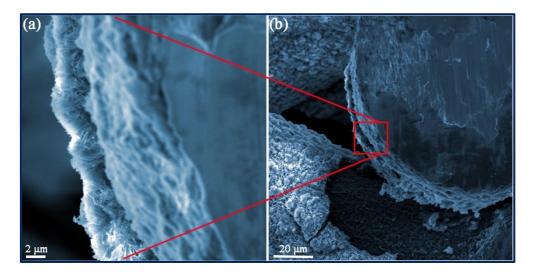
Supporting Information

Robust and Thermally Stable Butterfly-Like Co(OH)₂/
Hexadecyltrimethoxysilane Superhydrophobic Mesh Filters
Prepared by Electrodeposition for Highly Efficient Oil/Water
Separation


Zhongde Wang,*,† Wei Kong,† Lianxi Si,† Junjian Niu,† Ye Liu,† Longping Yin†, and Zhigang Tian‡

[†]Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China

[‡]Shanxi Industrial Technology Development Research Center, Taiyuan 030072, China

Corresponding author

*E-mail: wangzhongde@tyut.edu.cn or zdwangtyut@hotmail.com.

Figure S1. (a,b) Cross-sectional SEM images of the superhydrophobic and superoleophilic mesh filter.

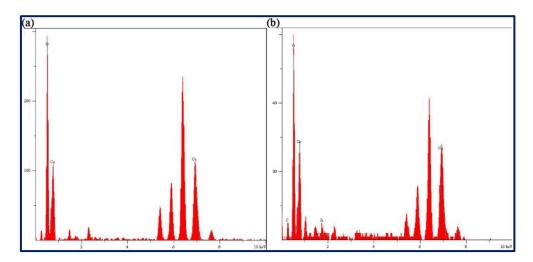
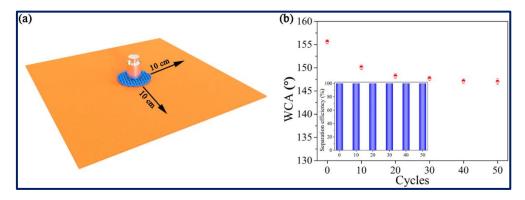
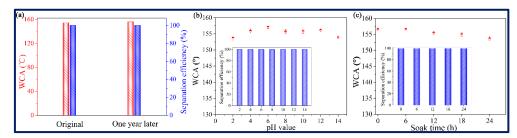




Figure S2. EDS spectrum of the materials on the SS mesh surfaces after (a) electrodeposition and (b) modification.

Figure S3. (a) Illustration of the experiment process for the mesh filter. (b) Influence of abrasion cycles on WCA and separation efficiency (for hexane/water mixtures) of the superhydrophobic and superoleophilic mesh filter.

Figure S4. Influence of (a) storage time at room temperature, (b) pH value, and (c) soaking in simulated sea water (3.5 wt % NaCl solution), respectively, on WCA and separation efficiency (for hexane/water mixtures) of the superhydrophobic and superoleophilic mesh filter.