the MPM is activated and ready to move 

by ATP-hydrolysis reactions of motor proteins in time interval (t, t + dt), given that the MPM 

activation begins at time 0. 1( )t  satisfies the following normalization condition, 
1

0
 ( ) 1dt t



 . 

On the other hand, 1, ( )t   and 
2, ( )t 

 designate the RTDs of deactivation reaction (b) and 

mechanical motion to adjacent position (c) of the activated MPM at mode  , respectively. 1, ( )t   

and 
2, ( )t 

 satisfy the following normalization conditions, 1, 1,
0

 ( )dt t p


     and 

2, 2,
0

 ( )dt t p


   with 
1, 2, 1p p    . Here, 

1,p 
 or 

2,p 
 designates the probability of 

deactivation or mechanical motion of the activated MPM at mode  . If these reactions of the 

activated MPM are simple one-step Poisson processes, we have 
1, 1, 1, 2,( ) exp[ ( ) ]t k k k t          

and 
2, 2, 1, 2,( ) exp[ ( ) ]t k k k t         where 

1,k 
 and 

2,k 
 are the mode dependent rate constants. 

However, when the reactions of the activated MPM are multi-step processes, one can approximate 



 

 

10 

 

1, 1,( )t p   
 or 

2, 2,( )t p  
 by a gamma distribution,  1 t

t e
      

  . For the sake of 

simplicity, we assume that 
1, 1,( )t p   

 and 
2, 2,( )t p  

 are the same, denoted by 
MPM*, ( )t 

.  

For the scheme given in eq M0-10, we obtain the waiting time distribution, ( )t  , or the 

distribution of time elapsed the MPM at mode   to move from one position to an adjacent position 

along the microtubule, as follows: 

1 2,

1, 1

ˆ ˆ( ) ( )
ˆ ( )

ˆ ˆ1 ( ) ( )

s s
s

s s

 


 





 




 (M0-11) 

ˆ ( )s   denotes the Laplace transform of ( )t  , i.e., 
0

ˆ ( ) ( )sts dte t 




   .  

(b) ATP-hydrolysis-coupled transport dynamics 

In this subsection, we present the transport equation of the MPM undergoing the ATP-

hydrolysis-induced activation and subsequent incremental motion along the microtubule, as 

described by eq M2-1. Let us first consider a simple, hypothetical case where the MPM has only 

a single mode,  , at which the MPM moves in the   direction on the microtubule. In this case, 

the probability, ( )mp t , that the multiplex is located at the mth site on the microtubule at time t 

satisfies the following equation 8: 

1
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )m m mp s s p s p s


     (M0-12) 

Here ˆ ( )mp s  and ˆ ( )mp s  respectively designate the Laplace transforms of ( )t mp t t   and ( )mp t . 

In eq M0-12, ˆ ( )s  denotes the rate kernel given by 

ˆ ( )
ˆ ( )

ˆ1 ( )

s s
s

s














  (M0-13) 

where ˆ ( )s   is given by eq M0-11. Equation M0-12 describes unidirectional forward or backward 

motion of the motor protein multiplex with only a single conformational state.  
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By considering the continuum limit of eq M0-12, we obtain  

ˆ ( , )ˆ ˆ( , ) ( )
p x s

p x s K s
x





 (M0-14) 

for the probability distribution, ( , )p x t , of the multiplex’s position, x , on the microtubule. With 

x  being the distance between the adjacent sites on the microtubule, eq M0-14 can be easily 

derived from eq M0-12 by identifying x m x  , ˆ ˆ( ) ( , )mp s p x s x  , and 1
ˆ ˆ( ) ( , )mp s p x x s x    

and by using the Taylor series expansion,  ˆ ˆ ˆ( , ) ( , ) ( , )p x x s p x s x p x s x     . In eq M0-14, 

ˆ ( )K s


 denotes the drift kernel defined by  

0

ˆ ˆ( ) lim ( )
x

K s s x
 

 
   (M0-15) 

In Model 1 and Model 2, the motor protein multiplex not only exhibits unidirectional active 

motion but also exhibits bidirectional motion due to passive thermal motion or unbiased, 

seemingly random active motion when the multiplex is in the bidirectional mode in which the 

forward and backward forces by kinesins and dyneins in the MPM are in a delicate balance. The 

simplest extension of eq M0-14 to account for these bidirectional motions is given by  

2

2

ˆ ˆ( , ) ( , )ˆ ˆ ˆ( , ) ( ) ( )
p x s p x s

p x s D s K s
x x 

 


 
 (M0-16) 

where  2

, ,
ˆ ˆ ˆ( ) ( 2) ( ) 1 ( )x xD s x s s s    

      denotes the diffusion kernel describing the 

bidirectional motion of the motor protein multiplex along the microtubule. x  and 
,

ˆ ( )x s 
 

respectively represent the length scale and the waiting time distribution associated with the 

bidirectional motion along the microtubule of motor protein multiplex at state . The explicit 

expression of 
,

ˆ ( )x s 
 conforms to eq M2-2. 
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When the time scale of the bidirectional motion is much shorter than the time scales of 

multiplex’s unidirectional motion, ˆ ( )D s
 can be approximated by the diffusion constant, 

 0
ˆlim ( )sD D s   . However, when the time scale of bidirectional motion is not separated from 

the time scales of the multiplex’s unidirectional motion, this approximation cannot be used. For 

example, when 
, ( )x t 

 takes the following form: 

(1 )

, ( ) 1

a

x

a t
t

b b


 




 

 
  

 
    (0 1)a   (M0-17) 

, ( )x t 
 has a heavy power-law tail, proportional to (1 )a

t    (0 1)a  , and a finite time scale of 

thermal motion does not exist. It is known that, in this case, ˆ ( )D s
 does not yield a finite diffusion 

constant in the small s limit, and thermal motion is described not by the simple diffusion operator 

but by the fractional diffusion operator. The Laplace transform of eq M0-17 is given by 

,
ˆ ( ) ( ) exp( ) ( , )

a

x s a sb sb a sb 

        . Noting that 
,

ˆ ( )x s 
 can be expressed as 

,
ˆ ( ) 1 ( ) (1 )

a

x s sb a 

       in the small s limit and 1

,
ˆ ( ) ( )x s a b s 

    in the large s limit, we 

obtain the following asymptotic expressions for the diffusion kernel, 

1

2

1

  as 0

ˆ ( ) (1 )
as 

2

a

a

a a

D s s

D s x a a a
D s

b b





 




   



 

 


     
  
 

  (M0-18) 

where 
aD


 is defined by 2 2 (1 )
a

aD x b a

       .  

In the special case where ( )t   and 
, ( )x t 

 can be approximated by exponential functions, 

ˆ ( )K s


 and ˆ ( )D s  given in eqs M0-15 and M0-16 become constant, and eq M0-16 reduces to the 

well-known Fokker-Planck equation describing Brownian motion under a constant force field9.  
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We can further extend eq M0-16 to describe the transport dynamics of the multi-state motor 

protein multiplex that undergoes mode-transitions as follows: 

2

2

ˆ ˆ( , , ) ( , , )ˆ ˆ ˆ ˆ( , , ) ( ) ( ) ( ) ( , , )
p x s p x s

p x s D s K s L p x s
x x

 

   
     

 
 (M0-19) 

Here ˆ( , , )p x s  denotes the Laplace transform of the joint probability density, ( , , )p x t , of the 

motor protein multiplex at mode   at position, x , along the microtubule at time t . In eq M0-19, 

( )L   denotes a mathematical operator describing the mode-transition dynamics of theMPM. 

