Supporting Information

Tunable Low-LUMO Boron-Doped Polycyclic Aromatic Hydrocarbons by General One-Pot C-H Borylations

Jeffrey M. Farrell, Carina Mützel, David Bialas, Maximilian Rudolf, Kaan Menekse, Ana-Maria Krause, Matthias Stolte, Frank Würthner*
Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
Center for Nanosystems Chemistry, Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany

Table of Contents

1. Materials and Methods S2
2. Synthetic Procedures S5
3. NMR Spectra S20
4. Simulated and Measured HR-MS Spectra S48
5. UV-Vis and Fluorescence Spectroscopy S55
6. Cyclic Voltammetry S57
7. X-ray Crystallography S63
8. Computations S65
9. Organic Thin-Film Transistors and Organic Solar Cells S97
10 References S99

1. Materials and Methods

General considerations. Where indicated, glovebox synthetic manipulations were carried out in an atmosphere of dry, O_{2}-free N_{2} in an MBraun glovebox using oven-dried glassware. 1,3-diisopropylimidazol-2-ylidene borane was prepared according to a literature procedure. ${ }^{[S 1]}$ Bis(trifluoromethylsulfonyl)imide was obtained from Merck or TCI and used without further purification. 2,2,6,6-Tetramethylpiperidine-1-oxyl free radical (TEMPO radical) was obtained from TCI and used without further purification. Anhydrous chlorobenzene and 1,2dichorobenzene were obtained from Sigma Aldrich and dried over $4 \AA$ molecular sieves before use. THF was purified with a Grubbs-type column system manufactured by Innovative Technology. Deuterated solvents were obtained from commercial sources and used without further purification. Anhydrous hexane was obtained from Sigma Aldrich and used without further purification. All other solvents for spectroscopic measurements were spectroscopic grade and used without further purification. Column chromatography was performed with commercial glass columns using silica gel 60M (particle size $0.04-0.063 \mathrm{~mm}$). 1-styrylnaphthalene, 1,4distyrylnaphthalene, 1,5-distyrylnaphthalene and 1,6-distyrylpyrene were prepared as described herein and were spectroscopically identical to literature reports. ${ }^{[52-5]}$ All other reagents and solvents were obtained from commercial sources and used without further purification.

UV-Vis absorption spectra were recorded on a Jasco V-670 or Jasco V-770 spectrophotometer for solution phase measurements or a Perkin Elmer Lambda 950 UV/Vis/NIR spectrometer equipped with an integrating sphere for thin-film measurements. Thin films of 1-3 and 6-10 for UV-Vis spectroscopy were prepared by spin coating filtered (PTFE, $0.45 \mu \mathrm{~m}$ pore size) $1 \times 10^{-2} \mathrm{M}$ solutions in $\mathrm{CHCl}_{3}(\mathbf{1}, \mathbf{6}-\mathbf{1 0})$ or $\mathrm{THF} / \mathrm{CHCl}_{3} 1: 3(\mathbf{2}, \mathbf{3})$ onto quartz substrates at $700 \mathrm{rpm}(1000$ rpm s${ }^{-1}, 60 \mathrm{~s}, \mathbf{1}, 6$) or at $2000 \mathrm{rpm}\left(3000 \mathrm{rpm} \mathrm{s}^{-1}, 180 \mathrm{~s}, 7-10\right)$ using an SPIN150 spin coater (SPS Europe). Thin films of $\mathbf{4 a}, \mathbf{4 b}$, and $\mathbf{5}$ for UV-Vis spectroscopy were prepared by dip coating quartz substrates with filtered (PTFE, $0.45 \mu \mathrm{~m}$ pore size) $1 \times 10^{-2} \mathrm{M}$ solutions in $\mathrm{THF} / \mathrm{CHCl}_{3} 1: 1$.

Fluorescence spectra were recorded on an Edinburgh Instruments FLS980 fluorescence spectrometer. Relative fluorescence quantum yields were determined using the comparative method at four excitation wavelengths with respect to standards: perylene in cyclohexane, ${ }^{[S 6]}$ N, N '-bis(2,6-diisopropylphenyl)-3,4:9,10-perylenebis(dicarboximide) in $\mathrm{CHCl}_{3},{ }^{[57]} N, N{ }^{\prime}$-bis(2,6-diisopropylphenyl)-1,6,7,12-tetraphenoxy-3,4:9,10-perylenebis(dicarboximide) in $\mathrm{CHCl}_{3},{ }^{[57]}$ or rhodamine 101 in EtOH. ${ }^{[58]}$ Time-resolved measurements were performed with Edinburgh

Instruments picosecond pulsed laser diodes and a TCSPC detection unit. Solid-state absolute fluorescence quantum yields were determined on a Hamamatsu Absolute PL Quantum Yield Measurement System C9920-02.
NMR spectra were recorded on Bruker Avance III HD 400 or Bruker Avance III HD 600 spectrometers. Chemical shifts are listed in parts per million and are given relative to SiMe_{4} and referenced to a residual solvent signal (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$) or relative to an external standard $\left({ }^{11} \mathrm{~B}: 15 \%\right.$ $\left(\mathrm{Et}_{2} \mathrm{O}\right) \mathrm{BF}_{3} ;{ }^{19} \mathrm{~F}: 15 \%\left(\mathrm{Et}_{2} \mathrm{O}\right) \mathrm{BF}_{3}$. Coupling constants (J) are quoted in Hertz (Hz). In some cases ${ }^{11} \mathrm{~B}$ signals for boron-containing compounds could not be observed due to broadening and/or poor solubility.

High resolution mass spectrometry was carried out on a Bruker Daltonics micrOTOF focus or a Thermo Scientific Exactive Plus Orbitrap instrument.

Cyclic voltammetry was carried out using a standard commercial electrochemical analyzer (EC epsilon; BAS Instruments, UK) with a three-electrode single-compartment cell. The supporting electrolyte tetrabutylammonium hexafluorophosphate $\left(n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}\right)$ was prepared according to the literature, ${ }^{[59]}$ and recrystallized from ethanol/water. The measurements were carried out using ferrocene (Fc) as an internal standard for the calibration of the potential. Potentials of irreversible redox events were determined by square wave voltammetry experiments. $\mathrm{An} \mathrm{Ag} / \mathrm{AgCl}$ reference electrode was used. A Pt disc and a Pt wire were used as working and auxiliary electrodes, respectively.

Single crystal X-ray diffraction data were collected at 100 K on a Bruker D8 Quest Kappa diffractometer with a Photon 100 CMOS detector and multi-layered mirror monochromated CuK_{α} radiation. The structures were solved using direct methods, expanded with Fourier techniques and refined with the Shelx software package. ${ }^{[S 10]}$ All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in the structure factor calculation on geometrically idealized positions. Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 1878998 (2), CCDC 1878996 (4), CCDC 1879000 (5), CCDC 1878999 (8), and CCDC 1878997 (9,10-bis(2,3,4,5,6pentafluorostyryl)anthracene). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.ac.uk/data.request/cif.

Computational details. Geometry optimizations were performed at the level of density functional theory (DFT) employing B3LYP as functional ${ }^{[\mathrm{S} 11-13]}$ and $6-31++\mathrm{G}^{* *}$ as basis set ${ }^{[\mathrm{S} 14-16]}$ as implemented in the Gaussian 09 program package. ${ }^{[\mathrm{S} 17]}$ The geometries were optimized
followed by frequency calculations to confirm the existence of minima. The electron affinities of compounds 2, 4a and 5 were calculated from the energy difference between the geometryoptimized structure of the neutral molecule and the geometry-optimized structure of the anion. ${ }^{[518]}$ Time-dependent density functional theory (TDDFT) calculations were performed on the geometry-optimized structures employing the same basis set and functional as for the geometry optimizations. The absorption spectra were simulated with the help of the GaussView 5 visualization software package. ${ }^{[\mathrm{S} 19]}$

Organic thin film transistor fabrication and characterization. Before fabrication, n-tetradecylphosphonic acid (TPA) modified $\mathrm{Si} / \mathrm{SiO}_{2}(100 \mathrm{~nm}) / \mathrm{AlO}_{x}(8 \mathrm{~nm})$ substrates $(1.7 \mathrm{~nm}$ TPA monolayer; capacitance $C_{\mathrm{i}}=32.4 \mathrm{nF} \mathrm{cm}^{-2}$) were successively cleaned with toluene (p.a. grade, VWR chemicals), acetone and i-propanol (both semiconductor grade VLSI PURANAL ${ }^{\text {TM }}$, Aldrich ${ }^{\circledR}$ Chemistry). Afterwards, 30 nm thin films were vacuum-deposited in an OPTIvap-XL (CreaPhys GmbH) vacuum deposition system at a pressure below $10^{-6} \mathrm{mbar}$. During the deposition of the molecule, a growth rate of $0.2-1.0 \mathrm{~nm} \mathrm{~min}^{-1}$ was adjusted by monitoring the film growth with a quartz crystal microbalance. Furthermore, the substrate temperature ($T_{\text {sub }}$) was kept constant at $60^{\circ} \mathrm{C}$. Subsequently, 30 nm gold were evaporated through steel shadow masks onto the thin films to form the source and drain electrodes yielding bottom-gate, top-contact devices with a channel length L and width W of $100 \mu \mathrm{~m}$ and $200 \mu \mathrm{~m}$, respectively. Devices were characterized under inert conditions (M.Braun Inertgas Systeme GmbH, UNIlab Pro, $c\left(\mathrm{O}_{2}\right)<1 \mathrm{ppm}, c\left(\mathrm{H}_{2} \mathrm{O}\right)<1 \mathrm{ppm}$) by measuring the transfer (saturation regime, $V_{\mathrm{DS}}=-50 \mathrm{~V}$) and output characteristics with an Agilent 4055C parameter analyzer and a Cascade EPS150 probe station. Prior to the characterization, the semiconducting film around the device was scratched with a needle of the used micromanipulator to electrically isolate the device. Atomic force microscopy for the investigation of film morphology was carried out with a Bruker AXS MultiMode ${ }^{\text {TM }}$ Nanoscope IV instrument in the tapping mode. Silicon cantilevers (OMCLAC160TS, Olympus) with a spring constant of $42 \mathrm{~N} \mathrm{~m}^{-1}$ and a resonance frequency of $\sim 300 \mathrm{kHz}$ were used.

Solar cell fabrication and measurement. Patterned ITO-glass substrates (Soluxx GmbH) were used as the cathode in the solar cells. The ITO coated glass substrates were cleaned by sonication in an aqueous detergent solution (mucasol®), rinsed with deionized water, acetone, and isopropyl alcohol and dried in a nitrogen stream. Sol-gel-derived ZnO films were prepared using zinc
acetate dihydrate in 2-methoxyethanol:2-aminoethanol as a precursor solution and spin-coating onto the ITO substrate followed by thermal treatment at $200^{\circ} \mathrm{C}$ for 60 min according to literature. ${ }^{[S 20]}$ The substrates were then transferred into a nitrogen-filled glove box. Compound $\mathbf{8}$ was blended with donor polymers PCE10 or PBDB-T (1-Material Inc) and dissolved in chlorobenzene (CB) with the addition of a small amount of 1,8-diiodooctane (CB:DIO $=97: 3$, $\mathrm{v} / \mathrm{v})$. The blended ratio of polymer: $\mathbf{8}$ was 1:1 by weight. The solutions were then spin-coated onto the $I T O / \mathrm{ZnO}$ at 1000 rpm . The thicknesses of the active layers were approximately 80 nm . Subsequently, 10 nm of MoO_{3} and 100 nm of Al were deposited through a shadow mask (defined active area of $7.2 \mathrm{~mm}^{2}$) onto the photoactive layer in an OPTIvap-XL (CreaPhys GmbH) vacuum deposition system at a pressure below $10^{-6} \mathrm{mbar}$. All device fabrication processes were carried out under inert conditions (M.Braun Inertgas Systeme GmbH , UNIlab Pro, $c\left(\mathrm{O}_{2}\right)<1 \mathrm{ppm}$, $\left.c\left(\mathrm{H}_{2} \mathrm{O}\right)<1 \mathrm{ppm}\right)$. PCEs were measured under an AM1.5G Oriel Sol3ATM Class AAA solar simulator (Newport ${ }^{\circledR}$). The power of the sun simulation was calibrated before the testing using a standard silicon solar cell, giving a value of $100 \mathrm{~mW} \mathrm{~cm}{ }^{-2}$. The current density-voltage ($J-V$) characteristics were recorded with a parameter analyzer (Botest Systems GmbH). Spectrally resolved EQE measurements were performed with a Quantum Efficiency/IPCE Measurement Kit (Newport®). A 300 W Xe lamp was taken as light source. Monochromatic light was generated by a Cornerstone monochromator. A Merlin Lock-In Amplifier was utilized for detection of the measurement signal at a chopping frequency of 30 Hz . As reference a calibrated Si-detector was used.

