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Modeling specular X-ray reflectivity (XRR)

The intensity of X-rays reflected from a surface is determined by the (complex) index of

refraction n. In the X-ray region of the electromagnetic spectrum it can be written as

n = 1− δ − iβ, (1)
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Table S1: Forward atomic scattering factors at two different X-ray beam energies. From
http://henke.lbl.gov/optical constants/asf.html, last accessed on 29 Jan 2019.

Si O C
f1,Si(0) f2,Si(0) f1,O(0) f2,O(0) f1,C(0) f2,C(0)

12.0 keV (λ = 1.033 Å) 14.150 0.149 8.025 1.41 · 10−2 6.009 3.87 · 10−3

18.5 keV (λ = 0.670 Å) 14.074 0.062 8.010 0.53 · 10−2 6.003 1.40 · 10−3

where δ and β describe the dispersive and absorptive behavior, respectively. δ and β depend

on the X-ray wavelength λ and may be stated asS1

δ =
reλ

2

2π

J∑
j

νjf1,j(0), (2)

β =
reλ

2

2π

J∑
j

νjf2,j(0). (3)

Here, re = 2.8179 fm is the classical electron radius and νj is the number of atoms of type

j (per unit volume) in a material consisting of J different atomic species. fj(0) = f1,j(0) +

if2,j(0) is the tabulated forward atomic scattering factor of species j at wavelength λ. For

the relevant X-ray beam energies of 12 keV (λ = 1.033 Å) and 18.5 keV (λ = 0.670 Å), f2,j(0)

is tiny and f1,j(0) ≈ Z for the elements (with atomic number Z) constituting our samples

(see Tab. S1). δ is related to the critical angle of total reflection θc =
√

2δ. One may further

define the number density of a material as

νa =
ρ ·NA

M
, (4)

where ρ is its mass density, M is its molar mass, and NA is the Avogadro constant. νa = νj

only holds for non-molecular elemental materials, with j = J = 1 and M = Ar g/mol (Ar

is the dimensionless relative atomic mass). For compounds such as SiO2 with J = 2 and

M = 60.08 g/mol, the number of atoms per unit volume are ν1 = νa for Si and ν2 = 2 · νa

for O.

The intensity I of specularly reflected X-rays of wavelength λ, incident onto the surface
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Figure S1: Schematic multilayer representation of a flat sample probed by specular X-ray
reflectivity as described within Parratt’s recursion formalism. Red arrows represent X-rays
incident onto the sample at an angle θ with respect to the surface.

of a flat sample under an angle θ, is determined by the sample’s composition at and near

its surface (within a certain depth z into the bulk). To calculate this intensity, ParrattS2

introduced a recursive formalism approximating a flat sample as a slab consisting of N

superposed layers (of different, homogeneous composition) oriented parallel to the probed

surface, see Fig. S1 for a schematic. The refractive index of each layer m is nm = 1−δm−iβm,

and the critical angle of total reflection is θc,m =
√

2δm. Each layer m is characterized by its

thickness dm and its mass density ρm. Allowing for finite roughness sm at interfaces between

layers,S3 the recursion formula can be written as

rm−1 = a4m−1

fm−1−fm
fm−1+fm

sm + rm

1 + rm
fm−1−fm
fm−1+fm

sm
, (5)

where am = exp
(
−iπ
λ
fmdm

)
, (6)

fm =
√

sin(θ)2 − (θc,m)2 − 2iβm, (7)

and sm = exp

[
−2

(
2π

λ

)2

σ2
mfmfm−1

]
. (8)

Here, am is an amplitude factor and fm is a Fresnel reflection coefficient. σm denotes the

root mean square (rms) density variation at the interface between layers m and m− 1 (see
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Fig. S1). XRR cannot distinguish between a rough interface at z = zm between two media

with refractive indices nm and nm−1 and a profile of the refractive index nm(z) that varies

smoothly across the interface. As long as the thicknesses dm and dm−1 exceed σm, the

Névot-Croce factor sm may thus be derived usingS4

nm(z) =
nm + nm−1

2
− nm − nm−1

2
erf

(
z − zm√

2σm

)
. (9)

For a given angle θ, Eq. 5 is calculated in recursive manner starting with m = N and ending

with m = 1. Since the sample is penetrated only little by X-rays in the relevant case of

small θ, the substrate may be considered infinitely thick and hence rN = 0. The intensity of

X-rays specularly reflected from the sample is obtained as

I(θ) = I0|r0|2, (10)

where I0 is the intensity of the incident X-ray beam.

