Supporting Information

In vivo proteome of Pseudomonas aeruginosa in airways of cystic fibrosis patients

Xia Wu¹, Richard J Siehnel², Jayanthi Garudathri², Benjamin J. Staudinger³, Katherine B. Hisert³, Egon A. Ozer⁵, Alan R. Hauser⁵, Jimmy K. Eng¹, Colin Manoil¹, Pradeep K. Singh^{2,3}, James E. Bruce^{1,4,*}

¹Department of Genome Sciences, University of Washington, Seattle, WA, USA.

²Department of Microbiology, University of Washington, Seattle, WA, USA.

³Department of Medicine, University of Washington, Seattle, WA, USA.

⁴Department of Chemistry, University of Washington, Seattle, WA, USA.

⁵Department of Microbiology-Immunology, and Department of Medicine, Northwestern University, Chicago, Illinois, USA.

*To whom correspondence should be addressed: James E. Bruce, Department of Genome Sciences, University of Washington, 850 Republican Street, Seattle, WA 98109. Tel: (206)543-0220; Fax: (206) 616-0008; E-mail: jimbruce@u.washington.edu

SUPPORTING INFORMATION TABLE OF CONTENTS

The following supporting information is available free of charge at ACS website

http://pubs.acs.org

SUPPLEM	ENTAL MATERIALS AND METHODS	S-3 to S-	-6
Figure S1.	PA proteins are much less abundant compared with human proteins in C	CF sputum	
samples.		S-	.7
Figure S2.	Treatment with 0.1% Triton X-100 or 0.1% Brij 58 did not lyse viable F	PA cells. S-	8
Figure S3.	Comparison of PA proteome before and after the bacterial-enrichment p	procedures.	
		S-9, S-1	0
Figure S4.	PA protein network up-regulated (A) or down-regulated (B) in CF airwa	ays.	
		S-11, S-1	2
Figure S5.	Carbon metabolic remodeling of PA in vivo.	S-13 to S - 1	15
Figure S6.	Spectrum examples of parallel reaction monitoring (PRM) assays to det	ect PA	
proteins wit	th CF sputum samples.	S-16 to S-1	8

- Table S1. CF sputum sample information.
- Table S2. The identified PA proteins with CF sputum samples.

SUPPLEMENTAL MATERIALS AND METHODS

Immunoblot analysis and antibody information

Proteins were extracted from CF sputum samples with 4x Laemmli protein sample buffer (Bio-Rad, Hercules, CA, USA). Extraction mixtures were incubated at 95 °C with a heating block for 5 min. The extraction mixtures were further vortexed for 30 s, and were sonicated with a GE-130 ultrasonic processor using settings of 50% amplitude, 30 s duration for two cycles. Protein concentration was estimated with Bradford assay. As SDS could interfere with the accuracy of Bradford assay protein quantitation, two rounds of SDS-PAGE were analyzed. At the first round of SDS-PAGE, SDS was removed through three washes of SDS-PAGE gel with H₂O, and gels were stained with coomassie blue (Bio-Rad). The densitometry of each lane was obtained with Odyssey Infrared Imaging System (LI-COR Bioscience). The densitometry information was used for further adjustment of equal total protein loading. At the second round of SDS-PAGE, equal total proteins were loaded based on the updated information, and gels were transferred to Immobilon-FL PVDF for immunoblot analysis (1).

Antibodies for human protein anti-GAPDH were purchased from Genscript (catalog information, A00191) (Piscataway, NJ, USA). Antibodies for bacterial protein anti-TufA was obtained from Hycult Biotech Inc. (Plymouth Meeting, PA, USA) (catalog information, HM6010). Antibodies for bacterial protein anti-RpoA was purchased from Neoclone (Madison, WI, USA) (catalog information, SP002-W0003).

Proteins subsets with single PA peptide identification

First, there were 248 PA proteins that were identified with one peptide from a single CF sputum sample, but with two or more peptides across the entire 35 CF sputum sample set. While these identifications did not provide the same level of confidence as derived from 2 identified peptides from a single sputum sample, the two separate peptide IDs from the entire dataset (1) improve confidence that

the protein is expressed in patient airways and (2) provide independent opportunities that can be used for the targeted PRM methods for quantification of these proteins in sputum.