2. Synthetic Procedures

Synthesis of 1-hydroxy-2-phenyl-1-boraphenalene (1)

In an inert atmosphere in a glovebox, 1,3-diisopropylimidazol-2-ylidene borane (100. $\mathrm{mg}, 0.600$ mmol, 1.2 equiv.) was dissolved in 3.5 mL dry chlorobenzene in a 50 mL Schlenk tube with a magnetic stirbar. Bis(trifluoromethylsulfonyl)imide ($172 \mathrm{mg}, 0.610 \mathrm{mmol}, 1.22$ equiv.) was added to the solution and hydrogen gas evolved. The solution was stirred for 90 minutes after
which 1-styrylnaphthalene ($115 \mathrm{mg}, 0.500 \mathrm{mmol}, 1$ equiv.) was added with an additional 2.5 mL chlorobenzene. A 50 mL dropping funnel containing 2.5 mL 0.46 M TEMPO radical solution ($1.15 \mathrm{mmol}, 2.3$ equiv.) in chlorobenzene was affixed to the Schlenk tube. The apparatus was sealed and removed from the glovebox. The reaction mixture was stirred at $110{ }^{\circ} \mathrm{C}$ for 5 h and then cooled to $80^{\circ} \mathrm{C}$. The TEMPO solution was added and the reaction was stirred for 36 h at 80 ${ }^{\circ} \mathrm{C}$, cooled to room temperature and concentrated in vacuo. The residue was purified by column chromatography (toluene/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 7: 3$). Following solvent removal in vacuo, pure 1-hydroxy-2-phenyl-1-boraphenalene $\mathbf{1}$ was isolated as a yellow solid ($63.0 \mathrm{mg}, 0.246 \mathrm{mmol}, 49 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, DMSO-d $6,298 \mathrm{~K}): \delta 9.84(\mathrm{~s}, 1 \mathrm{H}, \mathrm{B}-\mathrm{OH}), 8.68\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=\right.$ $1.2 \mathrm{~Hz}), 8.25\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.1 \mathrm{~Hz},{ }^{4} J=1.0 \mathrm{~Hz}\right), 8.04\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.3 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.0 \mathrm{~Hz}\right)$, $7.92(\mathrm{~s}, 1 \mathrm{H}), 7.86\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.0 \mathrm{~Hz}\right), 7.79\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=8.0\right.$ $\mathrm{Hz}), 7.69(\mathrm{~m}, 2 \mathrm{H}), 7.63\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.1 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=8.1 \mathrm{~Hz}\right), 7.41\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.7 \mathrm{~Hz}\right), 7.29$ $\left(\mathrm{tt}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1.9 \mathrm{~Hz}\right) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}(100 \mathrm{MHz}$, DMSO-d $6,298 \mathrm{~K}$, partial): δ 146.3 (C), 142.5 (C, br, B-C), 142.4 (C), 135.2 (C), 133.1 (C), 132.4 (C), 131.7 (C), 131.3 (C), 131.1 (C), 130.4 (C), 128.1 (2C), 127.9 (2C), 126.4 (C), 126.1 (C), 126.1 (C), one B-C peak not resolved. ${ }^{11} \mathbf{B}$ NMR $\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta 40.33$. MP: $78{ }^{\circ} \mathrm{C}$. HR-MS (ASAP, negative mode) $m / z:[\mathrm{M}]^{-}$Calc'd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{BO}$ 256.1060; Found 256.1064. CV ($1 \times 10^{-3} \mathrm{M}, 0.1 \mathrm{M} n^{-}$ $\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ in DMSO, vs. $\mathrm{Fc}^{+/ 0}, 298 \mathrm{~K}$): $E_{1 / 2}$ red $1=-1.98 \mathrm{~V}$. UV-Vis Solution: $\left(3.99 \times 10^{-5} \mathrm{M}\right.$ in $\left.\mathrm{CHCl}_{3}, 298 \mathrm{~K}\right): \lambda_{\max }\left(\varepsilon_{\max }\right)=374 \mathrm{~nm}(8800), 348 \mathrm{~nm}$ (9600). Thin Film: $\lambda_{\max }=388 \mathrm{~nm}, 353 \mathrm{~nm}$. Fluorescence Solution: $\left(1.6 \times 10^{-5} \mathrm{M}\right.$ in $\left.\mathrm{CHCl}_{3}, 298 \mathrm{~K}\right): \lambda_{\max }=489 \mathrm{~nm}(\Phi=0.27)$. Thin Film: $\lambda_{\mathrm{em}}=530 \mathrm{~nm}(\Phi=0.10)$.

Synthesis of 1,6-dihydroxy-2,7-diphenyl-1,6-diborapyrene (2)

In an inert atmosphere in a glovebox, 1,3-diisopropylimidazol-2-ylidene borane (200. mg, 1.20 mmol, 2.4 equiv.) was dissolved in 7 mL dry chlorobenzene in a 100 mL Schlenk tube with a magnetic stirbar. Bis(trifluoromethylsulfonyl)imide ($343 \mathrm{mg}, 1.22 \mathrm{mmol}, 2.44$ equiv.) was added
and the reaction was stirred for 90 minutes over which time hydrogen gas evolved. 1,5distyrylnaphthalene ($166 \mathrm{mg}, 0.500 \mathrm{mmol}$, 1 equiv.) was added to the solution with an additional 5 mL chlorobenzene. A 50 mL dropping funnel with a 5 mL 0.46 M TEMPO radical solution ($2.30 \mathrm{mmol}, 4.6$ equiv.) in chlorobenzene was affixed to the Schlenk tube. The apparatus was sealed and removed from the glovebox. The reaction mixture was stirred at $110^{\circ} \mathrm{C}$ for 5 h over which time the solution turned orange. The mixture was then cooled to $80^{\circ} \mathrm{C}$ and the TEMPO solution was added. The reaction was stirred for a subsequent 36 h at $80^{\circ} \mathrm{C}$, cooled to room temperature and concentrated in vacuo. The residue was purified by column chromatography (gradient elution, toluene/ $\mathrm{CH}_{2} \mathrm{Cl}_{2} 2: 3$ to pure $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). Pure 1,6-dihydroxy-2,7-diphenyl-1,6diborapyrene 2 was isolated as an orange solid following solvent removal by rotary evaporation and drying under high vacuum ($74.1 \mathrm{mg}, 0.193 \mathrm{mmol}, 39 \%$ yield). Single crystals suitable for Xray crystallography could be obtained from a concentrated DMSO solution of $\mathbf{2}$ upon exposure to atmospheric moisture. ${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO-d $_{6}, 298 \mathrm{~K}$): $\delta 10.04$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{B}-\mathrm{OH}$), 8.56 (d, $\left.2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}\right), 7.88\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right), 7.80(\mathrm{~s}, 2 \mathrm{H}), 7.69(\mathrm{~m}, 4 \mathrm{H}), 7.42\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.3\right.$ $\mathrm{Hz}), 7.32\left(\mathrm{tt}, 2 \mathrm{H},{ }^{3} \mathrm{JHH}_{\mathrm{HH}}=7.3 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.9 \mathrm{~Hz}\right) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(100 \mathrm{MHz}\right.$, DMSO-d $\left.{ }_{6}, 298 \mathrm{~K}\right): \delta$ 146.8 (2C), 145.2 (2C, br, B-C), 142.4 (2C), 137.4 (2C), 135.5 (2C), 133.2 (2C, br, B-C), 131.3
 not observed. MP: $300{ }^{\circ} \mathrm{C}$ (decomp.). HR-MS (ASAP, negative mode) m / z : [M] Calc'd for $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{~B}_{2} \mathrm{O}_{2} 384.1498$; Found 384.1500. CV $\left(9 \times 10^{-4} \mathrm{M}, 0.1 \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}\right.$ in DMSO, vs. $\mathrm{Fc}^{+/ 0}$, $298 \mathrm{~K}): E_{1 / 2 \text { red } 1}=-1.47$ V. $E_{1 / 2 \text { red } 2}=-1.84 \mathrm{~V}$. UV-Vis Solution: $\left(2.64 \times 10^{-5} \mathrm{M}\right.$ in $\mathrm{CHCl}_{3}, 298$ $\mathrm{K}): \lambda_{\max }\left(\varepsilon_{\max }\right)=425 \mathrm{~nm}(17500)$, 383 nm (12700). Thin Film: $\lambda_{\max }=416 \mathrm{~nm}$. Fluorescence Solution: $\left(7.0 \times 10^{-6} \mathrm{M}\right.$ in $\left.\mathrm{CHCl}_{3}, 298 \mathrm{~K}\right)$: $\lambda_{\max }=561 \mathrm{~nm}(\Phi=0.44)$. Thin Film: $\lambda_{\mathrm{em}}=566 \mathrm{~nm}(\Phi$ $=0.05)$.

Synthesis of 1,8-dihydroxy-2,7-diphenyl-1,8-diborapyrene (3)

In an inert atmosphere in a glovebox, 1,3-diisopropylimidazol-2-ylidene borane (200. mg, 1.20 mmol, 2.4 equiv.) was dissolved in 7 mL dry chlorobenzene in a 100 mL Schlenk tube with a magnetic stirbar. Bis(trifluoromethylsulfonyl)imide ($343 \mathrm{mg}, 1.22 \mathrm{mmol}, 2.44$ equiv.) was added and stirred for 90 minutes over which time hydrogen gas evolved. 1,4-distyrylnaphthalene (166 $\mathrm{mg}, 0.500 \mathrm{mmol}, 1$ equiv.) was added to the solution with an additional 5 mL chlorobenzene. A 50 mL dropping funnel with a 5 mL 0.46 M TEMPO radical solution ($2.30 \mathrm{mmol}, 4.6$ equiv.) in chlorobenzene was affixed to the Schlenk tube. The apparatus was sealed and removed from the glovebox. The reaction mixture was stirred at $110^{\circ} \mathrm{C}$ for 5 h over which time the solution turned deep red. The mixture was then cooled to $80{ }^{\circ} \mathrm{C}$ and the TEMPO solution was added. The reaction was stirred for 36 h at $80^{\circ} \mathrm{C}$, cooled to room temperature and concentrated in vacuo. The residue was purified by column chromatography (gradient elution, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$ 5:1). Pure 1,8-dihydroxy-2,7-diphenyl-1,8-diborapyrene 3 was isolated as a red solid following solvent removal in vacuo ($59.3 \mathrm{mg}, 0.154 \mathrm{mmol}, 31 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298$ $\mathrm{K}): \delta 10.09(\mathrm{~s}, 2 \mathrm{H}, \mathrm{B}-\mathrm{OH}), 8.68(\mathrm{~s}, 2 \mathrm{H}), 7.78(\mathrm{~s}, 2 \mathrm{H}), 7.75(\mathrm{~s}, 2 \mathrm{H}), 7.69\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.4 \mathrm{~Hz}\right)$, $7.42\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right), 7.30\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.3 \mathrm{~Hz}\right) .{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(100 \mathrm{MHz}\right.$, DMSO-d ${ }_{6}, 298$ K): $\delta 146.6$ (2C), 143.2 (2C, br, B-C), 142.2 (2C), 135.8 (2C, br, B-C), 134.9 (2C), 133.9 (2C), 131.4 (2C), 131.2 (2C), 128.3 (4C), 128.0 (4C), 126.8 (2C). ${ }^{11} \mathbf{B}$ NMR ($128 \mathrm{MHz}, \mathrm{DMSO}_{6}$, 298 K): not observed. MP: $140{ }^{\circ} \mathrm{C}$ (decomp.). HR-MS (ASAP, negative mode) $m / z:[\mathrm{M}]^{-}$Calc'd for $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{~B}_{2} \mathrm{O}_{2} 384.1498$; Found 384.1506. CV $\left(3 \times 10^{-5} \mathrm{M}, 0.1 \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}\right.$ in DMSO, vs. $\mathrm{Fc}^{+/ 0}$, $298 \mathrm{~K}): E_{1 / 2 \text { red } 1}=-1.46 \mathrm{~V}$. $E_{1 / 2 \text { red } 2}=-1.82 \mathrm{~V}$. UV-Vis Solution: $\left(2.13 \times 10^{-5} \mathrm{M}\right.$ in $\mathrm{CHCl}_{3}, 298$ $\mathrm{K}): \lambda_{\max }\left(\varepsilon_{\max }\right)=466 \mathrm{~nm}(11600), 358 \mathrm{~nm}$ (6800). Thin Film: $\lambda_{\max }=478 \mathrm{~nm}, 368 \mathrm{~nm}$. Fluorescence Solution: $\left(8.8 \times 10^{-6} \mathrm{M}\right.$ in $\left.\mathrm{CHCl}_{3}, 298 \mathrm{~K}\right): \lambda_{\max }=586 \mathrm{~nm}(\Phi=0.51)$. Thin Film: $\lambda_{\mathrm{em}}=643 \mathrm{~nm}(\Phi=0.03)$.