Due to the finite lateral extent of both the graphene flake and its supporting Si substrate,

depending on θ the footprint of the incident X-ray beam may exceed either the former or

even both (see Figs. 3a-c and S2a-c). We approximate the profile of the incident X-ray beam

by an ellipse of width 2w and height 2h (w and h are the semi axes parallel to y and z · cos θ,

respectively) as shown in Fig. S2d. The width of the footprint on the sample is identical to

2w irrespective of θ. This is not the case for its length 2h′. Instead, h′ = h/ sin θ. The area

of the elliptical X-ray beam footprint is thus

Abfp = πwh′(θ) = πw
h

sin θ
. (11)

Abfp has to be compared to both the lateral dimensions of a given graphene flake under study

as well as of its supporting substrate. Especially at low angles θ, the X-ray beam footprint

falls only partially on the graphene flake (probed area AG). Another part of area ASiO2
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Figure S2: Schematic of the X-ray beam footprint (red ellipse) on a sample consisting of a
graphene flake (dark grey) supported on a SiO2-terminated Si substrate (light grey), similar
to Figs. 3a-c in the main text. (a-c) Illustration of the repartition of the X-ray beam footprint
area for increasing incidence angle θ. Schematic top views are included in the bottom row.
(d) Elliptical profiles of the incident X-ray beam (upper part) and of its footprint on the
sample (lower part). (e) Exemplary θ-dependence of the weighting factors A and B required
for Eq. 12. The lower row shows snapshots of the substrate, graphene flake and footprint
areas at three different values θ from which the weighting factors were computed. This
example corresponds to the case of the bilayer graphene sample of Fig. 3d in the main text.

falls on the graphene-uncovered substrate, see Figs. S2a-c. Taking into account the lateral

dimensions of both a given graphene flake and its SiO2-terminated Si substrate, AG(θ) and

ASiO2(θ) are determined in straight forward manner by geometrical computation (Boolean
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operations on surfaces). Consequently, the intensity of specularly reflected X-rays (Eq. 10)

comprises two weighted contributions and may be rewritten as

I(θ) = I0 · |A · r0,G + B · r0,SiO2 |2, (12)

where r0,G and r0,SiO2 are the computed recursions (Eq. 5) for the graphene flake-covered

and -uncovered parts of the sample, respectively. The weighting factors are

A =
AG

Abfp

B =
ASiO2

Abfp

= 1− AG

Abfp

. (13)

In the upper panel of Fig. S2e, we plot A(θ) and B(θ) for the case of the graphene bilayer

shown in Fig. 3d (main text). As is to be expected, B dominates at small θ and A dominates

at larger θ. The initial steep increase of B(θ) up to θS = 0.08◦ reflects the finite lateral extent

of the substrate lSiO2 = 8 mm, as θS = arcsin(2h/lSiO2) = 0.08◦. This causes the well-known

sin θ
sin θS

-type increase in reflected intensity in the total-external-reflection regime.S4,S5

The XRR of a multi-layered sample is determined by the profile of electron density

perpendicular to the sample surface, i.e., in z-direction. Fig. 3d in the main text shows two

schematic examples in its side panels. Here, to first approximation, the densities ρSi of the

Si substrate and ρSiO2 of the SiO2 layer are both assumed independent of z. We model a

multi-layered graphene flake assuming identical Gaussian density profiles for each atomic

layer. The resulting effective mass density profileS4 of a flake consisting of k graphene sheets

stacked upon each other such that neighboring sheets are separated by a distance c can then

be described as

ρg(z) = R ·
k∑

u=1

exp

[
−(z − u · c)2

2q2

]
. (14)

Here, q is related to the full width at half maximum (FWHM) of each Gaussian as FWHM =
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2q
√

2 ln 2 and R is determined by requiring

∫ ∞
−∞

ρg(z) dz = k · ρG · cG, (15)

where the bulk density of graphite ρG times the interlayer spacing in graphite cG = 0.335 nm

yields the areal density of one graphene sheet. We thus find R = ρGcG/q
√

2π. In order to use

Eq. (14) in Eq. (5), we discretize ρg(z) into slices of equal width ∆z as schematically shown

in Fig. S3. The density ρg(m ·∆z) of each slice m is a constant. Here, m is the same index as

in Eqs. (1)-(4). Note that m = N , m = N −1, and m = 0 denote the Si-substrate, the SiO2-

layer, and the surrounding atmosphere (vacuum), respectively. Therefore, m = N − 2, . . . , 1

is the index range for the slices of ρg(z). Since Gaussian distributions are defined everywhere

in z but N is finite, we choose the m = 1 slice such that 95 % of the integrated area of the

kth Gaussian (the uppermost in z) are taken into account, equivalent to approximately two

standard deviations.