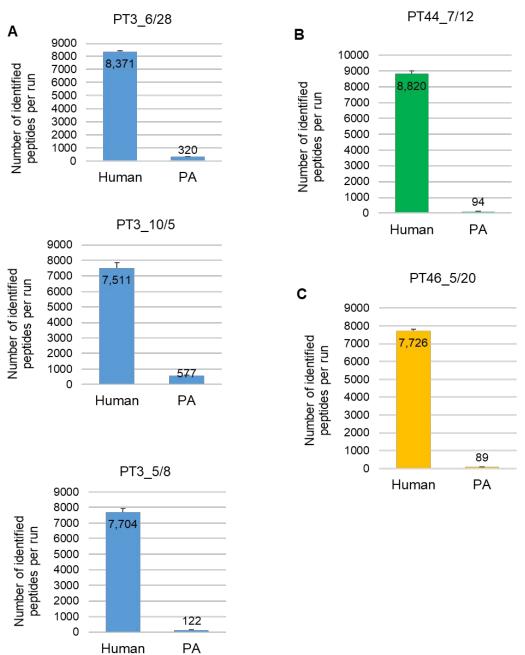
The second sub-group contains 82 PA proteins with single peptide ID's that have been repeatedly identified in 3 or more sputum samples and identified with at least two peptides from *ex vivo* samples. Of the 82 PA proteins identified in patient airway samples with only a single peptide, 44 of these same peptides were identified together with at least one other non-redundant peptide from the same protein in *ex vivo* PA samples, increasing the likelihood of the presence of these proteins in patient airway samples. The *in vitro* IDs indicate that the PA peptides can be identified without the host materials, meaning that the protein extraction and digestion method, LC-MS/MS system, and database search method were tuned to identify these peptides. The *in vivo* PA peptide IDs may be truly from the PA proteins rather than coming from the incorrect assignment of the host proteins/peptides.

All presented PA peptides are unique to PA against human proteins.

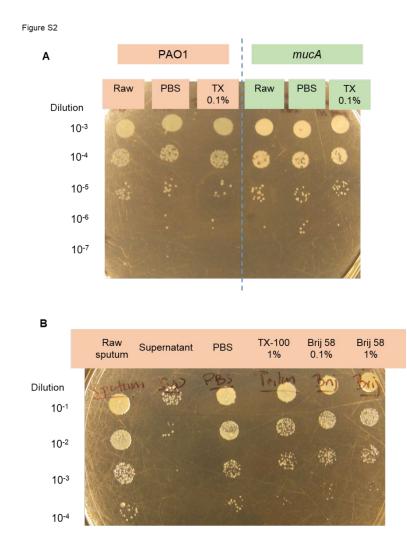
Accession number of PA genome

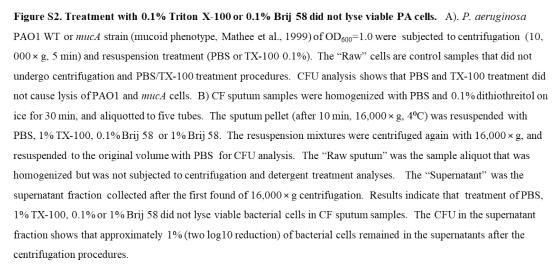
PA genome sequence deposited to National Center for Biotechnology Information (NCBI) are as follow.