Synthesis of 3,9-dihydroxy-2,8-bis(pentafluorophenyl)-3,9-diboraperylene (4)

In an inert atmosphere in a glovebox, 1,3-diisopropylimidazol-2-ylidene borane (200. mg, 1.20 mmol, 2.4 equiv.) was dissolved in 5 mL dry 1,2-dichlorobenzene in a 50 mL Schlenk tube with a magnetic stirbar. Bis(trifluoromethylsulfonyl)imide ($343 \mathrm{mg}, 1.22 \mathrm{mmol}, 2.4$ equiv.) was added and the reaction stirred for 90 minutes over which time hydrogen gas evolved. 9,10-bis(2,3,4,5,6pentafluorophenyl)anthracene ($281 \mathrm{mg}, 0.500 \mathrm{mmol}, 1$ equiv.) was then added to the solution. A 50 mL dropping funnel with a 5 mL 0.46 M TEMPO radical solution ($2.30 \mathrm{mmol}, 4.6$ equiv.) in 1,2-dichlorobenzene was affixed to the Schlenk tube. The apparatus was sealed and removed from the glovebox. The reaction mixture was stirred at $160{ }^{\circ} \mathrm{C}$ for 24 h over which time the solution turned deep red. The reaction mixture was then cooled to $80^{\circ} \mathrm{C}$ and the TEMPO solution was added. The reaction was stirred for 36 h at $80^{\circ} \mathrm{C}$, cooled to room temperature and diluted in 2 L EtOAc. In a separatory funnel, the organic layer was washed twice with an aqueous layer containing 100 mL 0.5 M HCl and 50 mL brine. The organic layer was concentrated in vacuo and suspended in water. The residue was sonicated and then filtered. The collected solid was washed with water and with $1: 1$ water/ MeOH before being dried under flow of air and washed with dichloromethane. The collected solid was again suspended in water, sonicated, separated via centrifugation and the water decanted. This centrifugation process was repeated with methanol and with dichloromethane. The resulting red solid was collected and dried in vacuo to give 3,9-dihydroxy-2,8-bis(pentafluorophenyl)-3,9-diboraperylene 4 ($36 \mathrm{mg}, 0.059 \mathrm{mmol}, 12 \%$ yield). Single crystals suitable for X-ray crystallography could be obtained from a concentrated DMSO solution of $\mathbf{4}$ upon exposure to atmospheric moisture. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , DMSO-d ${ }_{6}, 298 \mathrm{~K}$): δ $9.95(\mathrm{~s}, 2 \mathrm{H}, \mathrm{B}-\mathrm{OH}), 9.25(\mathrm{~s}, 2 \mathrm{H}), 9.25\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=9.3 \mathrm{~Hz}\right), 8.80\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}\right), 7.99$ $\left(\mathrm{dd}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=9.0 \mathrm{~Hz}\right) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(151 \mathrm{MHz}, \mathrm{DMSO}_{6} \mathrm{~d}_{6}, 298 \mathrm{~K}\right): \delta 146.3$ (2C), 143.7 (br, d, $\left.{ }^{1} J_{\mathrm{CF}}=242 \mathrm{~Hz}, 4 \mathrm{C}\right), 138.9\left(\mathrm{br}, \mathrm{d},{ }^{1} J_{\mathrm{CF}}=248 \mathrm{~Hz}, 2 \mathrm{C}\right), 137.1\left(\mathrm{br}, \mathrm{dt},{ }^{1} J_{\mathrm{CF}}=248\right.$ $\mathrm{Hz},{ }^{2} J_{\mathrm{CF}}=15 \mathrm{~Hz}, 4 \mathrm{C}$), 137.7 (2C), 131.6 (2C), 130.7 (2C), 130.3 (2C), 129.5 (2C), 129.3 (2C), 129.2 (2C), 127.6 (2C), 117.3 (br, t, ${ }^{2} J_{\mathrm{CF}}=20 \mathrm{~Hz}, 2 \mathrm{C}$). ${ }^{11} \mathbf{B}$ NMR (128 MHz, DMSO-d ${ }_{6}, 298 \mathrm{~K}$): not observed. ${ }^{19}$ F NMR (376 MHz, DMSO-d ${ }_{6}, 298 \mathrm{~K}$): $\delta-140.8(\mathrm{~m}, 4 \mathrm{~F}),-158.7\left(\mathrm{t},{ }^{3} J_{\mathrm{FF}}=22 \mathrm{~Hz}\right.$, 2F), -164.8 (m, 4F). MP: $245^{\circ} \mathrm{C}$ (decomp.). HR-MS (ASAP, negative mode) $m / z:[\mathrm{M}]^{-}$Calc'd for $\mathrm{C}_{30} \mathrm{H}_{10} \mathrm{~B}_{2} \mathrm{~F}_{10} \mathrm{O}_{2}$ 614.0713; Found 614.0732. CV $\left(7 \times 10^{-4} \mathrm{M}, 0.1 \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}\right.$ in DMSO, vs. $\left.\mathrm{Fc}^{+/ 0}, 298 \mathrm{~K}\right): E_{1 / 2 \mathrm{red} 1}=-1.13 \mathrm{~V} . E_{1 / 2}$ red $2=-1.47 \mathrm{~V}$. UV-Vis Solution: $\left(2.25 \times 10^{-5} \mathrm{M}\right.$ in CHCl_{3}, $298 \mathrm{~K}): \lambda_{\max }\left(\varepsilon_{\max }\right)=540 \mathrm{~nm}(26800), 504 \mathrm{~nm}(19300), 473$ (8400). Thin Film: $\lambda_{\max }=490 \mathrm{~nm}$. Fluorescence ($5.5 \times 10^{-6} \mathrm{M}^{2}$ in $\mathrm{CHCl}_{3}, 298 \mathrm{~K}$): $\lambda_{\max }=563 \mathrm{~nm}(\Phi=0.95)$.

Synthesis of 1,7-dihydroxy-2,8-diphenyl-1,7-diboraanthanthrene (5)

In an inert atmosphere in a glovebox, 1,3-diisopropylimidazol-2-ylidene borane (200. mg, 1.20 mmol, 2.4 equiv.) was dissolved in 5 mL dry chlorobenzene in a 100 mL Schlenk tube with a magnetic stirbar. Bis(trifluoromethylsulfonyl)imide ($343 \mathrm{mg}, 1.22 \mathrm{mmol}, 2.4$ equiv.) was added and the reaction was stirred for 90 minutes over which time hydrogen gas evolved. 1,6distyrylpyrene ($203 \mathrm{mg}, 0.50 \mathrm{mmol}, 1$ equiv.) was then added to the solution with an additional 20 mL chlorobenzene. A 50 mL dropping funnel containing 5 mL 0.46 M TEMPO radical (2.30 mmol, 4.6 equiv.) solution in chlorobenzene was affixed to the Schlenk tube. The apparatus was sealed and removed from the glovebox. The reaction mixture was stirred at $110{ }^{\circ} \mathrm{C}$ for 4 h . The reaction mixture was then cooled to $80^{\circ} \mathrm{C}$ and the TEMPO solution was added. The reaction was stirred for 24 h at $80^{\circ} \mathrm{C}$, cooled to room temperature and concentrated in vacuo. The residue was purified by column chromatography (degassed toluene/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 3$). Pure 1,7-dihydroxy-2,8-diphenyl-1,7-diboraanthanthrene $5(50 \mathrm{mg}, 0.11 \mathrm{mmol}, 22 \%$ yield) was isolated as a purple solid following solvent removal by rotary evaporation and high vacuum. Single crystals suitable for Xray crystallography could be obtained by slow evaporation of a concentrated dioxane solution of 5. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O, 298 \mathrm{~K}$): $\delta 10.23(\mathrm{~s}, 2 \mathrm{H}, \mathrm{B}-\mathrm{OH}), 9.40(\mathrm{~s}, 2 \mathrm{H}), 8.47\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=\right.$ $8.0 \mathrm{~Hz}), 8.33\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.1 \mathrm{~Hz}\right), 8.14(\mathrm{~s}, 2 \mathrm{H}), 7.79\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.3 \mathrm{~Hz},\right) 7.47\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=\right.$ $7.6 \mathrm{~Hz}), 7.35\left(\mathrm{tt}, 2 \mathrm{H},{ }^{3} \mathrm{JHH}_{\mathrm{HH}}=7.3 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1.2 \mathrm{~Hz}\right) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}(100 \mathrm{MHz}, \mathrm{DMSO}, 298 \mathrm{~K}): \delta$ 147.0 (2C), 144.5 (2C, br, B-C), 142.3 (2C), 139.1 (2C), 133.1 (2C), 130.3 (2C, br, B-C), 130.2 (2C), 129.9 (2C), 128.2 (4C), 128.1 (2C), 128.0 (2C), 127.9 (4C), 126.7 (2C), 123.8 (2C). ${ }^{11}$ B NMR (128 MHz, DMSO- $_{6}, 298 \mathrm{~K}$): not observed. MP: $285{ }^{\circ} \mathrm{C}$ (decomp.). HR-MS (ASAP, negative mode) m / z : [M] ${ }^{-}$Calc'd for $\mathrm{C}_{32} \mathrm{H}_{20} \mathrm{~B}_{2} \mathrm{O}_{2} 458.1650$; Found 458.1672. CV ($3 \times 10^{-4} \mathrm{M}, 0.1$ $\mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ in DMSO, vs. $\left.\mathrm{Fc}^{+/ 0}, 298 \mathrm{~K}\right): E_{1 / 2 \text { red } 1}=-1.39 \mathrm{~V} . E_{1 / 2}$ red $2=-1.70 \mathrm{~V}$. UV-Vis Solution: ($5.84 \times 10^{-6} \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, 298 K): $\lambda_{\max }\left(\varepsilon_{\max }\right)=525 \mathrm{~nm}(32600), 491 \mathrm{~nm}(26400), 433$ nm (12400). Thin Film: $\lambda_{\max }=491 \mathrm{~nm}$. Fluorescence: $\left(6.88 \times 10^{-7} \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$: $\lambda_{\max }=$ $548 \mathrm{~nm}, 586 \mathrm{~nm}(\Phi=0.35)$.