Equation M0-19 takes a simpler form in the Fourier domain, i.e., 

2ˆ ˆ ˆˆ ˆ ˆ( , , ) ( ) ( , , ) ( ) ( , , ) ( ) ( , , )p s D s p s i K s p s L p s                 (M0-20) 

where ˆ ( , , )p s   denotes the Fourier transform of ˆ( , , )p x s , defined by 

ˆ ˆ( , , ) exp( ) ( , , )p s dx i x p x s 



    . Equation M0-19 or M0-20 is the general form of the 

transport equation applicable to any specific model for conformation-dependent transport of the 

motor protein multiplex on the microtubule. 

In the present work, we employ motor protein multiplex models with multiple distinct modes, 

{ }i . For such models, eq M0-20 becomes 

2

, ,

ˆ ˆ ˆˆ ˆ( , , ) ( ) ( , , ) ( ) ( , , )

ˆ ˆ( , , ) ( , , )

i i i i i

i j j j i i

j

p s D s p s i K s p s

k p s k p s

    

 

     

    
 

 (M0-21) 

for each ˆ ( , , )ip s  . In eq M0-21, ˆ ( )iD s  and ˆ ( )iK s  denote ˆ ˆ( ) ( )
iiD s D s  and ˆ ˆ( ) ( )

iiK s K s , 

respectively. 
,j ik  denotes the transition rate from mode i  to mode 

j . Equation M0-21 for all 

states can be collectively written as 

2ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( , )s s i s s        
 

P PD K L  (M0-22) 



 

 

14 

 

where ˆ ( , )sP  denotes the column vector, the ith element of which is given by ˆ ( , , )ip s  . In eq 

M0-22, the ijth elements of ˆ ( )sD , ˆ ( )sK , and L  are respectively given by  

 ˆ ˆ( ) ( )i ij
ij

s D s D   (M0-23) 

 ˆ ˆ( ) ( )i ij
ij

s K s K  (M0-24) 

and  

, ,( ) (1 )ij ij n j ij i j

n

k k    L  (M0-25) 

In eq M0-24, the analytic expression of ˆ ( )iK s  is given by  

2, 1, MPM*,i

1, MPM*,i

ˆ ˆ( ) ( )
ˆ ( )

ˆ ˆ1 ( ) ( )

i i

i

i

p s s s
K s x

s s

 

 
 


 (M0-26) 

where MPM*,i
ˆ ( )s  are related to 1,

ˆ ( )s   and 2,
ˆ ( )s   in eq M0-11 by 

MPM*,i 1, 1, 2, 2,
ˆ ˆ ˆ( ) ( ) ( )

i i i i
s s p s p         . 

MPM*,i ( )t  is nothing but the lifetime distribution of the 

activated MPM at mode i . Equation M2-17 can be obtained by substituting eq  M0-11 into eq 

M0-13 and eq M0-15. In eq M0-26, 1, MPM*,i
ˆ ˆ( ) ( )i s s   denotes the Laplace-transformed RTD of the 

two successive processes: the ATP hydrolysis induced MPM activation and the subsequent 

deactivation or mechanical motion of the activated MPM at mode i . We have analyzed our 

experimental data by assuming that 
MPM*,i ( )t  is a gamma distribution (  1i i it

i it e
    

  ), 

because it can represent a multi-step process ranging from a sub-Poisson to super-Poisson process. 

For this model, MPM*,i
ˆ ( )s  is given by  

i

i is


     where i  and i  are defined as 

2 2

MPM*, MPM*,i i it t       and 2

MPM*, MPM*,i i it t      , with 
MPM*,it  being the stochastic lifetime of 
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the activated MPM at mode i .  In addition, 1,
ˆ ( )i s  is assumed to be 

1

1, 1
ˆ ( ) (1 ([ATP]))i s s k    

with 1([ATP])k  being the rate of the ATP hydrolysis-induced MPM activation. The corresponding 

drift kernel and the waiting time distribution of the MPM at state i  are respectively given by  

2,

1,

( )ˆ ( )
(1 ) 11 ([ATP]) (1 ) 1 ii

i i i
i i

ii i

p s s
K s x v

ss k s


 


  

     

  (M0-27a) 

2,

1, 2,

ˆ ( )
1 ([ATP]) (1 ) 1i

i

i

i i i

p
s

s k s p






     

 (M0-27b) 

In eq M2-18a, ˆ (0)i iv K 
 

 denotes the mean velocity of ballistic motion of the MPM at 

unidirectional mode i . iv can be expressed as 

    
1

1

2, MPM*,i 1, MPM*,i1 ([ATP])i i iv x p t k t


   
  

  (M2-18c) 

In the special case where 
1, ([ATP])ik  is linear in the ATP concentration, eq M2-18 reduces to the 

Michaelis-Menten equation10. In eq M0-27a, the second equality effectively holds on the basis of 

the assumption that ATP hydrolysis-induced MPM activation occurs much faster than subsequent 

reactions of the activated MPM. This assumption is valid at a typical value of cytosolic ATP 

concentration, e.g., [ATP] = 1 mM11. 

Noting that 
ˆ ˆ( , ) ( , ) ( ,0)s s s   P P P , one can obtain the solution of eq M0-22 as 

 
1

2 ˆ ˆˆ ( , ) ( ) ( ) ( ,0)s s s i s   


     
 

P I PD K L  (M0-28) 

If we choose the initial position, 0x , of the motor protein multiplex to be the origin of the x  

coordinate, the initial value of ( , , 0)ip x t   is given by ( )ss

ip x  with ss

ip  being the probability 

of mode i  in the steady-state. For the initial condition, ( ,0)P  in eq M0-28 is given by 
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( ,0) ss

j
j

p   P . With this initial condition at hand, one can obtain the analytic expression for 

each component of ˆ ( , )sP  from eq M0-28. The Fourier-Laplace transform of the probability 

density function of the position of the motor protein multiplex on the microtubule is given by the 

sum of all the elements of ˆ ( , )sP , i.e.  

ˆ ˆ( , ) ( , , )j

j

P s p s    (M0-29) 

From eq M0-29, we can calculate the time-dependent distribution, ( , )P x t , of the MPM’s position 

along the microtubule and its various moments.  

The general solution given in eq M0-28 is applicable to various special models including 

Model 1 and Model 2, which are discussed in the following sections (c) and (d).  

(c) Model 1 

In this subsection, we discuss Model 1 shown in Figure 2A. For Model 1, we employ a motor 

protein multiplex model with three distinct conformation states, 1 0 1{ , , }    . A motor protein 

multiplex has one bidirectional state, 0 , and two unidirectional states, 1 , one for anterograde 

and the other for retrograde direction. For this model, we have 0
ˆ ( ) 0K s  . On the other hand, the 

multiplex at state 1  undergoes unidirectional motion with the state-dependent drift kernel, 

1
ˆ ( )K s . 

Our experimental data show that the velocity and displacement distributions of the motor 

protein multiplexes are bilaterally symmetric. To construct a model consistent with the 

experimental data, we assume 1 1
ˆ ˆ( ) ( )K s K s    and that the following pairs of state transitions 

occur with the same rate: 
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1,0 1,0

0, 1 0, 1

(a) 0 1 and 0 1

(b) 1 0 and 1 0

k k

k k

 

 

   

   
 (M0-30) 

According to eq M0-30, we have 
1,0 1,0 1,0k k k   , 

0, 1 0, 1 0,1k k k   . 

The vector, ˆ ( , )sP , and the matrices, ˆ ( )sD , ˆ ( )sK , and L  in eq M0-28 are then given by 

1

0

1

ˆ ( , , )

ˆ ˆ( , ) ( , , )

ˆ ( , , )

p s

s p s

p s



 







 
 

  
 
 
 

P  (M0-31) 

3 3 0

0 0 0

0 0

0 0 0

D

 
 


 
 
 

D  (M0-32) 

1

3 3

1

ˆ ( ) 0 0

ˆ ( ) 0 0 0

ˆ0 0 ( )

K s

s

K s



 
 

  
 

 

K , (M0-33) 

and 

0,1 1,0

3 3 0,1 1,0 0,1

1,0 0,1

0

2

0

k k

k k k

k k



 
 

  
  

L .  (M0-34) 

The simplest mathematical description of the bidirectional motion of the multiplex at state 0  is 

to employ diffusion operator, 2 2

0 0
ˆ( , , )D p x s x   . For state 0 , 0

ˆ ( )D s  appearing in eq M0-23 is 

set equal to constant 0 0 0
ˆlim ( )sD D s

 
 

 in eq M0-32. For the other states, the bidirectional 

motion of the multiplex is not considered in Model 1. 