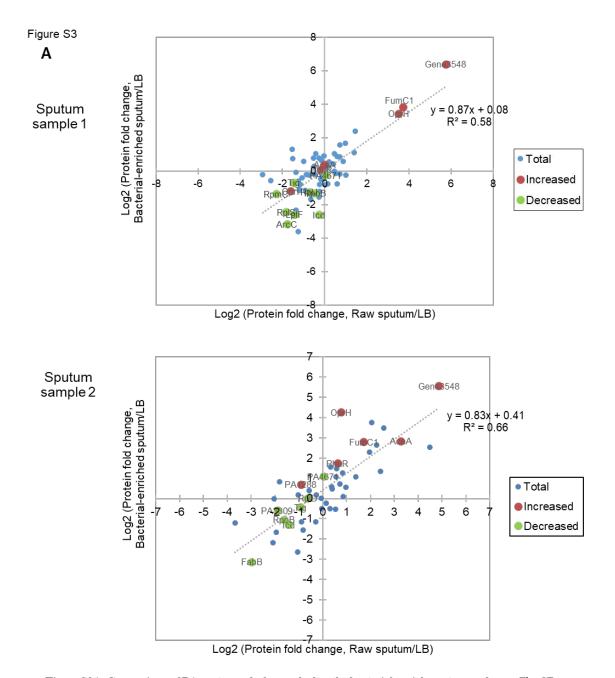
Organism	Accession
PABL001	QVEI0000000
PABL002	QVEH00000000
PABL003	QVEG0000000
PABL004	QVEF0000000
PABL006	QVEE00000000
PABL007	QVED00000000
PABL009	QVEC00000000
PABL010	QVEB00000000
PABL011	QVEA00000000
PABL012	CP031659
PABL013	QVDZ0000000
PABL014	QVDY00000000
PABL015	QVDX0000000
PABL016	QVDW00000000
PABL017	CP031660
PABL018	QVDV0000000
PABL019	QVDU00000000
PABL020	QVDT0000000

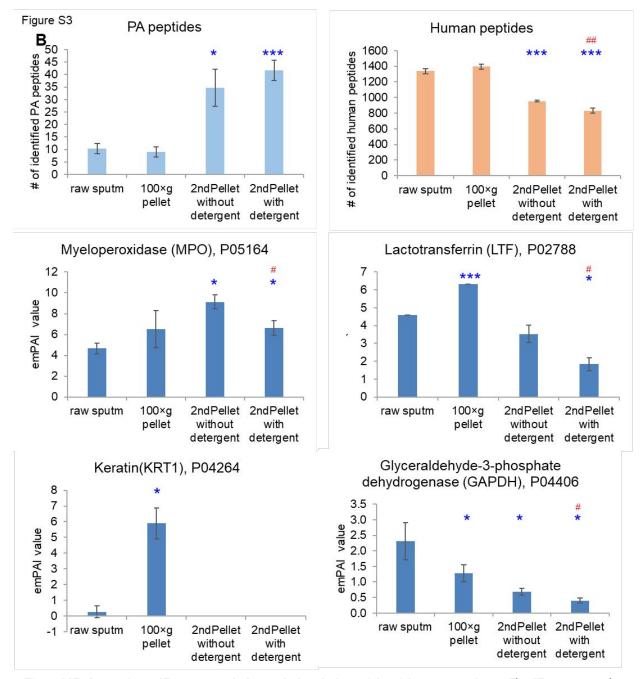

PABL021	QVDS0000000
PABL022	QVDR00000000
PABL023	QVDQ00000000
PABL024	QVDP00000000
PABL026	QVD00000000
PABL027	QVDN00000000
PABL027	QVDM00000000
	•
PABL029	QVDL0000000
PABL030	QVDK0000000
PABL031	QVDJ0000000
PABL032	QVDI0000000
PABL034	QVDH0000000
PABL035	QVDG0000000
PABL036	QVDF0000000
PABL037	QVDE00000000
PABL038	QVDD00000000
PABL040	QVDC00000000
PABL041	QVDB0000000
PABL042	QVDA0000000
PABL043	QVCZ00000000
PABL044	QVCY00000000
PABL044	
	QVCX00000000
PABL046	QVCW0000000
PABL047	QVCV00000000
PABL048	QVCU00000000
PABL049	QVCT00000000
PABL051	QVCS0000000
PABL052	QVCR00000000
PABL053	QVCQ00000000
PABL054	QVCP00000000
PABL055	QVCO00000000
PABL056	QVCN00000000
PABL057	QVCM00000000
PABL058	QVCL00000000
PABL059	QVCK0000000
PABL060	QVCJ0000000
PABL061	QVCI00000000
PABL062	QVCH00000000
PABL063	QVCG00000000
PABL065 PABL064	•
	QVCF0000000
PABL065	QVCE0000000
PABL066	QVCD0000000
PABL067	QVCC00000000
PABL068	QVCB0000000
PABL069	QVCA0000000
PABL070	QVBZ0000000
PABL071	QVBY0000000
PABL072	QVBX0000000
PABL073	QVBW00000000
PABL074	QVBV0000000