Synthesis of 11-tert-butyl-2,8-dihydroxy-3,7-diphenyl-2,8-diboratriangulene (6)

In an inert atmosphere glovebox, 1,3-diisopropylimidazol-2-ylidene borane (200. $\mathrm{mg}, 1.20 \mathrm{mmol}$, 2.4 equiv.) was dissolved in 5 mL dry chlorobenzene in a 100 mL Schlenk tube with a magnetic stirbar. Bis(trifluoromethylsulfonyl)imide ($343 \mathrm{mg}, 1.22 \mathrm{mmol}, 2.4$ equiv.) was added and stirred for 90 minutes over which time hydrogen gas evolved. 7-(tert-butyl)-1,3-distyrylpyrene (231 mg , $0.500 \mathrm{mmol}, 1$ equiv.) was then added to the solution with an additional 5 mL chlorobenzene. A 50 mL dropping funnel with a 5 mL 0.46 M TEMPO solution ($2.30 \mathrm{mmol}, 4.6$ equiv.) in chlorobenzene was affixed to the Schlenk tube. The apparatus was sealed and removed from the glovebox. The reaction mixture was stirred at $110^{\circ} \mathrm{C}$ for 4 h , cooled to $80^{\circ} \mathrm{C}$ and the TEMPO solution was added. The reaction was stirred for 24 h at $80^{\circ} \mathrm{C}$, cooled to room temperature and concentrated in vacuo. The residue was purified by column chromatography (degassed toluene $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 3$). Pure 11-tert-butyl-2,8-dihydroxy-3,7-diphenyl-2,8-diboratriangulene $\mathbf{6}$ (39 $\mathrm{mg}, 0.076 \mathrm{mmol}, 15 \%$ yield) was isolated as a red-brown solid following solvent removal by rotary evaporation and high vacuum. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\delta 9.32$ (s, 2H), 8.78 $(\mathrm{s}, 2 \mathrm{H}), 8.34(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 2 \mathrm{H}), 7.64\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.3 \mathrm{~Hz}\right), 7.55\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.8 \mathrm{~Hz}\right), 7.41$ $\left(\mathrm{tt}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1.3 \mathrm{~Hz}\right), 5.99(\mathrm{~s}, 2 \mathrm{H}, \mathrm{B}-\mathrm{OH}), 1.67(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta 150.0$ (1C), 148.7 (2C), 142.4 (2C), 141.4 (2C, br, C-B), 139.0 (2C), 133.0 (2C), 130.4 (2C, br, B-C), 129.9 (3C), 129.6 (2C), 129.5 (4C), 129.1 (2C), 127.5 (4C), 127.1 (2C), 124.2 (1C), 122.5 (1C), 35.5 (1C), 32.0 (3C). ${ }^{11} \mathbf{B}$ NMR ($128 \mathrm{MHz}, D_{2} \mathrm{DMSO}_{6}, 298 \mathrm{~K}$): not observed. MP: $217{ }^{\circ} \mathrm{C}$ (decomp.). HR-MS (ESI-TOF, positive mode) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+1]^{+}$Calc'd for $\mathrm{C}_{36} \mathrm{H}_{29} \mathrm{~B}_{2} \mathrm{O}_{2} 515.2348$; Found 515.2367. CV $\left(3 \times 10^{-4} \mathrm{M}, 0.1 \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}\right.$ in DMSO, vs. $\mathrm{Fc}^{+/ 0}$, $298 \mathrm{~K}): E_{1 / 2 \text { red } 1}=-1.53 \mathrm{~V}$. UV-Vis Solution: $\left(4.91 \times 10^{-6} \mathrm{M}^{\text {in }} \mathrm{CH}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right): \lambda_{\max }\left(\varepsilon_{\max }\right)=547$ nm (5900), 509 nm (8800), 479 nm (9300), 450 nm (7800), 377 nm (24100). Thin Film: $\lambda_{\max }=$ 372 nm . Fluorescence: $\left(1.2 \times 10^{-7} \mathrm{M}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$: $\lambda_{\max }=573 \mathrm{~nm}, 619 \mathrm{~nm}(\Phi=0.42)$.

Synthesis of 1,6-dimesityl-2,7-diphenyl-1,6-diborapyrene (7)

In an inert atmosphere glovebox, 1,6-dihydroxy-2,7-diphenyl-1,6-diborapyrene ($50.0 \mathrm{mg}, 0.130$ mmol, 1 equiv.) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ in a Schlenk flask. The vessel was sealed, removed from the glovebox and $\mathrm{BBr}_{3}(0.063 \mathrm{~mL}, 0.65 \mathrm{mmol}, 5$ equiv.) was added to the solution via injection under nitrogen. The mixture was stirred at room temperature for 5 h and then all volatiles were removed under reduced pressure. The remaining solid was dissolved in dry toluene (5 mL) and mesitylmagnesium bromide (0.91 mL 1.0 M in THF, $0.91 \mathrm{mmol}, 7$ equiv.) was added under nitrogen. The solution was stirred at room temperature for 16 h and then concentrated in vacuo. The crude product was purified by column chromatography (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}, 10: 1$) to yield 1,6-dimesityl-2,7-diphenyl-1,6-diborapyrene 7 as a red solid ($22 \mathrm{mg}, 0.037 \mathrm{mmol}, 29 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\delta 7.90\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{H H}=7.0 \mathrm{~Hz}\right), 7.78\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H H}=\right.$ $7.5 \mathrm{~Hz}), 7.76(\mathrm{~s}, 2 \mathrm{H}), 7.28-7.20(\mathrm{~m}, 10 \mathrm{H}), 6.83(\mathrm{~s}, 4 \mathrm{H}), 2.32(\mathrm{~s}, 6 \mathrm{H}), 2.00(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\delta 148.7$ (2C), 144.4 (2C), 143.1 (2C), 140.5 (2C), 138.2 (4C), 137.4 (2C), 133.5 (2C), 130.3 (2C), 128.2 (4C), 127.6 (4C), 127.3 (4C), 127.1 (2C), 23.1 (4C), 21.4 (2C). Due to poor solubility peaks corresponding to $\mathrm{B}-\mathrm{C}(6 \mathrm{C})$ could not be resolved. ${ }^{11} \mathbf{B}$ NMR ($128 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\delta 64.59$ (br). MP: $254{ }^{\circ} \mathrm{C}$. HR-MS (ASAP, positive mode) $m / z:[\mathrm{M}+1]^{+}$Calc'd for $\mathrm{C}_{44} \mathrm{H}_{39} \mathrm{~B}_{2} 589.3232$; Found 589.3230. CV $\left(3 \times 10^{-4} \mathrm{M}, 0.1 \mathrm{M} n\right.$-Bu4NPF 6 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, vs. $\left.\mathrm{Fc}^{+/ 0}, 298 \mathrm{~K}\right): E_{1 / 2 \text { red } 1}=-1.15 \mathrm{~V} . E_{1 / 2 \text { red } 2}=-1.62 \mathrm{~V}$. UV-Vis Solution: $(6.50 \mathrm{x}$ $10^{-6} \mathrm{M}$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$: $\lambda_{\max }\left(\varepsilon_{\max }\right)=467 \mathrm{~nm}(14100), 411 \mathrm{~nm}(14600)$. Thin Film: $\lambda_{\max }=474$ $\mathrm{nm}, 416 \mathrm{~nm}$. Fluorescence Solution: $\left(1.57 \times 10^{-4} \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$: $\lambda_{\max }=635 \mathrm{~nm}(\Phi<$ $0.01)$. Thin Film: $\lambda_{\mathrm{em}}=670 \mathrm{~nm}(\Phi=0.03)$.

Synthesis of 3,9-dimesityl-2,8-diphenyl-3,9-diboraperylene (8)

In an inert atmosphere glovebox, 3,9-dihydroxy-2,8-diphenyl-3,9-diboraperylene (102. mg, 0.235 mmol, 1 equiv.) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ in a Schlenk flask. The vessel was sealed, removed from the glovebox and $\mathrm{BBr}_{3}(0.11 \mathrm{~mL}, 1.1 \mathrm{mmol}, 5$ equiv.) was added to the solution under nitrogen via injection. The mixture was stirred at room temperature for 26 h and then all volatiles were removed under reduced pressure. The remaining solid was dissolved in dry toluene (5 mL) and mesitylmagnesium bromide (1.64 mL 1.0 M in THF, $1.64 \mathrm{mmol}, 7$ equiv.) was added under nitrogen. The solution was stirred at room temperature for 16 h and then poured into water $(50 \mathrm{~mL})$. The aqueous mixture was extracted with toluene $(20 \mathrm{~mL})$ and the organic phase was concentrated in vacuo. The crude product was purified by column chromatography (hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 4: 1$) to yield 3,9-dimesityl-2,8-diphenyl-3,9-diboraperylene $\mathbf{8}$ as a blue solid (32 mg , $0.050 \mathrm{mmol}, 21 \%$ yield). Single crystals suitable for X-ray crystallography could be obtained by slow evaporation of a solution of $\mathbf{8}$ in hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1 .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400.1 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298\right.$ $\mathrm{K}): \delta 9.44\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H H}=9.4 \mathrm{~Hz}\right), 9.32(\mathrm{~s}, 2 \mathrm{H}), 8.37\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H H}=6.6 \mathrm{~Hz}\right), 7.96\left(\mathrm{dd}, 2 \mathrm{H},{ }^{3} J_{H H}=\right.$ $\left.8.7 \mathrm{~Hz},{ }^{3} J_{H H}=8.7 \mathrm{~Hz}\right), 7.47-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 6 \mathrm{H}), 6.88(\mathrm{~s}, 4 \mathrm{H}), 2.36(\mathrm{~s}, 6 \mathrm{H}), 2.01(\mathrm{~s}$, $12 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right.$): $\delta 150.9$ (2C, br, B-C), 146.5 (2C), 145.8 (2C), 142.1 (2C), 141.5 (2C, br, B-C), 138.7 (4C), 137.5 (2C, br, B-C), 137.2 (2C), 132.4 (2C), 131.9 (2C), 131.7 (2C), 128.7 (2C), 128.4 (4C), 128.2 (2C), 128.1 (4C), 127.3 (4C), 127.0 (2C), 23.5 (4C), 21.4 (2C). ${ }^{11} \mathbf{B}$ NMR ($128 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\delta 61.51$ (br). MP: $272{ }^{\circ} \mathrm{C}$. HR-MS (ASAP, negative mode) $m / z:[\mathrm{M}]^{-}$Calc'd for $\mathrm{C}_{48} \mathrm{H}_{40} \mathrm{~B}_{2}$ 638.3322; Found 638.3333. CV (3 x 10^{-4} $\mathrm{M}, 0.1 \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, vs. $\left.\mathrm{Fc}^{+/ 0}, 298 \mathrm{~K}\right): E_{1 / 2}$ red $1=-1.07 \mathrm{~V}$. $E_{1 / 2}$ red $2=-1.41 \mathrm{~V}$. UVVis Solution: ($8.90 \times 10^{-6} \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\lambda_{\max }\left(\varepsilon_{\max }\right)=611 \mathrm{~nm}$ (31900), 417 nm (10100). Thin Film: $\lambda_{\max }=628 \mathrm{~nm}$, 421 nm . Fluorescence: $\left(1.32 \times 10^{-6} \mathrm{M}^{\text {in }} \mathrm{CH}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right): \lambda_{\max }=668$ $\mathrm{nm}(\Phi=0.74)$.