The s-dependent drift kernel, ˆ ( )iK s , eventually becomes constant in the small-s limit, as far 

as the mean time, it  , for ˆ ( )i s  exists. In other words, ˆ ( )iK s  can be treated as its small-s limit 



 

 

18 

 

value, i.e., ˆ ( 0)i iK s v  , when displacement data at times much longer than it   are analyzed. 

(see Figure S17).  

(d) Model 2 

In this subsection, we discuss Model 2 shown in Figure 2A. For Model 2, we employ a motor 

protein multiplex model with five distinct conformation states, 2 1 0 1 2{ , , , , }        . A motor 

protein multiplex has one bidirectional state, 0 , and four unidirectional states, 1  and 2 , two 

for anterograde and the others for retrograde direction. For this model, we have 0
ˆ ( ) 0K s  . On the 

other hand, the multiplex at states 1  and 2 undergoes unidirectional motion with state-

dependent drift kernels, 
1

ˆ ( )K s
 and 

2
ˆ ( )K s

. 

Our experimental data show that the velocity and displacement distributions of the motor 

protein multiplexes are bilaterally symmetric. To construct a model consistent with the 

experimental data, we assume 1 1
ˆ ˆ( ) ( )D s D s   and 2 2

ˆ ˆ( ) ( )D s D s  , 1 1
ˆ ˆ( ) ( )K s K s    and 

2 2
ˆ ˆ( ) ( )K s K s   , and that the following pairs of state transitions occur with the same rate: 

1,0 1,0

0, 1 0, 1

2, 1 2, 1

1, 2 1, 2

0, 2 0, 2

2,0 2,0

(a) 0 1 and 0 1

(b) 1 0 and 1 0

(c) 1 2 and 1 2

(d) 2 1 and 2 1

(e) 2 0 and 2 0

(f ) 0 2 and 0 2

k k

k k

k k

k k

k k

k k

 

 

   

   

 

 

   

   

     

     

   

   

 (M0-35) 

According to eq M0-35, we have 
1,0 1,0 1,0k k k   , 

0, 1 0, 1 0,1k k k   , 
2, 1 2, 1 2,1k k k     , 

, , and . 

The vector, ˆ ( , )sP , and the matrices, ˆ ( )sD , ˆ ( )sK , and L  in eq M0-28 are then given by 

1, 2 1, 2 1,2k k k     0, 2 0, 2 0,2k k k   2,0 2,0 2,0k k k  
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2

1

0

1

2

ˆ ( , , )

ˆ ( , , )

ˆ ( , ) ˆ ( , , )

ˆ ( , , )

ˆ ( , , )

p s

p s

s p s

p s

p s





 













 
 

 
 

  
 

 
  

P  (M0-36) 

2

1

0

1

2

ˆ ( ) 0 0 0 0

ˆ0 ( ) 0 0 0

ˆ ˆ( ) 0 0 ( ) 0 0

ˆ0 0 0 ( ) 0

ˆ0 0 0 0 ( )

D s

D s

s D s

D s

D s

 
 
 
 

  
 
 
 
 

D  (M0-37) 

 

 

 

 

2

1

1

2

ˆ 0 0 0 0

ˆ0 0 0 0

ˆ 0 0 0 0 0( )

ˆ0 0 0 0

ˆ0 0 0 0

K s

K s

s

K s

K s

 
 
 
 

  
 
 
  

K  (M0-38) 

and  

1,2 0,2 2,1 2,0

1,2 2,1 0,1 1,0

0,2 0,1 1,0 2,0 0,1 0,2

1,0 2,1 0,1 1,2

2,0 2,1 1,2 0,2

0 0

0 0

2 2

0 0

0 0

k k k k

k k k k

k k k k k k

k k k k

k k k k

  
 

  
  
 

  
   

L  (M0-39) 

Unlike Model 1, a more general, alternative description of the bidirectional motion of the multiplex 

at state 0  can be made by employing the generalized diffusion operator, 2 2

0 0
ˆ ˆ( ) ( , , )D s p x s x   . 

Here, 0
ˆ ( )D s  is given by  

0

0

0

1
1

1 0
0

0 0

ˆ ( )
(1 )

a
a

a

b
D s D s

a a




 
  

  
,  (M0-40a) 
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which is an approximate diffusion kernel interpolating between the two limit expressions in eq 

M0-18 for state 0 . In eq M0-40, 0a  and 0b  denotes 
00a a  and 

00b b , respectively. The 

bidirectional motion at the other states, 0i , originates from passive thermal motion alone. We 

model passive thermal motion of the MPM in unidirectional modes by fractional diffusion, that is 

described by  

1ˆ ( ) ia

i iD s D s


  (i=1, 2).  (M2-31b) 

We find that Model 2 provides a better quantitative explanation of experimental results than its 

alternative with thermal motion of the MPM being assumed to be simple diffusion. 

As shown in Figure 2, both Model 1 and Model 2 can explain the experimental data of the 

MSD and the NGP. However, as we can see in Figure 2E to H, Model 1 is in good agreement with 

the experimental result at times longer than 10 seconds. On the other hand, Model 2 provides a 

quantitative prediction of the cargo displacement distribution at all times between 0.1 second and 

20 seconds. 
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(e) Other multi-state models 

The significance of the bidirectional active motion at state 0  can be evaluated by using 

Model 1ʹ and Model 2ʹ, where the multiplex at state 0  undergoes no bidirectional, unbiased 

motion, according to which eqs M0-32 and M0-37 are respectively replaced by 

3 3

0 0 0

0 0 0

0 0 0



 
 


 
 
 

D  (M0-41) 

and 

2

1

1

2

ˆ ( ) 0 0 0 0

ˆ0 ( ) 0 0 0

ˆ ( ) 0 0 0 0 0

ˆ0 0 0 ( ) 0

ˆ0 0 0 0 ( )

D s

D s

s

D s

D s

 
 
 
 


 
 
 
 
 

D  (M0-42) 

On the other hand, the motion of the multiplex at unidirectional states for each model is modeled 

to be the same as in its original version. 

As shown in Figure S8, Model 1ʹ and Model 2ʹ can also explain the experimental data of the 

MSD and the NGP. However, both models fail to explain the cargo displacement distribution, 

especially the central portion of the distribution at intermediate-to-long times, implying that the 

bidirectional active motion at state 0  is important in order to explain the experimental data as 

shown in Figure S8.  
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2. Dynamics of relative motion of cargo with respect to the motor protein multiplex 

In our experiment, we observe the vesicle carried by the motor protein multiplex, not the 

motor protein multiplex. The stochastic dynamics of the vesicle position results not only from 

transport of the motor protein multiplex on the microtubule, but also from relative thermal motion 

of the cargo with respect to the multiplex. In this subsection, we describe our model for the relative 

thermal motion of the cargo with respect to the motor protein multiplex. 

The relative motion of cargo can be directly monitored by inhibiting dynein motor proteins 

with EHNA, which effectively localizes the entire motor protein multiplex. From the experimental 

data, we find that cargo undergo stochastic motion, but the variance of the cargo position hardly 

increases with time when the motor protein multiplex is localized. We model the relative motion 

of cargo with respect to the motor protein multiplex as thermal motion in a potential well.  

The potential field imposed on the cargo can be heterogeneous depending on the 

conformation of the motor protein complex. For a given configuration of the motor protein 

multiplex, we model the relative motion of the cargo as an Ornstein-Uhlenbeck (OU) process, the 

simplest stochastic process occurring in a harmonic potential. The curvature of the potential 

imposed on the cargo position is dependent on the configuration of the motor protein complex.  