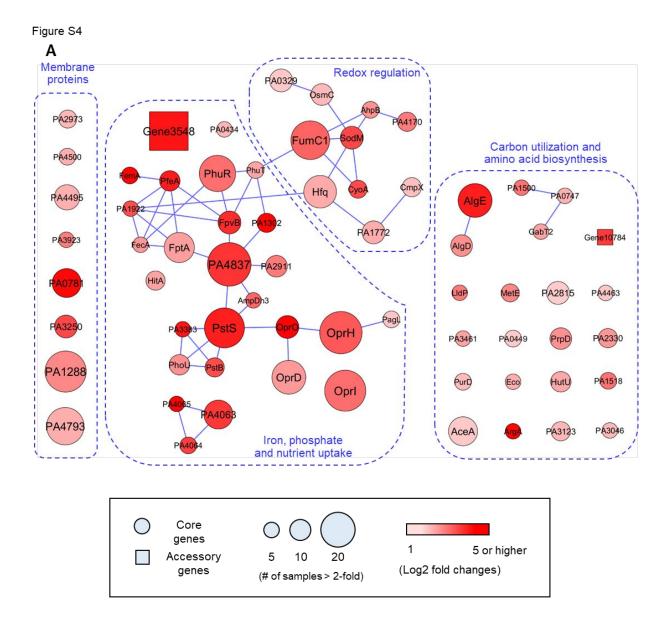
PABL075	QVBU00000000
PABL076	QVBT00000000
PABL077	QVBS0000000
PABL078	QVBR00000000
PABL079	QVBQ00000000
PABL080	QVBP00000000
PABL081	QVBO0000000
PABL082	QVBN0000000
PABL083	QVBM00000000
PABL084	QVBL00000000
PABL085	QVBK00000000
PABL086	QVBJ00000000
PABL088	QVBI0000000
PABL089	QVBH00000000
PABL090	QVBG00000000
PABL091	QVBF0000000
PABL092	QVBE00000000
PABL093	QVBD0000000
PABL094	QVBC00000000
PABL095	QVBB00000000
PABL096	QVBA0000000
PABL097	QVAZ00000000
PABL098	QVAY00000000
PABL100	QVAX00000000
PABL101	QVAW0000000
PABL102	QVAV00000000
PABL103	QVAU00000000
PABL104	QVAT00000000
PABL105	QVAS0000000
PABL106	QVAR00000000
PABL107	QVAQ00000000
PABL108	QVAP00000000