Synthesis of 1,7-dimesityl-2,8-diphenyl-1,7-diboraanthanthrene (9)

In an inert atmosphere glovebox, 1,7-dihydroxy-2,8-diphenyl-1,7-diboraanthanthrene 5 (20.0 mg , 0.0437 mmol, 1 equiv.) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ in a Schlenk flask. The vessel was sealed, removed from the glovebox and $\mathrm{BBr}_{3}(0.021 \mathrm{~mL}, 0.22 \mathrm{mmol}, 5$ equiv.) was added to the solution under nitrogen via injection. The mixture was stirred at room temperature for 26 h and then all volatiles were removed under reduced pressure. The remaining solid was dissolved in dry toluene and mesitylmagnesium bromide (0.31 mL 1.0 M in $\mathrm{THF}, 0.31 \mathrm{mmol}, 7$ equiv. $)$ was added under nitrogen at $0{ }^{\circ} \mathrm{C}$. The solution was warmed to room temperature and stirred for 20 h . The solvent was removed under reduced pressure. The crude product was purified by column chromatography (hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $4: 1$) to yield 1,7-dimesityl-2,8-diphenyl-1,7diboraanthanthrene (9) as a red solid ($6.0 \mathrm{mg}, 0.0091 \mathrm{mmol}, 21 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400.1 \mathrm{MHz}$, $\left.\mathrm{CD}_{2} \mathrm{Cl} 2,298 \mathrm{~K}\right): \delta 8.77(\mathrm{~s}, 2 \mathrm{H}), 8.38\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H H}=8.0 \mathrm{~Hz}\right), 8.27\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H H}=8.3 \mathrm{~Hz}\right), 8.17(\mathrm{~s}$, $2 \mathrm{H}), 7.37-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 6 \mathrm{H}), 6.90(\mathrm{~s}, 4 \mathrm{H}), 2.38(\mathrm{~s}, 6 \mathrm{H}), 2.06(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\delta 150.8$ (2C, br, B-C), 149.4 (2C), 149.0 (2C), 145.1 (2C), 141.1 (2C, br, B-C), 138.7 (4C), 137.3 (2C), 135.9 (2C), 135.9 (2C, br, B-C), 132.1 (2C), 131.4 (2C), 130.5 (2C), 128.3 (4C), 128.2 (2C), 127.8 (4C), 127.4 (4C), 126.9 (2C), 125.7 (2C), 23.4 (4C), 21.4 (2C). ${ }^{11} \mathbf{B}$ NMR ($128 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): not observed. MP: $264{ }^{\circ} \mathrm{C}$ HR-MS (ASAP, negative mode) $m / z:[M]^{-}$Calc'd for $\mathrm{C}_{50} \mathrm{H}_{40} \mathrm{~B}_{2}$ 662.3322; Found: 662.3327. CV (3 x 10-4 $\mathrm{M}, 0.1 \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, vs. $\mathrm{Fc}^{+/ 0}, 298 \mathrm{~K}$): $E_{1 / 2 \text { red } 1}=-1.17 \mathrm{~V}$. $E_{1 / 2 \text { red } 2}=-1.51 \mathrm{~V}$. UVVis Solution: ($1.22 \times 10^{-5} \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\lambda_{\max }\left(\varepsilon_{\max }\right)=575 \mathrm{~nm}$ (34700), 541 nm (28800), 455 nmm (19600). Thin Film: $\lambda_{\max }=590 \mathrm{~nm}, 551 \mathrm{~nm}, 460 \mathrm{~nm}$. Fluorescence: $\left(1.43 \times 10^{-6} \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right): \lambda_{\text {max }}=622 \mathrm{~nm}(\Phi=0.28)$.

Synthesis of 11-tert-butyl-2,8-dimesityl-3,7-diphenyl-2,8-diboratriangulene (10)

In an inert atmosphere glovebox 11-tert-butyl-2,8-dihydroxy-3,7-diphenyl-2,8-diboratriangulene 6 ($62.5 \mathrm{mg}, 0.122 \mathrm{mmol}$, 1 equiv.) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ in a Schlenk flask. The vessel was sealed, removed from the glovebox and $\mathrm{BBr}_{3}(0.058 \mathrm{~mL}, 0.61 \mathrm{mmol}, 5$ equiv.) was added to the solution under nitrogen via injection. The mixture was stirred at room temperature for 26 h and then all volatiles were removed under reduced pressure. The remaining solid was dissolved in dry toluene and mesitylmagnesium bromide (0.85 mL 1.0 M in THF, 0.85 mmol , 7 equiv.) was added. The solution was stirred at room temperature for 20 h . The solvent was removed under reduced pressure. The crude product was purified by column chromatography (hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, 4:1) to yield 11-tert-butyl-2,8-dimesityl-3,7-diphenyl-2,8-diboratriangulene $\mathbf{1 0}$ as a brown solid ($18 \mathrm{mg}, 0.025 \mathrm{mmol}, 21 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\delta 9.05$ (s, 2H), 8.81 (s, $3 \mathrm{H}), 8.56(\mathrm{~s}, 2 \mathrm{H}), 7.45-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.22(\mathrm{~m}, 6 \mathrm{H}), 6.93(\mathrm{~s}, 4 \mathrm{H}), 2.40(\mathrm{~s}, 6 \mathrm{H}), 2.07(\mathrm{~s}, 12 \mathrm{H})$, 1.58 (s, 9 H). ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right) \delta 151.1$ (1C), 150.1 (2C), 148.8 (2C), 148.3 (2C, br, B-C), 145.6 (2C), 141.6 (2C, br, B-C), 138.8 (4C), 137.1 (2C), 136.2 (2C), 136.0 (2C, br, B-C), 134.0 (2C), 130.6 (2C), 130.2 (2C), 129.2 (1C), 128.3 (4C), 128.1 (4C), 127.4 (4C), 126.5 (2C), 125.0 (1C), 122.5 (1C), 35.8 (1C), 31.8 (3C), 23.5 (4C), 21.5 (2C). ${ }^{11} \mathbf{B}$ NMR ($128 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\delta 61.13$ (br). MP: $168{ }^{\circ} \mathrm{C}$ HR-MS (ASAP, negative mode) $\mathrm{m} / \mathrm{z}: ~[\mathrm{M}]^{-}$ Calc'd for $\mathrm{C}_{54} \mathrm{H}_{48} \mathrm{~B}_{2} 718.3948$; Found: 718.3960. CV $\left(3 \times 10^{-4} \mathrm{M}, 0.1 \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, vs. $\mathrm{Fc}^{+/ 0}, 298 \mathrm{~K}$): $E_{1 / 2 \text { red }}=-1.34 \mathrm{~V}$. UV-Vis Solution: ($6.69 \times 10^{-6} \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\lambda_{\max }$ $\left(\varepsilon_{\max }\right)=591 \mathrm{~nm}(5100), 550 \mathrm{~nm}(7200), 434 \mathrm{~nm}(22600), 404 \mathrm{~nm}(37200)$. Thin Film: $\lambda_{\max }=602$ nm , $511 \mathrm{~nm}, 440 \mathrm{~nm}, 406 \mathrm{~nm}$. Fluorescence: $\left(1.45 \times 10^{-6} \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$: $\lambda_{\max }=633 \mathrm{~nm}$, $684 \mathrm{~nm}(\Phi=0.34)$.

Synthesis of 1-styrylnaphthalene

$\mathrm{Pd}(\mathrm{OAc})_{2}(66.5 \mathrm{mg}, 0.296 \mathrm{mmol})$ and tri(o-tolyl)phosphine ($450 . \mathrm{mg}, 1.48 \mathrm{mmol}$) were placed into a 50 mL Schlenk flask fitted with a magnetic stirbar and sealed with a rubber septum. The Schlenk flask was evacuated and backfilled with nitrogen. Dry DMF (25 mL) and $\mathrm{NEt}_{3}(10 \mathrm{~mL})$ were added via syringe. Subsequently, 1-bromonaphthalene ($2.08 \mathrm{~mL}, 14.9 \mathrm{mmol}, 1$ equiv.) and styrene ($2.04 \mathrm{~mL}, 17.9 \mathrm{mmol}, 1.2$ equiv.) were added via syringe. The reaction mixture was stirred for 5 h at $90^{\circ} \mathrm{C}$ then cooled to room temperature and stirred for a further 12 h .0 .5 M aq . $\mathrm{HCl}(150 \mathrm{~mL})$ and 2 M aq. $\mathrm{HCl}(150 \mathrm{~mL})$ were successively added to the reaction mixture. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \times 100 \mathrm{~mL})$ and the organic phase was washed with brine $(3 \mathrm{x}$ 100 mL) and distilled water ($2 \times 100 \mathrm{~mL}$). The organic layer was dried with MgSO_{4}, filtered and concentrated in vacuo to give an oil from which colorless crystals formed over five days. The remaining liquid was decanted from the crystals, which were further purified by silica gel column chromatography ($15: 1 n$-hexane/EtOAc) to afford 1 -styrylnaphthalene as a white solid (2.57 g , $11.2 \mathrm{mmol}, 75 \%$ yield) that was spectroscopically identical to a literature account. ${ }^{[S 2]}{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 8.24\left(\mathrm{~d},{ }^{3} J_{H H}=8.17 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.88(\mathrm{~m}, 2 \mathrm{H}), 7.80\left(\mathrm{~d},{ }^{3} J_{H H}=8.1 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 7.75\left(\mathrm{~d},{ }^{3} J_{H H}=7.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.61\left(\mathrm{~d},{ }^{3} J_{H H}=7.74 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.51(\mathrm{~m}, 3 \mathrm{H}), 7.41\left(\mathrm{t},{ }^{3} J_{H H}=7.8\right.$ $\mathrm{Hz}, 2 \mathrm{H}), 7.31\left(\mathrm{t},{ }^{3} J_{H H}=7.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.16\left(\mathrm{~d},{ }^{3} J_{H H}=16.1 \mathrm{~Hz}, 1 \mathrm{H}\right)$. HR-MS (MALDI-TOF, positive mode) $m / z:[\mathrm{M}]^{+}$Calc'd for $\mathrm{C}_{18} \mathrm{H}_{14} 230.1090$; Found 230.10864 .

Synthesis of 1,5-distyrylnaphthalene

1,5-Dibromonapthalene ($0.95 \mathrm{~g}, 3.3 \mathrm{mmol}$, 1 equiv. $), \mathrm{Pd}(\mathrm{OAc})_{2}(31.2 \mathrm{mg}, 0.141 \mathrm{mmol})$ and $\operatorname{tri}(o-$ tolyl)phosphine ($211 \mathrm{mg}, 0.704 \mathrm{mmol}$) were added to a Schlenk flask fitted with a magnetic stirbar and sealed with a rubber septum. The Schlenk flask was then evacuated and backfilled with nitrogen. Dry DMF (10 mL), $\mathrm{NEt}_{3}(2.4 \mathrm{~mL})$ and styrene ($0.95 \mathrm{~mL}, 8.3 \mathrm{mmol}, 2.5$ equiv.) were added via syringe. The reaction mixture was stirred at $90^{\circ} \mathrm{C}$ for 16 hours. The reaction mixture was cooled to $-20^{\circ} \mathrm{C}$ and crystals formed. The solvent was decanted from the crystals, which were subsequently washed with DMF (10 mL), 2 N aq. $\mathrm{HCl}(200 \mathrm{~mL})$, distilled water (500 mL), and $\mathrm{MeOH}(100 \mathrm{~mL})$. The crystalline product was further purified by chromatography on a short silica gel column (1:19 EtOAc/pentane) to afford 1,5-di(styryl)naphthalene ($561 \mathrm{mg}, 1.69$ $\mathrm{mmol}, 51 \%$ yield) as an off-white solid that was spectroscopically identical to a literature account. ${ }^{[33]}{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 8.19$ (d, 2H, ${ }^{3} \mathrm{~J}=8.6 \mathrm{~Hz}$), $7.90\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=\right.$ $16.0 \mathrm{~Hz}), 7.77\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J=7.0 \mathrm{~Hz}\right), 7.62\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}\right), 7.55\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}\right), 7.42(\mathrm{t}$, $\left.4 \mathrm{H},{ }^{3} J=7.3 \mathrm{~Hz}\right), 7.31\left(\mathrm{tt}, 2 \mathrm{H},{ }^{3} J=7.3 \mathrm{~Hz},{ }^{4} J=1.9 \mathrm{~Hz}\right), 7.15\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J=16.0 \mathrm{~Hz}\right)$. HR-MS (MALDI-TOF, positive mode) $m / z:[\mathrm{M}]^{+}$Calc'd for $\mathrm{C}_{26} \mathrm{H}_{20}$ 332.1560; Found 332.15697.

