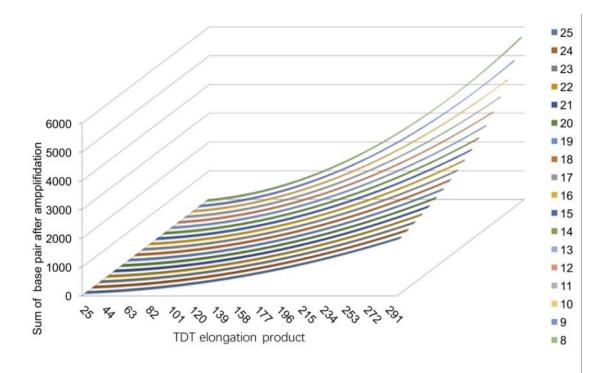
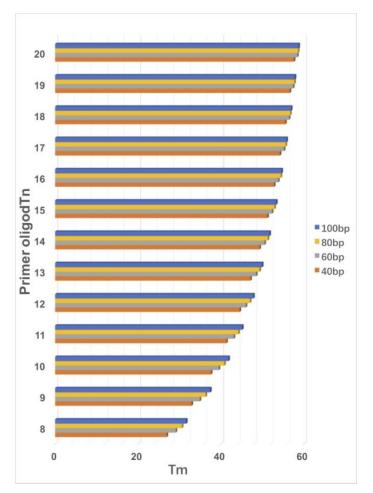
Supporting Information


Single Primer Based Multi-site Strand Displacement Reaction Amplification Strategy for Rapid Detection of Terminal Deoxynucleotidyl Transferase Activity

Xinyan Liu^a, Hao Wang^a, Keqin Deng^{a,b*}, Sharon Kwee^b, Haowen Huang^a, Liang Tang^{b,*}

^a Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, P. R. China


^b Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States

* Corresponding author: keqindeng@hnust.edu.cn (K. Deng), Liang.Tang@utsa.edu (L. Tang).

Fig. S1 Relationship between the yield of final amplified product and primer length. The abscissa axis represents the average length of TdT extension product (the unit is bp), and the ordinate axis represents the total number of double-stranded base pairs in the final amplified product. The length of primer ranged from 8 to 25 bp and list on the left. We assume that the primer oligo dT contains n base units oligo $(dT)_n$. The average length of TdT elongation product is x bases. Then the number of the total base pair (Tbp) produced from one piece of primer oligo dTn is Tbp = $((x^2/n) + x)/2$.

From the principle of this strategy, it is obviously shorter primer can produce more dsDNA.

Fig. S2 Relationship between the melting temperature (X-axis, the unit is $^{\circ}$ C) of hybrid product of primer-TdT elongation product and primer length (Y-axis, the unit is bp). The color bars represent assumed different length of TdT elongation product.

name	sequence (5'to 3')		
Т8	ТТТТТТТТ		
Т9	ТТТТТТТТТ		
T10	ТТТТТТТТТТ		
T11	ТТТТТТТТТТТ		
T12	ТТТТТТТТТТТТ		
T15	ТТТТТТТТТТТТТТТТ		
T20	TTTTTTTTTTTTTTTTTTT		
T25	TTTTTTTTTTTTTTTTTTTTTTTT		
T30	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT		
T40	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT		
A20	ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ		
A30	ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ		
A40	ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ		

 Table S1. Oligonucleotides used in the experiments.

Table S2. The comparison of our method with other methods of TdT activity detection.

Sensors	Detection limit (U)	Linear range (U)	Total reaction time	Reference
G-quadruplexes	0.05	0.3 ~ 4	160min	24
AgNC-based biosensors	0.0318	0~3	205min	12
iridium(III)-based i-motif probe	0.0125	$0 \sim 0.4$	130min	25
TdT-generated polyT-templated CuNP strategy	0.0375	0~5	135min	23
quantum dot-based nanosensor	5 × 10 ⁻⁵	$2 \times 10^{-5} \sim 2 \times 10^{-2}$	70min	26
DNA-AgNCs/GO/GCE	4×10^{-4}	0.002~0.45	197min	21
DNA-CuNCs/GO/GCE	5×10^{-4}	0.0025~0.8	152min	20
MSSDA	1.35 × 10 ⁻⁵	$4 \times 10^{-5} \sim 4 \times 10^{-2}$	95min	This work

Samples	Added U	Found U	Recovery (%)	RSD (%)
Serum 1	0.0005	0.00054	108.2	9.7
Serum 2	0.001	0.0011	110.0	8.5
Serum 3	0.02	0.0187	93.5	11.3

Table S3. The recovery determination of TdT in artificial serum sample (n=4)