Supplementary

Ti₂C MXene modified with ceramic oxide and noble metal nanoparticles: synthesis, morpho-structural properties and high photocatalytic activity

Tomasz Wojciechowski[†], Anita Rozmysłowska-Wojciechowska[‡], Grzegorz Matyszczak[†], Michał Wrzecionek[†], Andrzej Olszyna[‡], Anca Peter[§], Anca Mihaly-Cozmuta[§], Camelia Nicula[§], Leonard Mihaly-Cozmuta[§], Sławomir Podsiadło[†], Dariusz Basiak[†], Wanda Ziemkowska^{†*}, Agnieszka Jastrzębska[‡]

[†] Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland

§ Technical University Cluj Napoca, Department of Chemistry and Biology, Victor Babes 76, 0040744790308, Baia Mare, Romania

[‡] Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska st. 141, 02-507 Warsaw, Poland

Figure S1. UV-reactor system

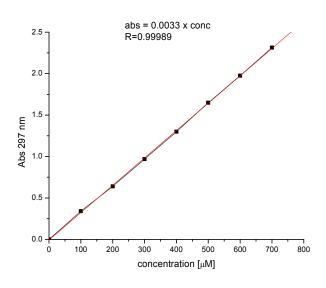


Figure S2. Reference curve for salicylic acid

 Table S1. Values of apparent rate constant and square correlation coefficient

Run	Samples	Composition	k_{app} (min ⁻¹)	R ²
1	1	Ti ₂ C	0.01331	0.9815
2	2	$Ti_2C/3\%TiO_2$	0.01431	0.9923
3	3	$Ti_2C/3\%TiO_2/1\%Ag_2O$	0.01710	0.9896
4	4	$Ti_2C/3\%TiO_2/1\%Ag$	0.01796	0.9633
5	5	$Ti_2C/3\%TiO_2/1\%PdO$	0.01078	0.9973
6	6	$Ti_2C/3\%TiO_2/1\%Pd$	0.01284	0.9873
7	7	$Ti_2C/3\%TiO_2/1\%Au$	0.01460	0.9883

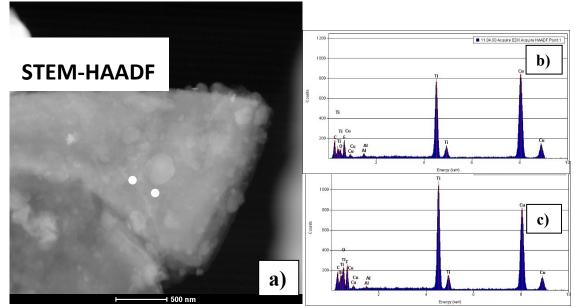


Figure S3. Ti₂C MXene (sample 1) (a) its STEM-HAADF micrograph. (b, c) The EDX analyses in two points i.e. 1 and 2.

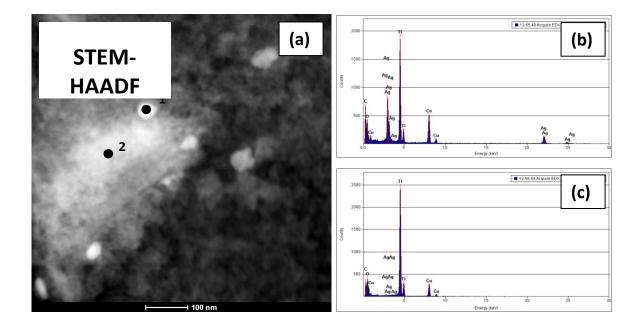


Figure S4. The STEM-HAADF image of the Ti₂C/3%TiO₂/1%Ag₂O (3) nanocomposite clearly shows Ag nanoparticles as bright spots (a), which was additionally confirmed with (b, c) EDX analysis in two points.