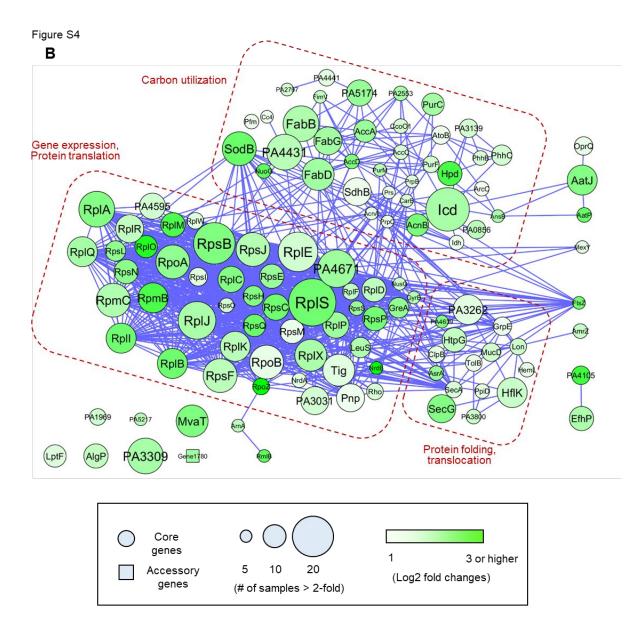

SUPPLEMENTAL REFERENCES

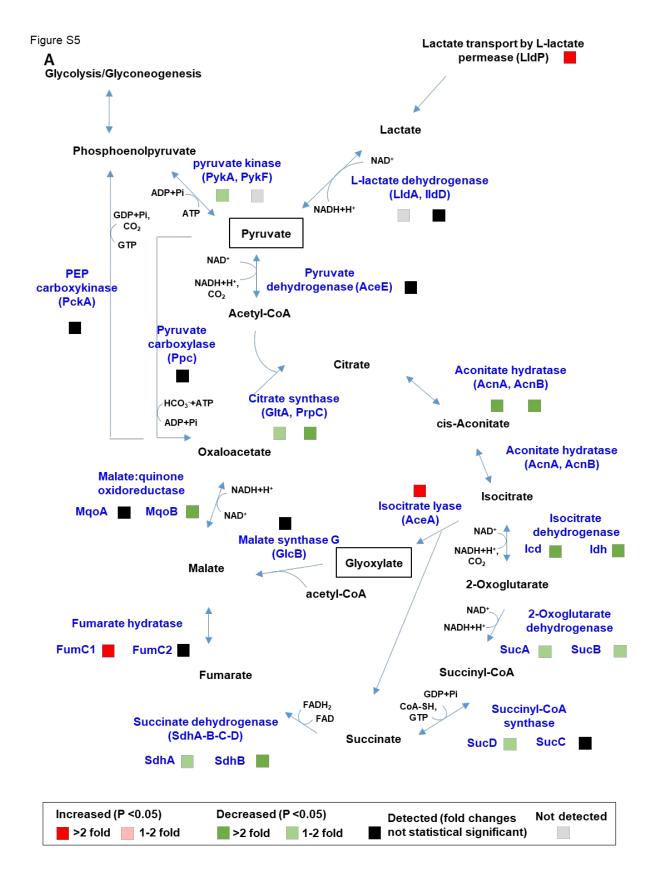

1. Wu, X.; Chavez, J. D.; Schweppe, D. K.; Zheng, C.; Weisbrod, C. R.; Eng, J. K.; Murali, A.; Lee, S. A.; Ramage, E.; Gallagher, L. A.; Kulasekara, H. D.; Edrozo, M. E.; Kamischke, C. N.; Brittnacher, M. J.; Miller, S. I.; Singh, P. K.; Manoil, C.; Bruce, J. E., In vivo protein interaction network analysis reveals porin-localized antibiotic inactivation in Acinetobacter baumannii strain AB5075. *Nat Commun* **2016**, *7*, 13414.