For this model, the probability density, ( , )f x t , of the cargo’s relative position with respect 

to the motor protein multiplex at a given conformation is described by the Fokker-Planck equation 

of the OU process, 

   , ,f x t D x f x t
t x x


   

        
                                   (M0-43) 

where D  and   denote, respectively, the diffusion coefficient of cargo and the force constant 

associated with a harmonic potential scaled by thermal energy, which is dependent on the motor 

protein conformation. The solution to eq M0-43 is known to be 
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 
 

 
1/2

0

0

2

22
= exp

2
| ,

1
,

12
0

t

tt

D

DD

e
f x t x

e

x x

e





 







    
   

   
   

   (M0-44) 

where  0, | ,0f x t x   denotes the probability density of the cargo’s position under the initial 

condition that the cargo is located at 0x  at time 0. At long times, eq M2-35 approaches the 

equilibrium distribution.  

Our experimental data shows that the relative separation between the cargo and the motor 

protein multiplex quickly relaxes to the equilibrium distribution; the variance in the relative 

separation is found to be nearly constant throughout measurement times ranging from 0.1 second 

to 2.0 seconds. Therefore, we assume the equilibrium distribution for the relative separation 

between cargo and the multiplex:  

 
1/2

2exp
2 2

f x x
 



   
    

   
 . (M0-45) 

The stationary distribution given in eq M0-45 is Gaussian but, as shown in Figure S4B, the 

experimentally measured distribution of the cargo position has a non-Gaussian, exponential tail. 

To explain the experimental data, we assume that the force constant,  , scaled by thermal energy 

is distributed depending on the MPM conformation. The experimentally measured stationary 

distribution of the cargo position is quantitatively explainable by assuming that   is a random 

variable given by 2

0 (1 )q    with 0  and q  being a constant and Gaussian random variable, 

respectively. For this model, the steady-state distribution of cargo position, x , is given by 

 
   

20

2

0

2 22 1 1
= exp ( | )

2
q

x
f x

q q
dq N q












 
 
 
 




 
  (M0-46) 
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where 2( | )qN q   denotes  
1/2

2 2 22 exp (2 )q qq 


   . This result is used to explain the 

experimental data shown in Figure 2D. The optimized values of the adjustable parameters are as 

follows: 1 4 2

0 1.99 10 μm     and 2 5.30q  . The variance 2x   of ( )f x  is given by  

2 1 2 3 2

0 (1 ) 1.25 10 μmqx         .  (M0-47) 

Thus far we have discussed the distribution of the relative position of cargo with respect to 

the motor protein multiplex in the microtubule direction. We find that eq M0-46 can explain the 

distribution of the cargo position in the microtubule-orthogonal direction as well, not only when 

the motor protein multiplex is inhibited, but also when the motor protein multiplex is not inhibited. 

However, when the motor protein multiplex is in motion, the variance of the cargo position in the 

microtubule-orthogonal direction slightly increases with time. We ascribe this phenomenon to rare 

transitions of the motor protein multiplex from one microtubule to another (see Section 3.2 below).  

3. Dynamics of cargo carried by the motor protein multiplex 

3.1 Cargo motion in the microtubule direction 

Cargo motion along the microtubule is contributed from both ATP-hydrolysis coupled 

motion of the motor protein complex, described in Section 1, and passive thermal motion of cargo, 

described in Section 2. In this section, we discuss how these two different types of motion compose 

cargo motion in the microtubule direction, or the direction of the x  axis.  

The cargo position, x , can be represented by ( )x xx R x R    where xR  represents a given 

position of the motor protein complex. The distribution of xR  is designated by ( , )xP R t , whose 

Fourier-Laplace transform is given in eq M0-28, and the distribution of  xx R x   is ( )f x  

given in eq M0-46. The probability distribution, ( , )g x t , of the cargo position, x, is then given by  
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( , ) ( ) ( , ) ( )

( , ) ( )

x x xg x t dR dx x R x P R t f x

dx P x x t f x


 

 





    

   

 


 (M0-48) 

which is correct as long as passive thermal motion of cargo is independent of the ATP-hydrolysis 

coupled motion of the motor protein complex. By taking the Fourier transform on both sides of eq  

M0-48, we obtain 

( , ) ( , ) ( )g t P t f     (M0-49a) 

or 

ˆˆ( , ) ( , ) ( )g s P s f    (M0-49b) 

where ˆ( , )P s  and ( ) exp( ) ( )f dx i x f x 




    
    are given by eq M0-29 and  

2

0

2
2

0

exp
2

( )

1q

f











 
 
 



 (M0-50) 

respectively. 

We can easily obtain the nth moment,  ( ) ( , )n n

xd t x g x t dx



    , of the cargo distribution by 

using the following relationship, 
0( ) ( ) lim ( , )n n n n

xd t i g t       . The first and all other odd 

moments vanish because the cargo distribution is a symmetric function of x . The second moment, 

2

xd  , of the cargo distribution, ( , )g x t , is given by 

2 2 2( ) ( )x xd t R t x         (M0-51) 

where 2 ( )xR t   and 
2x   denote the second moments of ( , )xP R t  and ( )f x , respectively. Here, 

2 ( )xR t   can be calculated by taking the inverse Laplace transform of 2 2

0
ˆlim ( , )P s      
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with ˆ( , )P s  given in eq M0-28. 2x   is a constant in time and given by  2 1 2

0 1 qx       (see 

eq M0-47). The mean square displacement (MSD) of cargo displacement can be directly calculated 

from eq M0-51. At short times where the MPM has yet to undergo a mode transition, a simple 

analytic expression of the vesicle MSD is obtained  

2 2 2 2

0 0 0( ) 2 (1 )xd t p D t p v t x
                                                (Model 1)  (M0-52a) 

0

2 2 2 2 20 0
0 0 1 1 2 21

0

(1 )
( ) 2 (2 2 )x a

a a
d t p D t p v p v t x

b
   

 
               (Model 2)  (M0-52b) 

where 
2x   denotes the contribution to the MSD from the fast thermal motion of vesicle with 

respect to the MPM (see eq M0-47).  

The fourth moment of the cargo distribution, ( , )g x t , is given by  

4 4 4 2 2( ) ( ) 6 ( )x x xd t R t x R t x              (M0-53) 

where 4 ( )xR t   and 4x   are given by the inverse Laplace transform of 4 4

0
ˆlim ( , )P s      

with ˆ( , )P s  given in eq M0-28 and  2 2 4

03 1 2 3q q     , respectively.  

The non-Gaussian parameter (NGP), 
2, ( )x t , which measures deviation of the distribution 

of cargo displacement from Gaussian, can be calculated from eqs M0-51 and M0-53 by the 

following equation: 

   

4

2, 2 2

2 2 2 2

2 22 2 2 2

( )
( ) 1

3 ( )

( )
, ,

( ) ( )

x
x

x

x
x

x x

d t
t

d t

R t x
R t x t

d t d t



 

 
 

 

   
 

   

 (M0-54) 

2 ( , )x t   is constant in time and given by  
2

4 22 1q q  . With 

 4 2 2

2 ( , ) ( ) 3 ( ) 1x x xR t R t R t       
 

 calculated from 4 4 4

0
ˆ( ) lim ( , )xR t P s        and 
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2 2 2

0
ˆ( ) lim ( , )xR t P s        , eq M0-53, 

2, ( )x t  calculated from eq M0-53 provides an 

excellent quantitative explanation of the experimental results for the time dependence of the NGP. 

The optimized values of the adjustable parameters are given in Tables 1 and 2. 