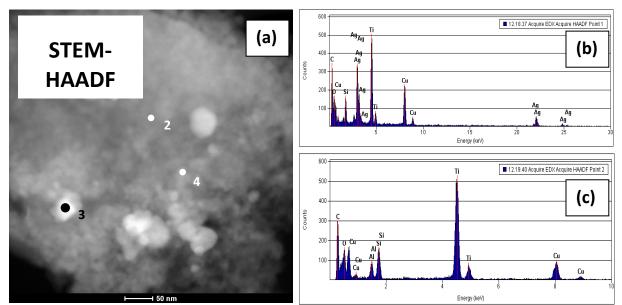
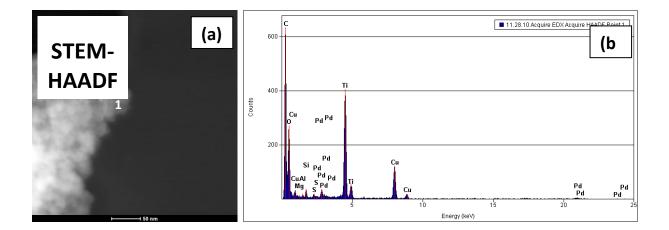
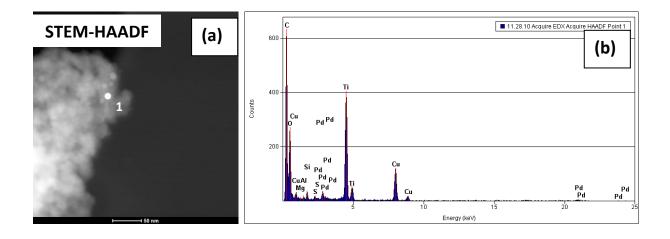
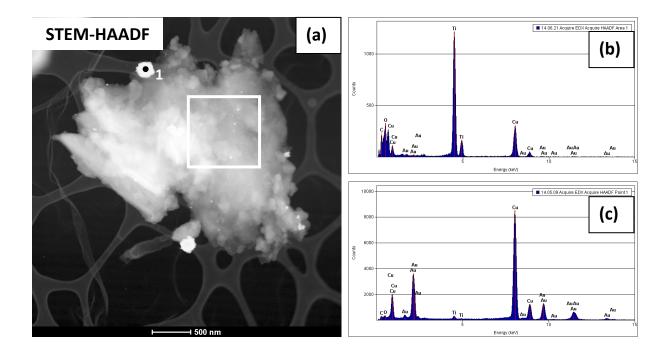
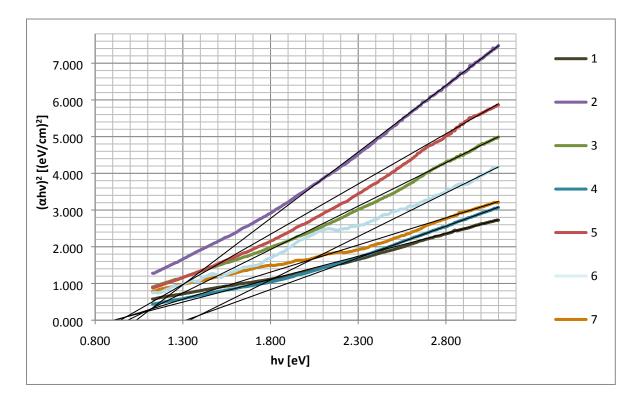


Figure S5. (a) The STEM-HAADF image of the sample (4) clearly shows Ag and TiO₂

nanoparticles as bright spots; (**b**, **c**) EDX analysis in two points.


Figure S6. (a) The STEM-HAADF analysis of the sample (5) showing the occurrence of palladium on the surface of the Ti_2C flake in the shape of bright points, as confirmed by the EDX analysis (b).

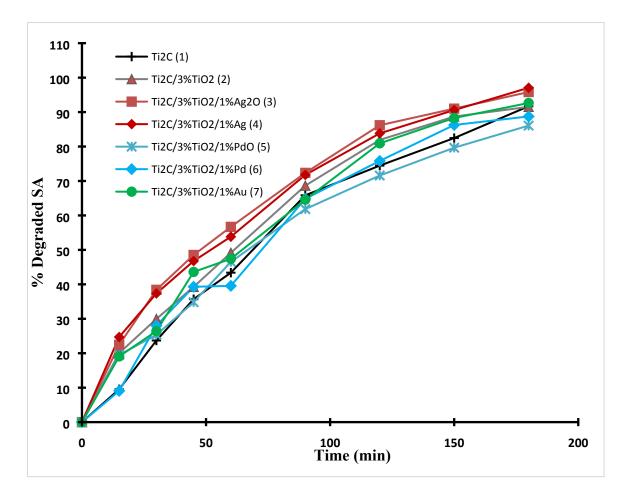

Figure S7. (a) The STEM-HAADF image of the sample (6) showing Pd nanoparticles as bright spots. (b) The EDX analysis confirming a presence of palladium;

Figure S8. (a) STEM-HAADF image showing Au nanoparticles as bright spots in the sample $Ti_2C/3\%TiO_2/1\%Au$ (7). (b,c) EDX analysis performed in a selected point of the sample area confirming additionally the presence of gold.

Figure S9. Variation of $(\alpha hv)^2$ as a function of photon energy (hv) for investigated samples.

Figure S10. Profiles of photodegraded SA on **1-7** nanomaterials – percentage of degraded SA depending on time