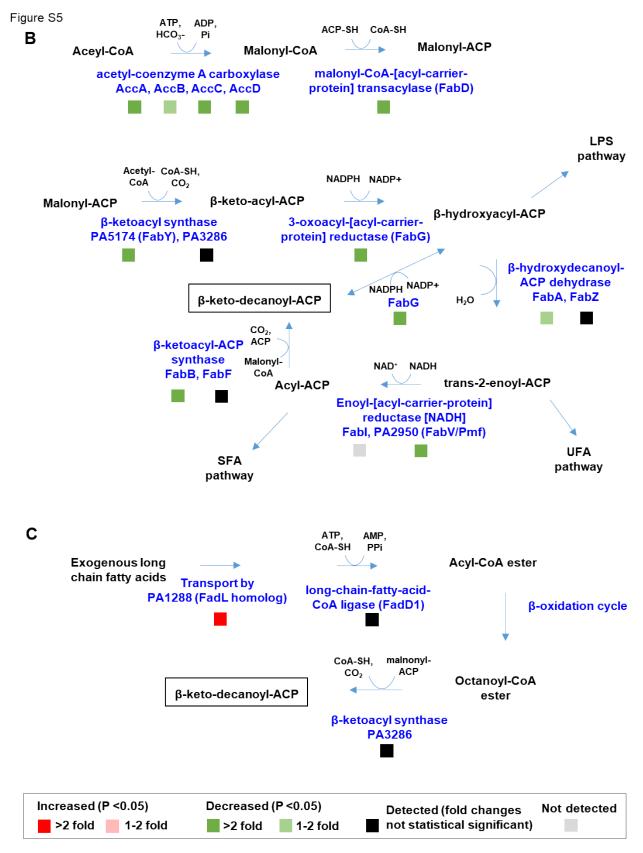

Figure S1


Figure S1. PA proteins are much less abundant compared with human proteins in CF sputum samples. The number of non-redundant human or PA peptides identified in each LC-MS/MS run is shown. Examples include five CF sputum samples collected from three CF patients (A, B, C). The low abundance of PA proteins in CF sputum samples highlights the necessity to design bacterial-enrichment methods to improve PA protein identification with CF sputum samples.




Figure S3A. Comparison of PA proteome before and after the bacterial-enrichment procedures. The CF sputum sample was aliquoted so that one aliquot of the sample was processed with bacterial-enrichment procedures, while another aliquot was kept on ice and processed as the raw sputum for proteome comparison (Fig. 2A). The PA proteomes of sputum samples were compared with the PA *ex vivo* proteomes on LB medium condition. Results showed that for PA proteins that could be quantified before and after the bacterial enrichment procedures, these proteins showed a general consistence in the relative abundance in PA proteome, suggesting that the bacterial-enrichment procedures used in this study did not significantly alter the proteome profiles of PA in CF sputum. The Increased/Decreased proteins that were identified through the analysis of 35 sputum samples are highlighted in figures.


Figure S3B. Comparison of PA proteome before and after the bacterial-enrichment procedures. The CF sputum samples were aliquoted to prepare as raw sputum, the pellet collected with $100 \times g$ centrifugation ($100 \times g$ pellet), the second centrifugation pellets after the $10,000 \times g$ centrifugation with or without additional TX-100 and Brij-58 treatment. Proteomics data were collected with LTQ-XL (Thermo-Fisher). Greater number of PA peptides were identified with the bacterial enriched pellets. Spectral counting analysis with Exponentially Modified Protein Abundance Index (emPAI) showed the benefits of reduction of abundant host proteins LTF, KRT1, MPO and GAPDH with the separation of $100 \times g$ pellet or with the detergent treatment. Standard error bars indicate standard deviation of three technical replicates of LC-MS/MS analysis. ANOVA analysis comparison with raw sputum *, P < 0.05, ***, P < 0.001. ANOVA analysis comparison between detergent treatments, # < 0.05, # < 0.01.



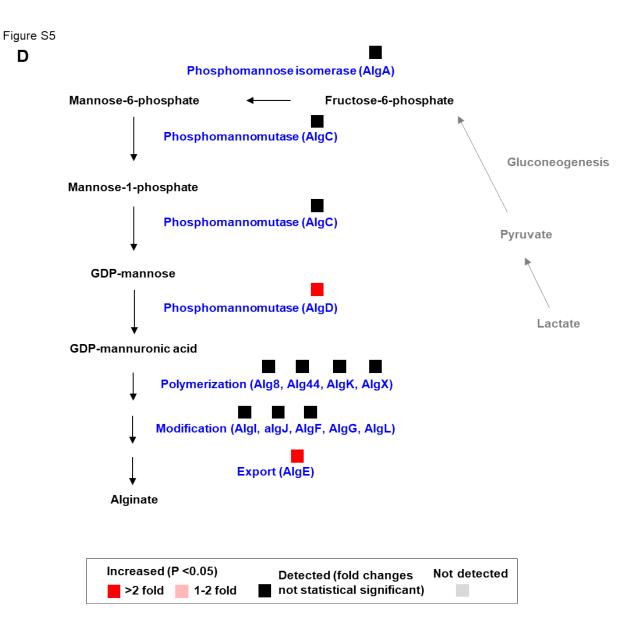
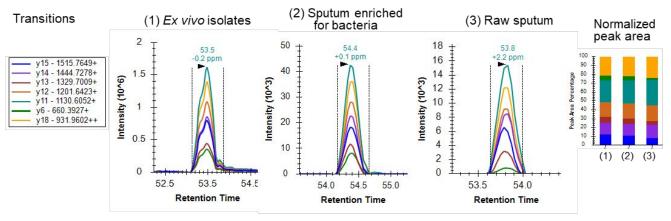