3.2 Cargo motion in the microtubule-orthogonal direction 

The cargo position, y, in the microtubule-orthogonal direction can also be represented by 

( )y yy R y R   , where 
yR  represents the position of the motor protein multiplex in the 

microtubule-orthogonal direction. As the motor protein multiplex usually moves in the 

microtubule direction, the position of the motor protein multiplex in the microtubule-orthogonal 

direction does not change significantly at short times. At short times, the cargo dynamics in the 

microtubule-orthogonal direction is mostly contributed from the dynamics of ( )yy R y  , the 

relative position of cargo with respect to the motor protein complex. We find that, at short times, 

the cargo displacement distribution, ( , )h y t , in the microtubule-orthogonal direction is in good 

agreement with ( )f x  defined in eq M0-46, the cargo displacement distribution when the motor 

multiplex is immobilized by EHNA. That is, ( , ) ( )h y t f y  (at short times). This result indicates 

that thermal random motion of cargo relative to the motor protein multiplex is not greatly 

influenced by EHNA dynein inhibition. 

At times longer than 1.0 second, cargo displacement exhibits sub-diffusive dynamics and its 

MSD slowly increases with time, being proportional to 0.7t . The magnitude of the MSD in the 

microtubule-orthogonal direction is negligible compared with the MSD along the microtubule. We 

ascribe anomalous transport in the microtubule-orthogonal direction to the motor protein 

complex’s motion from one microtubule to another. The simplest model that describes this type of 

transition is the continuous time random walk (CTRW) model. Adopting this model, we assume 
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that a motor protein complex’s transition from one microtubule to another is Cox’s renewal process, 

which is characterized by a single sojourn time distribution, ( )y t . The corresponding 

hydrodynamic limit transport equation describing the displacement distribution, ( , )Q y t , of the 

motor protein multiplex is given by 

2 2ˆ ˆˆ( , ) ( ) ( , )yQ y s D s Q y s y    (M0-55) 

where  2ˆ ˆ ˆ( ) / 2 ( ) 1 ( )y y yD s y s s s       with y  being the mean distance between adjacent 

microtubules. In eq M0-55 
ˆ
( , )Q y s  and ˆ ( , )Q y s  denote Laplace transforms of ( , )Q y t t   and 

( , )Q y t , respectively. The solution of eq M0-55 under the initial condition, ( ,0) ( )Q y y , can be 

obtained as 

21ˆ ( , ) exp
ˆˆ ( )4 ( ) yy

y s
Q y s

D ssD s 

 
  
  

 (M0-56) 

Using a derivation similar to the derivation of eq M0-49, we can obtain the cargo 

displacement distribution in the microtubule-orthogonal direction as  

( , ) ( ) ( )h y t dy Q y y f y



     (M0-57) 

( , ) ( , ) ( )h t Q t f    (M0-58a) 

ˆ ˆ( , ) ( , ) ( )h s Q s f    (M0-58b) 

where ˆ ( , )Q s  and ( )f   are given by 
1

2ˆ ˆ( , ) ( )yQ s s D s 


  
 

 and eq M0-50, respectively. 

Noting that eq M0-58 has the same mathematical structure as eq M0-49, we can obtain the analytic 

expression for the second and fourth moments, and the NGP for the microtubule in the same 

manner that we obtain eqs M0-51 ~ M0-54 from eq M0-49. The MSD in the microtubule-
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orthogonal direction or the second moment of the displacement distribution, ( , )h y t , is obtained 

as 

2 1 2 2ˆ ˆ( ) 2 ( )y yd t L D s s y        
 

 (M0-59) 

Here 1L̂  denotes the inverse Laplace transform operator. Because cargo displacement 

resulting from passive thermal motion is nearly isotropic (Figure 2D), we set the value of 2y   to 

be the same as 2x  , i.e., 2 2 3 21.26 10 μmy x         . It is well known that the long-time 

power-law dependence of the MSD can be explained by the CTRW when ( )y t  has a heavy 

power-law tail, proportional to (1 )at   (0 1)a  . In the present work, we choose the following 

form for ( )y t : 

(1 )

( ) 1

a

y

a t
t

b b


 

 
  

 
    (0 1)a  . (M0-60) 

The Laplace transform of eq M0-60 is given by ˆ ( ) ( ) exp( ) ( , )a

y s a sb sb a sb    . Noting that the 

small s expansion of ˆ ( )y s  is given by ˆ ( ) 1 ( ) (1 )a

y s sb a     , one obtains  

 2 1ˆ ˆ ˆ( ) ( 2) ( ) 1 ( ) a a

y y y yD s y s s s D s         (M0-61) 

a

yD  defined as 
2 2 (1 )ay b a   . Substituting eq M0-61 into eq M0-59, we obtain 

2
2 2( ) ( )

(1 ) (1 )

a

y

y
d t t b y

a a


     

   
 (M0-62) 

Equation M0-62 provides a quantitative explanation of the experimental results for the MSD 

(Figure S6). The optimized values of the adjustable parameters are given in Table S2. 
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Supplementary Method 3 | Simulation method for mean-first-passage time 

In this method, we present a detailed simulation algorithm used to calculate the mean-first- 

passage times of our models in Figure 3. Here, fast thermal motion of the vesicle relative to the 

motor protein multiplex is not explicitly taken into account because such a motion is localized to 

very small region around the multiplex. 

At the very beginning of a vesicle trace, a vesicle’s initial state is determined with the steady-

state probability, eq N1-3, of each state, whose numerical values are calculated with the optimized 

values of the rate parameters given in Tables 1 and 2. The vesicle’s initial position, ( 0)x t  , is 

always set to be zero. When a vesicle stays at state j, the associated duration time is given by the 

smallest time, 
,i j

t  , among times, {
,i jt }, sampled from ijtk

ijk e


 for each state i linked to state j. Here, 

,i jt  designates the duration time at state j until the transition from state j to state i occurs. When 

the simulation time elapses by 
,i j

t  , the state of the vesicle is changed from state j to state i. During 

which the vesicle stays at state j for 
,i j

t  , the vesicle’s position, x, along the microtubule axis is 

updated every time step, 
5( 10  seconds)t   , and the update algorithm depends on the model we 

simulate. For Model 1, the update equation is given by 

1 0 0 0( ) ( ) (1 ) 2 (0,1)j jx t t x t v t D tN          (M0-63) 

where (0,1)N  denotes the Gaussian random number with zero mean and unit variance. For Model 

2, we need to simulate a subdiffusive motion characterized by the state-dependent diffusion kernel, 

ˆ ( )jD s . When j = 1 or 2, ˆ ( )jD s  is given by
1ˆ ( ) j

j

a

j aD s D s


 . In this case, the simulation method 

developed on the basis of the subordination approach12, 13 can be used: 
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1/

1 2

( ) ( ) ,

( ) ( ) (2 ) (0,1)

j

j

a

a

u u

x x D N

    

   

    

    
  (M0-64) 

where   is the totally skewed positive -stable random number generated by 

1

1/

sin[ ( 2)] cos[ ( 2)]

(cos )

j

j

j

a

a
j j

a

a V V a V

WV

 




   
  

 
  (M0-65) 

In eq M0-65, V is the uniform random number distributed over ( 2, 2)  , and W is the random 

number sampled from an exponential distribution with unit mean. ( )x   and ( )u   are 

simultaneously updated every internal time step, 8( 10  s )ja
   , until ( )u    is greater than 

t t . Once the condition required to stop updating x and u is satisfied, ( )x    is identified as 

( )x t t . Then, we add the constant drift contribution, jv t , to ( )x t t .  