Synthesis of 1,4-distyrylnaphthalene

1,4-Dibromonapthalene ($2.00 \mathrm{~g}, 7.00 \mathrm{mmol}, 1$ equiv.), $\mathrm{Pd}(\mathrm{OAc})_{2}(62.4 \mathrm{mg}, 0.282 \mathrm{mmol}$) and tri $(o$-tolyl)phosphine ($422 \mathrm{mg}, 1.41 \mathrm{mmol}$) were added to a Schlenk flask fitted with a magnetic stirbar and sealed with a rubber septum. The Schlenk flask was then evacuated and backfilled with nitrogen. Dry DMF (20 mL), $\mathrm{NEt}_{3}(4.8 \mathrm{~mL})$ and styrene ($1.90 \mathrm{~mL}, 16.7 \mathrm{mmol}, 2.4$ equiv.) were added via syringe. The reaction mixture was stirred at $90^{\circ} \mathrm{C}$ for 16 hours. The reaction mixture was cooled to $-20^{\circ} \mathrm{C}$ and crystals formed. The solvent was decanted from the crystals, which were subsequently washed with DMF (20 mL), 2 N aq. $\mathrm{HCl}(400 \mathrm{~mL})$, distilled water (1 $\mathrm{L})$, and $\mathrm{MeOH}(200 \mathrm{~mL})$. The crystalline product was further purified by chromatography on a short silica gel column (1:19 EtOAc/pentane) to afford 1,4-di(styryl)naphthalene (1.29 g, 3.89 $\mathrm{mmol}, 55 \%$ yield) as a yellow crystalline solid that was spectroscopically identical to a literature
account. ${ }^{[\mathrm{S} 4]}{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 8.28$ (dd, $2 \mathrm{H}^{3} J=6.6 \mathrm{~Hz},{ }^{4} J=3.4 \mathrm{~Hz}$), 7.92 $\left(\mathrm{d}, 2 \mathrm{H},{ }^{3} J=16.0 \mathrm{~Hz}\right), 7.78(\mathrm{~s}, 2 \mathrm{H}), 7.66-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.58\left(\mathrm{dd}, 2 \mathrm{H}^{3} J=6.6 \mathrm{~Hz},{ }^{4} J=3.3 \mathrm{~Hz}\right)$, $7.42\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} \mathrm{~J}=7.3 \mathrm{~Hz}\right), 7.31\left(\mathrm{tt}, 2 \mathrm{H},{ }^{3} J=7.4 \mathrm{~Hz},{ }^{4} J=1.8 \mathrm{~Hz}\right), 7.19\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J=16.0 \mathrm{~Hz}\right)$. HRMS (MALDI-TOF, positive mode) $m / z:[\mathrm{M}]^{+}$Calc'd for $\mathrm{C}_{26} \mathrm{H}_{20}$ 332.1560; Found 332.15498.

Synthesis of 9,10-bis(2,3,4,5,6-pentafluorostyryl)anthracene

9,10-Dibromoanthracene ($5.00 \mathrm{~g}, 14.9 \mathrm{mmol}, 1$ equiv.), tri(o-tolyl)phosphine ($900 . \mathrm{mg}, 3.00$ mmol), 25 mL dry DMF and $10 \mathrm{~mL} \mathrm{NEt}_{3}$ were added to a Schlenk flask fitted with a magnetic stirbar. The mixture was purged with bubbling argon for ten minutes, after which $\operatorname{Pd}(\mathrm{OAc})_{2}(133$ $\mathrm{mg}, 0.600 \mathrm{mmol}$) was added and the vessel was sealed with a rubber septum. Pentafluorostyrene ($4.9 \mathrm{~mL}, 6.9 \mathrm{~g}, 36 \mathrm{mmol}, 2.4$ equiv.) was added via injection. The reaction mixture was stirred at $110{ }^{\circ} \mathrm{C}$ for 68 hours. The reaction mixture was cooled to room temperature and poured into 300 mL 2 N HCl . The yellow precipitate was collected by filtration and washed with 2 N aq. HCl $(200 \mathrm{~mL})$ and deionized water $(500 \mathrm{~mL})$. The product was further purified by recrystallization from hot chloroform solution and dried in vacuo to afford 9,10-bis(2,3,4,5,6pentafluorostyryl)anthracene as a yellow crystalline solid ($3.48 \mathrm{~g}, 6.19 \mathrm{mmol}, 42 \%$ yield). From the crystallization, crystals suitable for X-ray crystallography could be obtained. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta 8.34$ (dd, $4 \mathrm{H}^{3} J=6.7 \mathrm{~Hz},{ }^{4} J=3.4 \mathrm{~Hz}$), $8.25\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J=17.0 \mathrm{~Hz}\right.$), 7.55 $\left(\mathrm{dd}, 4 \mathrm{H}^{3} J=6.7 \mathrm{~Hz},{ }^{4} J=3.4 \mathrm{~Hz}\right), 6.85\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J=17.0 \mathrm{~Hz}\right) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, 298 K , partial): $\delta 145.1$ (br, d, $\left.{ }^{1} J_{\mathrm{CF}}=242 \mathrm{~Hz}, 4 \mathrm{C}\right), 138.0\left(\mathrm{br}, \mathrm{d},{ }^{1} J_{\mathrm{CF}}=240 \mathrm{~Hz}, 4 \mathrm{C}\right), 134.9(\mathrm{~m}$, $2 \mathrm{C}), 132.7$ (2C), 129.2 (4C), 126.2 (4C), 126.1 (4C), 122.0 (d, ${ }^{4} J_{\mathrm{CF}}=2.5 \mathrm{~Hz}, 2 \mathrm{C}$), 112.3 (br, m, 2C). Due to poor solubility, peaks corresponding to $o-C-F(2 C)$ could not be resolved. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta=-142.4(\mathrm{~m}, 4 \mathrm{~F}),-155.4\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{FF}}=21 \mathrm{~Hz}, 2 \mathrm{~F}\right),-162.4(\mathrm{~m}, 4 \mathrm{~F}) . \mathrm{MP}:$ $265{ }^{\circ} \mathrm{C}$ HR-MS (ESI-TOF, positive mode) $\mathrm{m} / \mathrm{z}:[\mathrm{M}]^{+}$Calc'd for $\mathrm{C}_{30} \mathrm{H}_{12} \mathrm{~F}_{10} 562.07738$; Found 562.07753 .

Synthesis of 1,6-distyrylpyrene

A Schlenk flask was charged with 1,6 -dibromopyrene ($1.00 \mathrm{~g}, 2.78 \mathrm{mmol} 1$ equiv.), tri-otolylphosphine ($169 \mathrm{mg}, 0.56 \mathrm{mmol}$), triethylamine (6 ml) and dry DMF (30 ml). The mixture was flushed with nitrogen for 10 min after which styrene ($723 \mathrm{mg}, 6.94 \mathrm{mmol}, 2.5$ equiv.) and palladium (II) acetate ($60.0 \mathrm{mg}, 0.267 \mathrm{mmol}$) were added. The reaction mixture was stirred under nitrogen at $110{ }^{\circ} \mathrm{C}$ for 17 h , cooled to room temperature, and then quenched with $2 \mathrm{~N} \mathrm{HCl}(80$ $\mathrm{ml})$. The precipitate was collected by filtration and thoroughly washed with water. The solid was dissolved in hot toluene and triturated with methanol to give pure 1,6-distyrylpyrene (810 mg , $2.00 \mathrm{mmol}, 72 \%$ yield) as a yellow-green solid spectroscopically identical to a literature account. ${ }^{[55]}{ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta 8.49\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=9.3 \mathrm{~Hz}\right.$), 8.33 (d, 2 H , $\left.{ }^{3} J_{\mathrm{HH}}=8.0 \mathrm{~Hz}\right), 8.21\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=16.0 \mathrm{~Hz}\right), 8.19\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.0 \mathrm{~Hz}\right), 8.13\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=9.3\right.$ $\mathrm{Hz}), 7.71-7.69(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.36\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=16.0 \mathrm{~Hz}\right), 7.34\left(\mathrm{tt}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.4\right.$ $\mathrm{Hz},{ }^{4} J_{\mathrm{HH}}=1.2 \mathrm{~Hz}$). HR-MS (ESI-TOF, positive mode) $\mathrm{m} / \mathrm{z}:[\mathrm{M}]^{+}$Calc'd for $\mathrm{C}_{32} \mathrm{H}_{22}: 406.1716$; Found 406.1708.

Synthesis of 7-(tert-butyl)-1,3-distyrylpyrene

1,3-dibromo-7-tert-butylpyrene ($1.23 \mathrm{~g}, 2.96 \mathrm{mmol}$) and tri-o-tolylphosphine ($180 \mathrm{mg}, 591 \mu \mathrm{~mol}$) were dissolved in dry DMF (10 ml) and triethylamine (2.5 ml) in a round bottom flask and degassed by bubbling nitrogen through the solution for 10 min . Palladium(II)acetate (26.6 mg , $119 \mu \mathrm{~mol})$ and styrene ($771 \mathrm{mg}, 7.41 \mathrm{mmol}$) were added and the reaction mixture was stirred
under nitrogen for 13 h at $110^{\circ} \mathrm{C}$. The reaction was cooled to room temperature and $2 \mathrm{~N} \mathrm{HCl}(60$ ml) was added. The precipitate was filtered off and dried under reduced pressure. Recrystallization from chloroform yielded pure 7-(tert-butyl)-1,3-distyryl-pyrene as a yellow solid ($827 \mathrm{mg}, 1.79 \mathrm{mmol}, 60 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta 8.56(\mathrm{~s}, 1 \mathrm{H})$, $8.45\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=9.2 \mathrm{~Hz}\right), 8.22(\mathrm{~s}, 2 \mathrm{H}), 8.20\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=14.8 \mathrm{~Hz}\right), 8.10\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=9.2\right.$ $\mathrm{Hz}), 7.73\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.4 \mathrm{~Hz}\right), 7.46\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.8 \mathrm{~Hz}\right), 7.42\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=16.8 \mathrm{~Hz}\right), 7.34$ $\left(\mathrm{tt}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1.2 \mathrm{~Hz}\right), 1.59(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta$ 149.3 (1C), 137.9 (2C), 132.1 (2C), 131.9 (2C), 131.3 (2C), 129.0 (4C), 128.3 (2C), 128.0 (2C), 127.8 (2C), 126.9 (4C), 126.1 (2C), 125.6 (1C), 123.6 (1C), 123.1 (2C), 122.8 (2C), 121.4 (1C), 35.3 (1C), 32.0 (3C). MP: $222{ }^{\circ} \mathrm{C}$. HR-MS (ESI-TOF, positive mode) $m / z:[\mathrm{M}]^{+}$Calc'd for $\mathrm{C}_{36} \mathrm{H}_{30}$ 462.2342; Found 462.2326.

3. NMR Spectra

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of 1-hydroxy-2-phenyl-1-boraphenalene (1) (400 MHz , DMSO-d ${ }_{6}, 298 \mathrm{~K}$).

Figure S2. Magnified aromatic region of the ${ }^{1} \mathrm{H}$ NMR spectrum of 1-hydroxy-2-phenyl-1-boraphenalene (1) (400 MHz, DMSO-d $_{6}, 298 \mathrm{~K}$).

Figure S3. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 1-hydroxy-2-phenyl-1-boraphenalene (1) (100 MHz, DMSO-d $6,298 \mathrm{~K}$).

Figure S4. Magnified aromatic region of the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 1-hydroxy-2-phenyl-1-boraphenalene (1) (100 MHz, DMSO-d ${ }_{6}, 298 \mathrm{~K}$).

Figure S5. ${ }^{11}$ B NMR spectrum of 1-hydroxy-2-phenyl-1-boraphenalene (1) (128 MHz, $\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure S6. ${ }^{1}$ H NMR spectrum of 1,6-dihydroxy-2,7-diphenyl-1,6-diborapyrene (2) (400 MHz, DMSO-d ${ }_{6}, 298 \mathrm{~K}$).

Figure S7. Magnified aromatic region of the ${ }^{1} \mathrm{H}$ NMR spectrum 1,6-dihydroxy-2,7-diphenyl-1,6-diborapyrene (2) (400 MHz , DMSO-d ${ }_{6}, 298 \mathrm{~K}$).

Figure S8. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 1,6-dihydroxy-2,7-diphenyl-1,6-diborapyrene (2) (100 MHz, DMSO-d, 298 K).

Figure S9. Magnified aromatic region of the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum 1,6-dihydroxy-2,7-diphenyl-1,6-diborapyrene (2) (100 MHz, DMSO- $\left.\mathrm{d}_{6}, 298 \mathrm{~K}\right)$.

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectrum 1,8-dihydroxy-2,7-diphenyl-1,8-diborapyrene (3) (400 MHz, DMSO-d ${ }_{6}, 298 \mathrm{~K}$).

Figure S11. Magnified aromatic region of the ${ }^{1} \mathrm{H}$ NMR spectrum 1,8-dihydroxy-2,7-diphenyl-1,8-diborapyrene (3) (400 MHz , DMSO-d ${ }_{6}, 298 \mathrm{~K}$).

Figure S12. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum 1,8-dihydroxy-2,7-diphenyl-1,8-diborapyrene (3) (100 MHz, DMSO-d ${ }_{6}, 298$ K).

Figure S13. Magnified aromatic region of the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum 1,8-dihydroxy-2,7-diphenyl-1,8-diborapyrene (3) (100 MHz, DMSO-d $\left.{ }_{6}, 298 \mathrm{~K}\right)$.