Figure S4. PA protein network up-regulated (A) or down-regulated (B) in CF airways. The network includes 67 increased proteins and 117 decreased proteins that were identified with 2-fold or greater fold-changes with at least 5 CF sputum samples compared with the *ex vivo* cultured samples. The nodes represent proteins, and the edges indicate protein interaction information which was obtained with STRING (version 10.0). The node shape indicates whether the PA protein is classified as a core gene or accessory gene. The node size is correlated with the number of sputum samples identified with 2-fold or greater changes. The bigger the node size means the increases were more frequently found in CF sputum samples. The node color indicates the extent of increases (red) or decreases (green) of the averaged protein fold change. The network is visualized with Cytoscape (version 3.4.0).

Figure S4. PA protein network up-regulated (A) or down-regulated (B) in CF airways. The network includes 67 increased proteins and 117 decreased proteins that were identified with 2-fold or greater fold-changes with at least 5 CF sputum samples compared with the *ex vivo* cultured samples. The nodes represent proteins, and the edges indicate protein interaction information which was obtained with STRING (version 10.0). The node shape indicates whether the PA protein is classified as a core gene or accessory gene. The node size is correlated with the number of sputum samples identified with 2-fold or greater changes. The bigger the node size means the increases were more frequently found in CF sputum samples. The node color indicates the extent of increases (red) or decreases (green) of the averaged protein fold change. The network is visualized with Cytoscape (version 3.4.0).



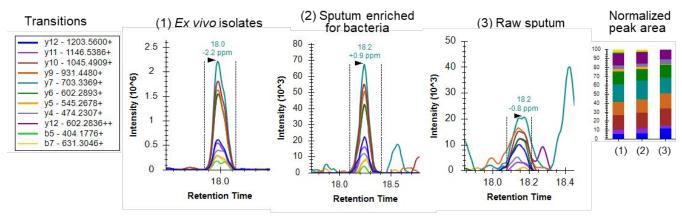
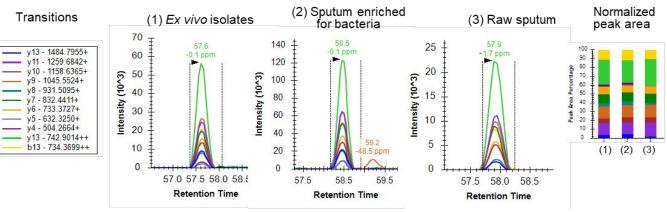
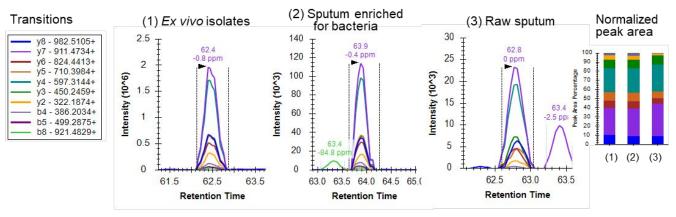