On the other hand, to our best knowledge, there does not exist any available simulation 

algorithm for subdiffusion with 0 0

0

1
1 1

0 0 0 0
ˆ ( ) (1 )

a a

aD s D s b a a


        given in eq M0-40. On 

the basis of the fact that 0
ˆ ( )D s  approaches 0

0

1 a

aD s
  in the small-s limit, and 

0

0

1

0 0 0 0
ˆ ( ) (1 )

a

aD D a a b


     in the large-s limit, we here adopt an approximate method in which 

eqs M0-64 and M0-65 with 
0ja a  and 

0ja aD D are used when 
,

1 ( 24 seconds)ci j
t s   , where 

cs  is the intersection point between 0

0

1 a

aD s
  and 0

ˆ ( )D  , i.e., 0

0

1

0
ˆ ( )

a

a cD s D


  , and the Brownian 

dynamics simulation with the diffusion coefficient, 0
ˆ ( )D  , is performed otherwise. In the latter 

case, the update equation is given by  

0
ˆ( ) ( ) 2 ( ) (0,1)x t t x t D tN       (M0-66) 
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To calculate the mean-first-passage time, we generate 410  vesicle traces that last up to the 

time when ( )x t  reaches maxL  or maxL  for the first time, where maxL  is the maximum length we 

consider. From such traces, we can easily calculate the mean-first-passage time for any L shorter 

than maxL . A first passage time is here defined as the time when ( )x t  reaches L or L for the first 

time in a single trace. The mean-first-passage times of Model 1 and Model 2 for a given L are 

presented in Figure 3A of the main text. 

  



 

 

33 

 

Supplementary Method 4 | Derivation of eq 1 

Here, we present a derivation of eq 1. The first two terms on the R.H.S. of eq 1 take into 

account the contribution of the initial bidirectional mode to the MFPT, while the last two terms 

account for the contribution of the initial ballistic mode to the MFPT. Equation 1 is only an 

approximate result, which is obtained by assuming that mode-transition of the MPM can take place 

only once. However, the result of eq 1 is in qualitative agreement with exact simulation results of 

Model 1 and experimental data for the MFPT (see Figure 3B).  

1. Derivation of 0 ( )L  and 1( )L  in eq 1 

( )i L  denotes the average of the first passage time of the MPM without any mode-transition. 

In terms of mathematics, ( )i L  is given by 
0

( ) ( , )exp( / )i i iL dt f L t t t t


   where 

( , ) exp( / )i if L t t t  designates the distribution of time at which the motor protein multiplex in 

mode i first passes travel length L , given that the MPM does not undergo a mode-transition as of 

the first passage time. Here it  denotes the lifetime of the MPM in mode i.  

0 ( , )f L t  can be obtained by using the known relation between the first passage time and the 

survival probability, 0 0( , ) ( , )tf L t S t L  , where survival probability 0 ( , )S t L  can be calculated 

from 0 0( , ) ( , )
L

L
S t L dxp x t


  , where 0 ( , )p x t  is a probability distribution of the MPM 

displacement. 0 ( , )p x t  satisfies the diffusion equation, 2

0 0( , ) ( , )t xp x t D p x t   , under the 

absorbing boundary condition, 0 ( , ) 0p L t  , and the following initial condition, 0 ( ,0) ( )p x x , 

where ( )x  denotes Dirac’s delta function. 1( , )f L t  is simply given by ( / )t L v  . The resulting 

analytic expressions of 0 ( )L  and 1( )L  are presented in eqs M0-3 and  M0-5 in Method 1.  
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2. Derivation of 0 1( )L   

0 1( )L   in eq 1 represents the MFPT of the MPMs over travel length L given that each MPM 

undergoes mode-transition 0 1  as of the first passage time. Analytic expressions of 0 1( )L   can 

be obtained by noting that the sum of the travel length 0x  of the MPM in mode 0 and travel length 

1x  mode 1 must be the same as the total travel length L , i.e., 0 0 1 1 0 1( ) ( )FPTx t x t t L    , where 

0 1t   being the time at which the mode transition takes place. From this equation and 1( )x t vt , we 

obtain  0 0 1 0 1( )FPTt L x t v t     . Noting that the mean of 0 0 1( )x t   is zero for a symmetric 

diffusion process and the distribution of 0 1t   is given by 
1,0 1,0 02 exp( 2 ) ( , )k k t S L t , we obtain eq 

M0-4 for 0 1( )L  .  

3. Derivation of 1 0 ( )L   

1 0 ( )L   in eq 1 represents the MFPT of the MPMs over travel length L given that each MPM 

undergoes mode-transition 1 0  as of the first passage time. Let us consider an MPM that 

undergoes mode-transition 1 0  at time 0 1t   before the first passage of travel length L. Right 

after mode-transition time 1 0t  , the motor protein multiplex is located at 0 1 0( )x t   1 0vt   in mode 

0. Noting that the MFPT of the MPM in mode 0, initially located at 0x , is given by 

   
22

0 02 1L D x L 
 

, we obtain the MFPT of the MPM that undergoes mode-transition 1 0  

at time 1 0t   by  2 2 2

0 1 0 1 02 1 ( )L D vt L t 
    . 1 0 ( )L   given in eq M0-6 can be obtained by 

taking average of this result over the distribution of the mode-transition time, 1 0t  , which is given 

by 
0,1 1,0exp( ) ( )k k L vt    with ( )x  being Heaviside step function. 
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4. Derivation of eq 1 

Noting that 0 ( )L + 0 1( )L   are the MFPT of the MPM initially prepared at mode 0 and 

1( )L + 1 0 ( )L   are the MFPT of the MPM initially prepared at mode 1, we can obtain the MFPT 

of the MPM with initial probabilities of 0 and 1  modes being 0p  and 1p  as  0 0 0 1( ) ( )p L L  

+   1 1 1 1 0( ) ( )p p L L     . Noting that 1 1 01p p p    , we obtain eq 1. 0p  is related to 
1,0k  

and 
0,1k  by 

0 0,1 0,1 1,0( 2 )p k k k  .  

5. Asymptotic behavior of the MFPT 

At short travel lengths over which the vesicle’s first passage occurs much faster than mode-

transition, the eq 1 reduces to  

2

0 00
( ) 2 (1 )FPT L p L D p L v    ,       (

1,0 0,1/ (2 ),  /L D k v k ) (M0-67) 

Equation M0-67 becomes exact in the slow state-transition limit. The MFPT in eq M0-67 obeys 

diffusive scaling, 2 2L D , in the bidirectional mode only limit ( 0 1p  ), but ballistic scaling, /L v  

in the unidirectional mode only limit. In our system, the value of 0p  is given by 0.979 and the 

MFPT has mostly ballistic scaling over short travel lengths (Figure 3A and 3B).   

Under the bidirectional mode-dominant initial condition, the scaling behavior of the MFPT 

switches from the diffusive scaling to ballistic scaling at 
1,0/ 2L D k when the MPM undergoes 

a transition from the initial bidirectional mode to a unidirectional mode. In the ballistic scaling 

regime, eq 1 is approximately given by  

0 0 1 0 1( ) ( ) (1 ) ( )FPT L p L p L         (
1,0 0,12D k L v k  ) (M0-68) 

At travel lengths far longer than 
1,0/ 2D k  and 

0,1v k , the MFPT given in eq 1 recovers 

diffusive scaling  
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2( ) (2 )FPT L L D                                   (
1,0 0,1/ 2 ,  /D k v k L ) (M0-69) 

where D  denotes the terminal diffusion coefficient of the MPM. Because eq 1 is only an 

approximate result, it does not yield a correct expression of D . However, it is possible to 

calculate the exact analytic expression of D , which is given by eq N1-3a for Model 1. For Model 

2 as well, the MFPT obeys eq M0-69 with D  given in eq N1-3b in at long travel lengths. 
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Supplementary Note 1 | The analytical expression of the long-time diffusion coefficient for 

Model 1 and Model 2. 