Figure S14. ${ }^{1} \mathrm{H}$ NMR spectrum of 3,9-dihydroxy-2,8-bis(pentafluorophenyl)-3,9-diboraperylene (4b) (600 MHz , DMSO-d ${ }_{6}, 298 \mathrm{~K}$).

Figure S15. Magnified aromatic region of the ${ }^{1} \mathrm{H}$ NMR spectrum of 3,9-dihydroxy-2,8-bis(pentafluorophenyl)-3,9diboraperylene (4b) (600 MHz , DMSO-d $\mathrm{d}_{6}, 298 \mathrm{~K}$).

Figure S16. ${ }^{19}$ F NMR spectrum of 3,9-dihydroxy-2,8-bis(pentafluorophenyl)-3,9-diboraperylene (4b) (376 MHz , DMSO-d $_{6}, 298 \mathrm{~K}$).

Figure S17. Expansion of the ${ }^{19}$ F NMR spectrum of 3,9-dihydroxy-2,8-bis(pentafluorophenyl)-3,9-diboraperylene (4b) ($376 \mathrm{MHz}, \mathrm{DMSO}_{6}$, 298 K).

Figure S18. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 3,9-dihydroxy-2,8-bis(pentafluorophenyl)-3,9-diboraperylene (4b) (151 $\mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}, 298 \mathrm{~K}$).

Figure S19. Magnified aromatic region of the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 3,9-dihydroxy-2,8-bis(pentafluorophenyl)-3,9-diboraperylene (4b) (151 MHz, DMSO-d ${ }_{6}$, 298 K).

Figure S20. ${ }^{1} \mathrm{H}$ NMR spectrum of 1,7-dihydroxy-2,8-diphenyl-1,7-diboraanthanthrene (5) (400 MHz, DMSO-d ${ }_{6}$, 298 K).

Figure S21. Magnified aromatic region of the ${ }^{1} \mathrm{H}$ NMR spectrum 1,7-dihydroxy-2,8-diphenyl-1,7diboraanthanthrene (5) (400 MHz, DMSO-d ${ }_{6}, 298 \mathrm{~K}$).

Figure S22. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 1,7-dihydroxy-2,8-diphenyl-1,7-diboraanthanthrene (5) (151 MHz, DMSO$\mathrm{d}_{6}, 298 \mathrm{~K}$).

Figure S23. Magnified aromatic region of the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 1,7-dihydroxy-2,8-diphenyl-1,7diboraanthanthrene (5) (151 MHz, DMSO-d ${ }_{6}$, 298 K).

Figure S24. ${ }^{1} \mathrm{H}$ NMR spectrum of 11-tert-butyl-2,8-dihydroxy-3,7-diphenyl-2,8-diboratriangulene (6) (400 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$.

Figure S25. Magnified aromatic region of the ${ }^{1} \mathrm{H}$ NMR spectrum of 11-tert-butyl-2,8-dihydroxy-3,7-diphenyl-2,8diboratriangulene (6) (400 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$).

Figure S26. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 11-tert-butyl-2,8-dihydroxy-3,7-diphenyl-2,8-diboratriangulene (6) (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure S27. Magnified aromatic region of the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 11-tert-butyl-2,8-dihydroxy-3,7-diphenyl-2,8-diboratriangulene (6) ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$).

Figure S28. ${ }^{1} \mathrm{H}$ NMR spectrum of 1,6-dimesityl-2,7-diphenyl-1,6-diborapyrene (7) (400 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$).

Figure S29. Magnified aromatic region of the ${ }^{1} \mathrm{H}$ NMR spectrum of 1,6-dimesityl-2,7-diphenyl-1,6-diborapyrene (7) ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$).

Figure S30. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 1,6-dimesityl-2,7-diphenyl-1,6-diborapyrene (7) (100 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$.

Figure S31. Magnified aromatic region of the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 1,6-dimesityl-2,7-diphenyl-1,6diborapyrene (7) (100 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, 298 K). (7)

Figure S32. ${ }^{11}$ B NMR spectrum of 1,6-dimesityl-2,7-diphenyl-1,6-diborapyrene (7) (128 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$.

Figure S33. ${ }^{1} \mathrm{H}$ NMR spectrum of 3,9-dimesityl-2,8-diphenyl-3,9-diboraperylene (8) (400 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$.

Figure S34. Magnified aromatic region of the ${ }^{1} \mathrm{H}$ NMR spectrum of 3,9-dimesityl-2,8-diphenyl-3,9-diboraperylene (8) $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$.

Figure S35. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 3,9-dimesityl-2,8-diphenyl-3,9-diboraperylene $(\mathbf{8})\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298\right.$ K).

Figure S36. Magnified aromatic region of the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 3,9-dimesityl-2,8-diphenyl-3,9diboraperylene (8) (100 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$.

Figure S37. ${ }^{11}$ B NMR spectrum of 3,9-dimesityl-2,8-diphenyl-3,9-diboraperylene (8) (128 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$.

Figure S38. ${ }^{1} \mathrm{H}$ NMR spectrum of 1,7-dimesityl-2,8-diphenyl-1,7-diboraanthanthrene (9) (400 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298$ K).

Figure S39. Magnified aromatic region of the ${ }^{1} \mathrm{H}$ NMR spectrum of 1,7-dimesityl-2,8-diphenyl-1,7diboraanthanthrene (9) (400 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$.

Figure S40. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 1,7-dimesityl-2,8-diphenyl-1,7-diboraanthanthrene (9) (100 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, 298 K).

Figure S41. Magnified aromatic region of the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 1,7-dimesityl-2,8-diphenyl-1,7diboraanthanthrene (9) (100 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$.

Figure $\mathbf{S 4 2} .{ }^{1} \mathrm{H}$ NMR spectrum 11-tert-butyl-2,8-dimesityl-3,7-diphenyl-2,8-diboratriangulene (10) (400 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$).

Figure S43. Magnified aromatic region of the ${ }^{1} \mathrm{H}$ NMR spectrum of 11-tert-butyl-2,8-dimesityl-3,7-diphenyl-2,8diboratriangulene (10) ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$).

Figure S44. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 11-tert-butyl-2,8-dimesityl-3,7-diphenyl-2,8-diboratriangulene (10) (100 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$.

Figure S45. Magnified aromatic region of the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 11-tert-butyl-2,8-dimesityl-3,7-diphenyl-2,8-diboratriangulene (10) ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$).

Figure S46. ${ }^{11}$ B NMR spectrum of 11-tert-butyl-2,8-dimesityl-3,7-diphenyl-2,8-diboratriangulene (10) (128 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$).

Figure S47. ${ }^{1} \mathrm{H}$ NMR spectrum of 9,10-bis(2,3,4,5,6-pentafluorostyryl)anthracene ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$).

Figure S48. Magnified aromatic region of the ${ }^{1} \mathrm{H}$ NMR spectrum of $9,10-\operatorname{bis}(2,3,4,5,6$-pentafluorostyryl)anthracene ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$).

Figure S49. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 9,10-bis(2,3,4,5,6-pentafluorostyryl)anthracene ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$).

Figure S50. Magnified aromatic region of the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 9,10-bis(2,3,4,5,6pentafluorostyryl)anthracene ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$).

Figure S51. ${ }^{19} \mathrm{~F}$ NMR spectrum of 9,10-bis(2,3,4,5,6-pentafluorostyryl)anthracene ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$).

Figure S52. Expansion of the ${ }^{19}$ F NMR spectrum of 9,10-bis(2,3,4,5,6-pentafluorostyryl)anthracene (376 MHz , $\mathrm{CDCl}_{3}, 298 \mathrm{~K}$).

Figure S53. ${ }^{1} \mathrm{H}$ NMR spectrum of 7-(t-butyl)-1,3-distyrylpyrene ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$).

Figure S54. Magnified aromatic region of the ${ }^{1} \mathrm{H}$ NMR spectrum of 7 -(t-butyl)-1,3-distyrylpyrene (400 MHz , $\mathrm{CDCl}_{3}, 298 \mathrm{~K}$).

Figure S55. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 7-(t-butyl)-1,3-distyrylpyrene ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$).

Figure S56. Magnified aromatic region of the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 7 -($(t$-butyl)-1,3-distyrylpyrene (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$).

4. Simulated and Measured HR-MS Spectra

Figure S57. Simulated (bottom) and found (top) patterns of the high-resolution mass spectrum of 1 (ASAP, negative mode) $m / z:[\mathrm{M}]^{-}$Calc'd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{BO}$.

Figure S58. Simulated (bottom) and found (top) patterns of the high-resolution mass spectrum of 2 (ASAP, negative mode) $m / z:[\mathrm{M}]^{-}$Calc'd for $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{~B}_{2} \mathrm{O}_{2}$.
JF268-2018-09-07-3_180907 105542 441 -43 RT: $0.42-0.44$ AV: 3 SB: 30 0.08-0.39 NL: 3.52 E 6
T: FTMS-pAPCl corona Full ms $100.0000-400.00001$

Figure S59. Simulated (bottom) and found (top) patterns of the high-resolution mass spectrum of $\mathbf{3}$ (ASAP, negative mode) $m / z:[M]^{-}$Calc'd for $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{~B}_{2} \mathrm{O}_{2}$.

Figure S60. Simulated (bottom) and found (top) patterns of the high-resolution mass spectrum of $\mathbf{4 b}$ (ASAP, negative mode) $m / z:[\mathrm{M}]^{-}$Calc'd for $\mathrm{C}_{30} \mathrm{H}_{10} \mathrm{~B}_{2} \mathrm{~F}_{10} \mathrm{O}_{2}$.

Figure S61. Simulated (bottom) and found (top) patterns of the high-resolution mass spectrum of 5 (ASAP, negative mode) $m / z:[M]^{-}$Calc'd for $\mathrm{C}_{32} \mathrm{H}_{20} \mathrm{~B}_{2} \mathrm{O}_{2}$.

Figure S62. Simulated (bottom) and found (top) patterns of the high-resolution mass spectrum of 6 (ESI-TOF, positive mode) m / z : $[M+1]^{+}$Calc'd for $\mathrm{C}_{36} \mathrm{H}_{29} \mathrm{~B}_{2} \mathrm{O}_{2}$.

Figure S63. Simulated (bottom) and found (top) patterns of the high-resolution mass spectrum of 7 (ASAP, positive mode) $m / z:[\mathrm{M}+1]^{+}$Calc'd for $\mathrm{C}_{44} \mathrm{H}_{39} \mathrm{~B}_{2}$.

Figure S64. Simulated (bottom) and found (top) patterns of the high-resolution mass spectrum of $\mathbf{8}$ (ASAP, negative mode) $m / z:[M]^{-}$Calc'd for $\mathrm{C}_{48} \mathrm{H}_{40} \mathrm{~B}_{2}$.

Figure S65. Simulated (bottom) and found (top) patterns of the high-resolution mass spectrum of 9 (ASAP, negative mode) $m / z:[\mathrm{M}]^{-}$Calc'd for $\mathrm{C}_{50} \mathrm{H}_{40} \mathrm{~B}_{2}$.

Figure S66. Simulated (bottom) and found (top) patterns of the high-resolution mass spectrum of 10 (ASAP, negative mode) $m / z:[M]^{-}$Calc'd for $\mathrm{C}_{54} \mathrm{H}_{48} \mathrm{~B}_{2}$.

Figure S67. Simulated (bottom) and found (top) patterns of the high-resolution mass spectrum of 1styrylnaphthalene (MALDI-TOF, positive mode) $m / z:[\mathrm{M}]^{+}$Calc'd for $\mathrm{C}_{18} \mathrm{H}_{14}$.

Figure S68. Simulated (bottom) and found (top) patterns of the high-resolution mass spectrum of 1,5di(styryl)naphthalene (MALDI-TOF, positive mode) $m / z:[M]^{+}$Calc'd for $\mathrm{C}_{26} \mathrm{H}_{20}$.

Figure S69. Simulated (bottom) and found (top) patterns of the high-resolution mass spectrum of 1,4di(styryl)naphthalene (MALDI-TOF, positive mode) $m / z:[\mathrm{M}]^{+}$Calc'd for $\mathrm{C}_{26} \mathrm{H}_{20}$.