Figure S5. Carbon metabolic remodeling of PA *in vivo.* A) TCA cycle and glyoxylate cycle. Enzymes in lactate utilization and glyoxylate cycles are up-regulated *in vivo*, as well as fumarate hydratase FumC1. B-C) Fatty acid metabolic pathways of endogenous biosynthesis (B), and utilization of exogenous fatty acid product (C). The diagram is adapted from Yuan et al. (2012). Many enzymes in fatty acid endogenous biosynthesis is down regulated *in vivo*, but enzymes functioning in utilization of exogenous fatty acid are up-regulated. (D) Alginate biosynthesis pathway. For all panels, increased proteins are shown in red. Decreased proteins are shown in green, with the dark green as fold change > 2, and light green as fold change in between 1-2 fold. Markers in black indicate that the enzymes were detected, but fold changes were not statistical significant. Markers in grey indicate that the enzymes were not detected.

Figure S6 Control proteins PA5554 AtpD R.EAPSYADQAGGNELLETGIK.V [111, 130]



Porins


PA4710 PhuR R.SGTGTNLDTGADSPR.D [399, 413]

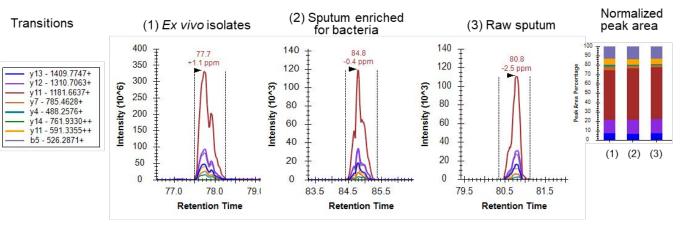

GENE3548 K.EIPQTINVVTQDEIK.A [163, 177]

Figure S6 Glyoxylate cycle enzymes PA2634 AceA R.LASNLFQFR.K [318, 326]

Alginate biosynthesis proteins PA3540 AlgD K.SPIVEPGLEALLQQGR.Q [44, 59]

K.AGVDFGVGTNPEFLR.E [146, 160]

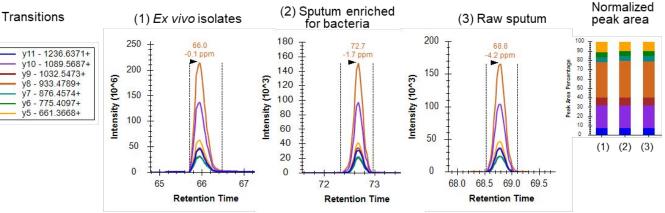
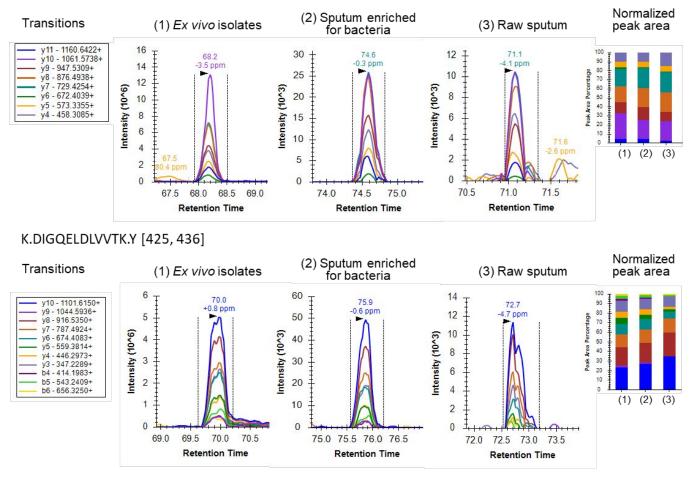



Figure S6

Alginate biosynthesis proteins PA3544 AlgE K.QSGDVNAFGVDLGLR.W [303, 317]

Figure S6. Spectrum examples of parallel reaction monitoring (PRM) assays to detect PA proteins with CF sputum samples. PRM signals were visualized with Skyline (version 4.1). Transitions with the most abundant signals for each peptide were listed. The normalized peak area shows the consistence of transition signals for each PA protein detected with (1) the *ex vivo* PA isolates, (2) the CF sputum samples processed with bacterial enrichment method, or (3) the raw sputum which was not processed with bacteria enrichment.