For Model 1 and Model 2, the long-time diffusion coefficient, D , defined by 

2lim ( ) 2t xD d t t    , can be calculated as 

0 0 0
0

t tD D p dt v v


                                                                  (Model 1) (N1-1a) 

0
0

t tD dt v v


                                                                             (Model 2) (N1-1b) 

on the basis of the Green-Kubo relation 14. For Model 1, the bidirectional diffusive motion at state 

0 contributes to the long-time limit behavior of the mean-square displacement, while for Model 2, 

the bidirectional subdiffusive motion at state 0 does not. 0t tv v    denotes the time correlation 

function of mode-dependent velocity fluctuation, explicitly,  

0 1 1 1 1 1 1( ,0, ) ( ,0, )t T

t tv v v v e v p v p        L      (Model 1) (N1-2a) 

0 2 1 1 2 2 2 1 1 1 1 2 2( , ,0, , ) ( , ,0, , )t T

t tv v v v v v e v p v p v p v p          L  (Model 2) (N1-2b) 

where the superscript T stands for the transpose of a row vector. In eqs N1-2a and N1-2b, the state-

to-state transition matrix, L, is given by eq M0-34 for Model 1 and eq M0-39 for Model 2. 

[ lim ( ) ]t

i t ijp e L  denotes the steady-state probability of state i and satisfies the even symmetry 

with respect to the interchange between state i and state i, i.e., i ip p , because of the bilateral 

symmetry conditions, eq M0-30 for Model 1 and eq M0-35 for Model 2. For both models, the 

explicit expressions of ip ’s are given by 

0,1

0

0,1 1,0

1,0

1

0,1 1,0

2

2

k
p

k k

k
p

k k






 
 

   (Model 1) (N1-3a) 
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0,1 0,2 0,1 1,2 0,2 2,1

0

0,1 0,2 0,1 1,2 0,2 2,1 1,0 1,2 1,0 0,2 1,2 2,0 2,0 2,1 2,0 0,1 2,1 1,0

1,0 1,2 1,0 0,2 1,2 2,0

1

0,1 0,2 0,1 1,2 0,2 2,1 1,0 1,2 1,0 0,2 1,2 2,0

2( ) 2( )

2( )

k k k k k k
p

k k k k k k k k k k k k k k k k k k

k k k k k k
p

k k k k k k k k k k k k

 


       

 


     2,0 2,1 2,0 0,1 2,1 1,0

2,0 2,1 2,0 0,1 2,1 1,0

2

0,1 0,2 0,1 1,2 0,2 2,1 1,0 1,2 1,0 0,2 1,2 2,0 2,0 2,1 2,0 0,1 2,1 1,0

2( )

2( ) 2( )

k k k k k k

k k k k k k
p

k k k k k k k k k k k k k k k k k k








  
  
 

       

 (Model2)  (N1-3b) 

Substituting eqs N1-2 and N1-3 into eq N1-1 for each model, we have 

2

0 0 0 1 0,1(1 )D D p p v k      (Model 1) (N1-4a) 

2 2

0,2 1,2 1 1 2,1 1 1,2 2 1 2 0,1 2,1 2 2

0,1 0,2 0,1 1,2 0,2 2,1

( ) ( ) ( )
2

k k v p k p k p v v k k v p
D

k k k k k k


    


 
 (Model 2) (N1-4b) 
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Supplementary Note 2 | Effects of vesicle delivery by inhibition of cytoplasmic dynein 

In this note, we briefly discuss of the effects of vesicle delivery by inhibition of cytoplasmic 

dynein. EHNA, which selectively inhibits ATP-hydrolysis of dyneins, strongly suppresses vesicle-

delivery by the MPM within our measurement time (Figure. 1, C and D). Upon dynein inhibition 

by EHNA, the VDD shows negligible change over time and is nearly isotropic (Figure. S18, A to 

D); both the MSD and the NGP have the same order of magnitudes in all directions and exhibit no 

significant time dependence (Figure S18, E and F). This means that dynein inhibition by EHNA 

results in MPM localization on the microtubule. Upon EHNA-induced MPM localization, the 

VDD has nearly the same shape as the VDD free of dynein inhibition at 0.1 seconds. This 

observation is consistent with the assumption about the isotropic VDD at short times which 

originates from fast thermal motion of the vesicle bound to the MPM, not from the MPM’s active 

motion.  
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Supplementary Note 3 | Motor protein multiplex displacement distribution 

For both Model 1 and Model 2, we obtain analytic expressions of the MPM displacement 

distribution in the Fourier-Laplace domain (Method 2, Section 1). For an accurate quantitative 

explanation of vesicle transport dynamics, it is necessary to account for thermal motion of the 

vesicle bound to the MPM. The distribution of distance between the vesicle and the MPM is 

directly obtainable from the VDD for the case when the MPM is stalled on the microtubule by 

EHNA-induced dynein inhibition (Figure 2D). The experimentally measured distribution of the 

distance between the vesicle and the MPM is found to be stationary in our experimental time scale 

and is well-represented by a superposition of Gaussian with the variance being a statically 

distributed random variable (Method 2, Section 2). The displacement distribution of the vesicle 

bound to the MPM is given by the convolution of the MPM displacement distribution and the 

distribution of distance between cargo and the multiplex. From the analytic expression of the 

vesicle displacement distribution, we can easily obtain the analytic results of the MSD and NGP 

for both Model 1 and Model 2 in the Laplace domain.  

For Model 2, the mean speed of unidirectional motion is estimated to be 0.182 μm/s for the 

MPM in the slow-moving mode ( 1 ) and 1.28 μm/s in the fast-moving mode ( 3 22.50 10 μm / s ). 

In addition to this unidirectional motion, the MPM undergoes random motion resulting from 

random fluctuating force exerted by various molecules in the cell environment. When we assume 

random motion of the MPM along the microtubule is sub-diffusive motion, the prediction of Model 

2 in good agreement with experimental results for the VDD at all times investigated (Figure 2, E 

to H). The sub-diffusive random motion is modeled by fractional diffusion. The transitions 

between the multiplex states are found to be far slower than individual ATP-hydrolysis coupled 

motion and occur in a wide range of time scales (Tables 1 and 2). 
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SUPPLEMENTARY FIGURES 

 

Figure S1. Schematic illustration of single particle tracking (SPT) of UCNPs in living cells. 

(A) Scheme of double-plane imaging based 2D SPT using wide-field epi-fluorescence microscopy. 

The piezo objective scanner covered 500 nm along the z-axis. This technique allows for a far 

longer measurement time than single focus imaging techniques. (B) Z-axis scanning time-profile. 

A series of image stacks was obtained by continuous z-axis scanning with the piezo objective 

scanner. The exposure time (the interval between 2~i it t  ) to obtain one image was 50 ms. (C) The 

microtubule direction is identified as the most probable direction of cargo motion. For each 

trajectory, the coordinates of the cargo position are transformed so that the x-axis in the new 

coordinate lies in the microtubule direction. 
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Figure S2. Two-dimensional representation of the displacement trajectories along axonal 

microtubule when measurement time bin is 0.1 second for uninhibited cells. The vesical 

displacement distribution is nearly isotropic when the measurement time is 0.1 seconds. 
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Figure S3. Probability distribution, ( , )g x t , of cargo displacement in the microtubule 

direction fitted by Lévy alpha-stable distribution. Probability distribution of cargo 

displacement in the microtubule direction has a shape similar to a Laplace distribution proportional 

to | |xe   at 0.1 second and a Lévy alpha-stable distribution with a tail distribution given by 

1
sin( 2)( ( 1) )c x

   


   at times longer than roughly 0.4 s. The optimized value of c and  

are dependent on the measurement time as shown in the figures. (circles) Experimental data, (black 

line) best fitted result of the Laplace distribution with the optimized value of  at 0.1 second, 

(colored line) best fitted result of the Lévy distribution at four different measurement times. 
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Figure S4. The Mean square displacement and non-Gaussian parameter of cargo 

displacement. (red circles) experimental data in the microtubule direction, (blue circles) 

experimental data in microtubule-orthogonal direction. Cargo motion in the microtubule-

orthogonal direction shows a slow, sub-diffusive dynamics and super-Gaussian process. 
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Figure S5. The distribution of the cargo displacement in the microtubule-orthogonal 

direction. The distribution of (A) Normal cell and (B) dynein inhibited cell shows nearly same 

structure and time-independent shape. 
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Figure S6. Mean square displacement of cargo motion in the microtubule direction and in 

the microtubule-orthogonal direction. (red circles) Experimental data for the MSD in the 

microtubule direction, (red line) result of our model shown in Figure 2A from the main text [eq   

M0-49]. (blue circles) experimental data for the MSD in the microtubule-orthogonal direction, 

(blue line) result of our model described in Method 2 [eq M0-62]. Note that the MSD in the 

microtubule-orthogonal direction is negligible compared with the MSD in the microtubule 

direction.  