Graphene is known to partially conform to the underlying SiO2 (see Fig. S4a).S6,S7 We

account for this in our calculations as follows. We calculate the θ-dependent XRR response

for a density profile representing our systems as described above, however, with a flat SiO2

surface (zero roughness). We repeat this calculation for different SiO2 thicknesses d′SiO2
. Then

we average all calculated XRR curves in weighted fashion. The probability p(d′SiO2
) for each

calculated curve to contribute to the overall XRR response decreases the more d′SiO2
deviates

from the real value dSiO2 . p(d
′
SiO2

) is determined by integrating the probability distribution

function (PDF), a normalized Gaussian centered at dSiO2 with standard deviation σSiO2 (to

reproduce the Névot-Croce result for the SiO2 surface, Eq. 8), within ±∆z/2 around d′SiO2

(see Fig. S4b). Here, ∆z is the interval in d′SiO2
for which calculations are performed. In the

Névot-Croce approach, the distance b of graphene from the SiO2 surface (centered at dSiO2)

is fixed. In contrast, our approach allows to keep b locked to each d′SiO2
, thereby mimicking

conformal adhesion. We find the overall XRR response thus calculated to typically reveal
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Figure S3: Schematic density profiles for a 3-layer graphene flake supported on a SiO2-
terminated Si substrate. The z-dependent density of graphene sheets is approximated by
Gaussian distributions according to Eq. (14). For illustration purposes, we show two extreme
scenarios with (a) q ≈ 0.127 nm and (b) q ≈ 0.042 nm.

signatures of the graphene system to an extent that agrees better with the experiment.

Fig. S4c is an example, where the orange (blue) curve is calculated for identical parameters

but without (with) conformation.
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Figure S4: (a) Schematic of conformation of graphene to the roughness of the underlying
SiO2. (b) Schematic illustrating how the normalized Gaussian-shaped PDF characterized
by the standard deviation σSiO2 relates to p(d′SiO2

), the weight of the contribution of the
calculated XRR response of a system with d′SiO2

to the overall XRR response. (c) Exemplary
calculations of the overall XRR response of a bilayer graphene system on SiO2, without
(orange) and with (blue) conformal adhesion taken into account as described in the text.
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In Figs. S5–S7 we again show the measured and calculated data as in Figs. 3–5, respec-

tively. In the lower panel of those figures, we plot the difference between the curves shown

in each corresponding upper panel. This emphasizes the contribution of bilayer graphene to

the overall XRR response in Fig. S5a, featuring a characteristic minimum at intermediate

values of q⊥. In panels b and c of this figure, we compare each measured dataset with the

calculated XRR response for which best agreement was obtained. The difference curves re-

veal finite, yet small variations around zero. Lithiation shifts the graphene bilayer-related

minimum in the experimental XRR response to lower values in q⊥ (see Fig. S6a). This

becomes similarly apparent for the measured 10 layer graphene flake in Fig. S7a where the

position of all extrema appears downshifted in q⊥. Again in panels b and c, we compare

our experimental data to calculations for which best agreement was obtained. The extent

to which calculations reproduced positions of XRR extrema served as guiding principle for

determining a good match to the data.

Figure S5: Measured and calculated XRR data as in Fig. 3e. (a) Measured XRR of bilayer
graphene as well as of the bare SiO2-terminated Si substrate as. (b) Measured and calcu-
lated XRR response of the substrate. (c) Measured and calculated XRR response of bilayer
graphene. Each lower panel shows the difference between curves plotted in the corresponding
upper panel.
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Figure S6: Measured and calculated XRR data of the bilayer graphene flake in Fig. 4a. (a)
XRR response measured before and during lithiation. (b) Measured and calculated XRR
response of the pristine flake. (c) Measured and calculated XRR response of the lithiated
flake. Each lower panel shows the difference between curves plotted in the corresponding
upper panel.

Figure S7: Measured and calculated XRR data of the 10 layer graphene flake in Fig. 5a. (a)
XRR response measured before and during lithiation. (b) Measured and calculated XRR
response of the pristine flake. (c) Measured and calculated XRR response of the lithiated
flake. Each lower panel shows the difference between curves plotted in the corresponding
upper panel.
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Beam-induced contamination

With the polymer electrolyte present, we systematically observe beam-induced contamina-

tion on the sample surface after having performed XRR measurements. In scanning electron

micrographs, this contamination appears as broad, dark streaks located where the syn-

chrotron beam irradiated the sample. Three such micrographs are displayed in the top row

of Fig. S8. Using atomic force microscopy, we extract height profiles of the contamination

at two different locations for each sample (lower row). The thickness tends to be larger at

areas that received more integrated irradiation. The deposited material is possibly due to

hydrocarbons cracked by X-ray photons or photoelectrons.S8–S10 Among different possible

sources, hydrocarbons likely originate from our solidified polymer electrolyte that contains

species with non-negligible vapor pressure.

Figure S8: Scannning electron micrographs of three samples acquired after XRR measure-
ments (top row). The rim of each graphene flake is demarcated by a white dashed line. The
polymer electrolyte is colored yellow. A near-horizontal broad, dark streak easily visible
in each micrograph is due to beam-induced contamination. Lower row shows height pro-
files (obtained by atomic force microscopy) across the beam-induced contamination at two
locations indicated in the respective top panel.
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