  



 

 

47 

 

 

Figure S7. Correlation between cargo motion in microtubule direction and in the 

microtubule-orthogonal direction. In this figure, Cov( , )x y  denotes the covariance of x and y, 

and x , 
y  denote the standard deviation of x and y. The Pearson correlation coefficient, 

Cov( , ) x yx y   , has nearly zero value with small fluctuation with respect to time, which means 

the little correlation of motion of cargo between the microtubule and microtubule-orthogonal 

direction. 
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Figure S8. Variants of Model 1 and Model 2 compared against experimental results. (a) 

Schematic representations of Model 1ʹ and Model 2ʹ, which are the simplified versions of Model 

1 and Model 2 shown in Figure 2A. In each model, there exists no bidirectional active motion of 

the motor protein multiplex along the microtubule at state 0. For a detailed explanation of each 

model, see Method 2, Section 1. (B), (C) MSD and NGP of cargo displacement. (circles) 

Experimental results, (red and green lines) best fitted results of Model 1 and Model 1ʹ, (blue and 
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yellow lines) best fitted results of Model 2 and Model 2ʹ. (D), (E) Distribution of cargo 

displacement along the microtubule at various times. (circles) Experimental results, (red and green 

lines) predictions of Model 1 and Model 1ʹ best fitted to the MSD and NGP data, (blue and yellow 

lines) predictions of Model 2 and Model 2ʹ best fitted to the MSD and NGP data. 
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Figure S9. Comparison between result of Model 2  and experimental data for the mean first 

passage time. Model 2  in which the bidirectional active motion of the motor protein multiplex 

in Model 2 is neglected (see Figure S8). When optimized against experimental data, Model 2  as 

well can provide a quantitative explanation of the MSD and NGP as shown in Figure S8. However, 

in contrast with Model 2, Model 2  cannot explain diffusive scaling of the MFPT at short travel 

lengths or transitions of the MFPT from diffusive to ballistic scaling behavior, which are observed 

in experiment.   
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Figure S10. Waiting time distributions associated with ATP-hydrolysis coupled 

unidirectional motion. (A), (B) Distributions, ( )i t , of time elapsed for the motor protein 

multiplex at the ith mode to perform ATP-hydrolysis coupled transport from one site to one-of-

two adjacent sites along the microtubule for Model 1 and Model 2. These distributions are 

extracted by comparing Model 1 and Model 2 with experimental results of the mean square 

displacement and non-Gaussian parameter of in vivo vesicles.  
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Figure S11. Schematic diagram of experimental set-up. 
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Figure S12. Mean trajectory length of UCNP cargo in untreated and EHNA-treated cells. 

Average tracking duration in uninhibited and dynein-inhibited cells were 67.74 ± 5.471 and 138.6 

± 10.98 s, respectively. 
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Figure S13. TEM images and size distribution of synthesized UCNPs. (A) TEM images of core 

UCNPs. (B) Size distribution of UCNPs (from 155 single core UCNPs). The average diameter of 

UCNPs, which was obtained from the Gaussian curve (black) for the size distribution, was 24.2 ± 

0.7 nm (mean ± standard deviation). 
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Figure S14. XRD data of synthesized UCNPs. Obtained XRD pattern of UCNPs is the same as 

that of previously reported hexagonal phase UCNPs. 
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Figure S15. Emission spectrum of UCNPs. NaYF4: Yb3+, Er3+ UCNPs were excited by a 980 nm 

laser and emitted green (525 and 545 nm) and red (655 nm) photons. 
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Figure S16. Distribution of cargo displacement in the microtubule-orthogonal direction. 

Distribution, ( , )h y t , of cargo displacement in the microtubule-orthogonal direction at various 

times. (circles) Experimental results, (lines) theoretical results [eq  M0-58]. 
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Figure S17. Comparison between two different approaches for the drift kernel. Model 1 and 

Model 2 using the small-s limit, ˆ ( 0)i iv K s  
 

, of ˆ ( )iK s  in eqs M0-33 and M0-38 are 

respectively compared with Model 1 and Model 2 using ˆ ( )iK s  given by the second formula in eq 

M0-27 instead of ˆ (0)iK  (see Method 2). (A), (B) MSD and NGP of cargo displacement. (circles) 

Experimental results, (red and green lines) best fitted results of Model 1 with ˆ (0)iK  and Model 1 

with ˆ ( )iK s , (blue and yellow lines) best fitted results of Model 2 with ˆ (0)iK  and Model 2 with 

ˆ ( )iK s . (C), (D) Distribution of cargo displacement along the microtubule at various times. 

(circles) Experimental results, (red and green lines) predictions of Model 1 with ˆ (0)iK  and Model 

1 with ˆ ( )iK s  best fitted to the MSD and NGP data, (blue and yellow lines) predictions of Model 

2 with ˆ (0)iK  and Model 2 with ˆ ( )iK s  best fitted to the MSD and NGP data. 
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Figure S18. UCNP cargo displacement distribution and moments after dynein inhibition by 

EHNA. (A), (B) Two-dimensional representation of the displacement trajectories when the 

measurement times are 0.1 second and 1 second. (C) Cargo displacement distribution in the 

microtubule direction at various times. (D) Cargo displacement distribution in the microtubule-

orthogonal direction. Both distributions show marginal time dependence. (E) The MSD in the 

microtubule direction (red circles). The MSD in the microtubule-orthogonal direction (blue 

circles). Both are negligible compared to the MSD in the absence of dynein inhibition (dotted line). 

The inset represents the log-log plot of the same figure. (F) The non-Gaussian parameter of the 

cargo displacement in the microtubule direction (red circles). The non-Gaussian parameter of 

cargo displacement in the microtubule-orthogonal direction (blue circles). 
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SUPPLEMENTARY TABLES 

 

Table S1. ICP-MS data of synthesized UCNPs. The ratios of lanthanide ions were Y: 78.573 %, 

Yb: 19.276 %, and Er: 2.151 %. 

 
Y Yb Er 

Composition ratio (%) 78.57332 19.27564 2.15104 

 

 

 

 

 

 

 

 

 

Table S2. Optimized values of the adjustable parameters that achieve quantitative 

explanation of cargo motion dynamics in the microtubule-orthogonal direction. a

yD  and a are 

two parameters characterizing the fractional diffusion kernel given by eq M0-61. 

Adjustable parameters Values 

Parameters characterizing fractional diffusion in the 

microtubule-orthogonal direction 

a

yD  1.19×10-3 μm2/sa 

a  0.69 
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CAPTIONS FOR SUPPLEMENTARY MOVIES 

 

Movie S1. Time-lapse movie of intracellular transport of UCNPs in SH-SY5Y cell. UCNP 

cargo transport in an SH-SY5Y cell is shown. We used Diatrack software, to obtain a dataset of 

trajectories at temporal and spatial resolution of 10 fps (for 300 s) and 0.101 μm, respectively. 

 

 

Movie S2. Time-lapse movie of intracellular transport of UCNPs in dynein-inhibited SH-

SY5Y cell. UCNP cargo transport in a dynein-inhibited SH-SY5Y cell is shown in this movie. 

Most UCNPs are stationary during our observation time. 
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