Figure S70. Simulated (bottom) and found (top) patterns of the high-resolution mass spectrum of 9,10-bis(2,3,4,5,6pentafluorostyryl)anthracene (ESI-TOF, positive mode) $m / z:[\mathrm{M}]^{+}$Calc'd for $\mathrm{C}_{30} \mathrm{H}_{12} \mathrm{~F}_{10}$.

Figure S71. Simulated (bottom) and found (top) patterns of the high-resolution mass spectrum of 1,6-distyrylpyrene (ESI-TOF, positive mode) $m / z:[\mathrm{M}]^{+}$Calc'd for $\mathrm{C}_{32} \mathrm{H}_{22}$.

Figure S72. Simulated (bottom) and found (top) patterns of the high-resolution mass spectrum of 7-(tert-butyl)-1,3-distyryl-pyrene (ESI-TOF, positive mode) $\mathrm{m} / \mathrm{z}:[\mathrm{M}]^{+}$Calc'd for $\mathrm{C}_{36} \mathrm{H}_{30}$.

5. UV-Vis and Fluorescence Spectroscopy

Figure S73. UV-Vis absorption (solid lines: 1-4 $10^{-5} \mathrm{M}$ in CHCl_{3}, 298 K ; 5-10 $10^{-6} \mathrm{M}-10^{-5} \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, 298 K) spectra of boron-containing PAHs 1-10. Borinic acids 1-6 are depicted with solid lines and mesityl boranes 7-10 are depicted with dashed lines.

Figure S74. Fluorescence (dashed lines: 1-4 $10^{-5} \mathrm{M}$ in $\mathrm{CHCl}_{3}, 298 \mathrm{~K} ; \mathbf{5 - 1 0} 10^{-7} \mathrm{M}-10^{-4} \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) spectra of boron-containing PAHs 1-10. Borinic acids 1-6 are depicted with solid lines and mesityl boranes 7-10 are depicted with dashed lines.

Figure S75. UV-Vis absorption (thin film, 298 K) spectra of boron-containing PAHs 1-10. Borinic acids 1-6 are depicted with solid lines and mesityl boranes 7-10 are depicted with dashed lines.

Figure S76. Normalized solid-state emission spectra (298 K) of 1, 2, $\mathbf{3}$ and 7 measured at excitation wavelengths of $370 \mathrm{~nm}, 410 \mathrm{~nm}, 475 \mathrm{~nm}$ and 510 nm , respectively.

6. Cyclic Voltammetry

Figure S77. Cyclic voltammogram of 1-hydroxy-2-phenyl-1-boraphenalene (1) ($1 \times 10^{-3} \mathrm{M}, 0.1 \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ in DMSO, vs. $\left.\mathrm{Fc}^{+/ 0}, 298 \mathrm{~K}\right)$.

Figure S78. Cyclic voltammogram of 1,6-dihydroxy-2,7-diphenyl-1,6-diborapyrene (2) (9 x $10^{-4} \mathrm{M}, 0.1 \mathrm{M} n$ $\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ in DMSO, vs. $\mathrm{Fc}^{+/ 0}, 298 \mathrm{~K}$).

Figure S79. Cyclic voltammogram of 1,8-dihydroxy-2,7-diphenyl-1,8-diborapyrene (3) (3x10-5 M, $0.1 \mathrm{M} n-$ $\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ in DMSO, vs. $\mathrm{Fc}^{+/ 0}, 298 \mathrm{~K}$).

Figure S80. Cyclic voltammogram of 3,9-dihydroxy-2,8-bis(pentafluorophenyl)-3,9-diboraperylene (4b) (7 x 10^{-4} M, 0.1 M n - $\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ in DMSO, vs. $\mathrm{Fc}^{+/ 0}, 298 \mathrm{~K}$).

Figure S81. Cyclic voltammogram of 1,7-dihydroxy-2,8-diphenyl-1,7-diboraanthanthrene (5) (3x10-4 M, $0.1 \mathrm{M} n-$ $\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ in DMSO, vs. $\left.\mathrm{Fc}^{+/ 0}, 298 \mathrm{~K}\right)$.

Figure S82. Full cyclic voltammogram of 11-tert-butyl-2,8-dihydroxy-3,7-diphenyl-2,8-diboratriangulene (6) (3 x $10^{-4} \mathrm{M}, 0.1 \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ in DMSO, vs. $\left.\mathrm{Fc}^{+/ 0}, 298 \mathrm{~K}\right)$.

Figure S83. Cyclic voltammogram of the first reduction of 11-tert-butyl-2,8-dihydroxy-3,7-diphenyl-2,8diboratriangulene (6) $\left(3 \times 10^{-4} \mathrm{M}, 0.1 \mathrm{M} n\right.$ - $\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ in DMSO , vs. $\left.\mathrm{Fc}^{+/ 0}, 298 \mathrm{~K}\right)$.

Figure S84. Cyclic voltammogram of 1,6-dimesityl-2,7-diphenyl-1,6-diborapyrene (7) (3x $10^{-4} \mathrm{M}, 0.1 \mathrm{M} n$ $\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, vs. $\mathrm{Fc}^{+/ 0}, 298 \mathrm{~K}$).

Figure S85. Cyclic voltammogram of 3,9-dimesityl-2,8-diphenyl-3,9-diboraperylene (8) ($3 \times 10^{-4} \mathrm{M}, 0.1 \mathrm{M} n-$ $\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, vs. $\left.\mathrm{Fc}^{+/ 0}, 298 \mathrm{~K}\right)$.

Figure S86. Cyclic voltammogram of 1,7-dimesityl-2,8-diphenyl-1,7-diboraanthanthrene (9) (3x10-4 M, $0.1 \mathrm{M} n$ $\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, vs. $\mathrm{Fc}^{+/ 0}, 298 \mathrm{~K}$).

Figure S87. Full cyclic voltammogram of 11-tert-butyl-2,8-dimesityl-3,7-diphenyl-2,8-diboratriangulene (10) (3 x $10^{-4} \mathrm{M}, 0.1 \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, vs. $\left.\mathrm{Fc}^{+/ 0}, 298 \mathrm{~K}\right)$.

Figure S88. Cyclic voltammogram of the first reduction of 11-tert-butyl-2,8-dimesityl-3,7-diphenyl-2,8diboratriangulene (10) $\left(3 \times 10^{-4} \mathrm{M}, 0.1 \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{vs}^{2} . \mathrm{Fc}^{+/ 0}, 298 \mathrm{~K}\right)$.

7. X-ray Crystallography

Crystal data for 1-hydroxy-2-phenyl-1-boraphenalene $2\left(\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{~B}_{2} \mathrm{O}_{2}\right.$, $\left.\cdot 2\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)\right)$: $\mathrm{Mr}=$ $540.28,0.187 \times 0.067 \mathrm{x} 0.018 \mathrm{~mm}^{3}$, triclinic space group P-1, $a=5.7757(6) \AA, \alpha=70.856(5)^{\circ}, b=$ $10.0831(12) \AA, \beta=84.636(5)^{\circ} c=12.4448(14) \AA, \gamma=73.657(5)^{\circ}, V=657.00(13) \AA^{3}, Z=1$, $\rho($ calcd $)=1.366 \mathrm{~g} \cdot \mathrm{~cm}^{-3}, \mu=2.124 \mathrm{~mm}^{-1}, F_{(000)}=284, \operatorname{Goo} F\left(F^{2}\right)=1.057, R_{l}=0.0333, w R^{2}=$ 0.0897 for $\mathrm{I}>2 \sigma(\mathrm{I}), R_{1}=0.0342, w R^{2}=0.0906$ for all data, 2582 unique reflections [$\theta \leq 72.424^{\circ}$] with a completeness of 99.3% and 175 parameters, 0 restraints.

Crystal data for 3,9-dihydroxy-2,8-bis(pentafluorophenyl)-3,9-diboraperylene $4\left(\mathrm{C}_{30} \mathrm{H}_{10} \mathrm{~B}_{2} \mathrm{~F}_{10} \mathrm{O}_{2}\right.$ - $\left.2\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)\right): M \mathrm{r}=789.59,0.511 \mathrm{x} 0.027 \mathrm{x} 0.027 \mathrm{~mm}^{3}$, triclinic space group $\mathrm{P}-1 a=14.7128(5)$ $\AA, \alpha=74.5203(18)^{\circ}, b=14.9182(5) \AA, \beta=87.2248(19)^{\circ} c=16.4821(6) \AA, \gamma=86.8565(18)^{\circ}, V$ $=3479.0(2) \AA^{3}, Z=2, \rho($ calcd $)=1.507 \mathrm{~g} \cdot \mathrm{~cm}^{-3}, \mu=2.373 \mathrm{~mm}^{-1}, F_{(000)}=1602$, $\operatorname{GooF}\left(F^{2}\right)=$ $1.050, R_{l}=0.0758, w R^{2}=0.2050$ for $\mathrm{I}>2 \sigma(\mathrm{I}), R_{1}=0.0871, w R^{2}=0.2149$ for all data, 13706 unique reflections $\left[\theta \leq 72.665^{\circ}\right.$] with a completeness of 99.0% and 1077 parameters, 61 restraints.

Crystal data for 1,7-dihydoxy-2,8-diphenyl-1,7-diboraanthanthrene $9\left(\mathrm{C}_{32} \mathrm{H}_{20} \mathrm{~B}_{2} \mathrm{O}_{2} \cdot 4\right.$ $\left.\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2}\right)\right): M \mathrm{r}=810.51,0.272 \times 0.053 \times 0.022 \mathrm{~mm}^{3}$, triclinic space group $\mathrm{P}-1, a=5.6393(4) \AA$, $\alpha=$
$80.086(3)^{\circ}, b=12.8559(8) \AA, \beta=89.946(3)^{\circ}, c=14.1348(9) \AA, \gamma=85.751(3)^{\circ}, V=1006.60(12)$ $\AA^{3}, Z=1, \rho($ calcd $)=1.337 \mathrm{~g} \cdot \mathrm{~cm}^{-3}, \mu=0.742 \mathrm{~mm}^{-1}, F_{(000)}=430, \operatorname{Goo} F\left(F^{2}\right)=1.055, R_{l}=0.0570$, $w R^{2}=0.1559$ for $\mathrm{I}>2 \sigma(\mathrm{I}), R_{1}=0.0653, w R^{2}=0.1655$ for all data, 3919 unique reflections $[\theta \leq$ 72.723°] with a completeness of 98.4% and 341 parameters, 8 restraints.

Crystal data for 3,9-dimesityl-2,8-diphenyl-3,9-diboraperylene $8\left(\mathrm{C}_{48} \mathrm{H}_{40} \mathrm{~B}_{2}\right): M \mathrm{r}=638.42$, $0.168 \times 0.094 \times 0.082 \mathrm{~mm}^{3}$, monoclinic space group $\mathrm{P} 2_{1} / \mathrm{n}, a=9.4061(5) \AA, \alpha=90^{\circ}, b=$ $11.8145(7) \AA, \beta=95.270(2)^{\circ} c=15.8718(9) \AA, \gamma=90^{\circ}, V=1756.35(17) \AA^{3}, Z=2, \rho(c$ calcd $)=$ $1.207 \mathrm{~g} \cdot \mathrm{~cm}^{-3}, \mu=0.504 \mathrm{~mm}^{-1}, F_{(000)}=676, \operatorname{Goo} F\left(F^{2}\right)=1.034, R_{l}=0.0419, w R^{2}=0.1082$ for $\mathrm{I}>2 \sigma(\mathrm{I}), R_{1}=0.0465, w R^{2}=0.1130$ for all data, 3467 unique reflections $\left[\theta \leq 72.214^{\circ}\right]$ with a completeness of 99.9% and 229 parameters, 0 restraints.

Crystal data for 9,10-bis(2,3,4,5,6-pentafluorostyryl)anthracene $\left(\mathrm{C}_{30} \mathrm{H}_{12} \mathrm{~F}_{10}\right): M \mathrm{r}=562.40$, $0.534 \times 0.055 \times 0.034 \mathrm{~mm}^{3}$, monoclinic space group $\mathrm{P} 2_{1} / \mathrm{c}, a=13.5878(4) \AA, \alpha=90^{\circ}, b=$ $7.1239(2) \AA, \beta=98.4482(13)^{\circ} c=22.9259(7) \AA, \gamma=90^{\circ}, V=2195.10(11) \AA^{3}, Z=4, \rho($ calcd $)=$ $1.702 \mathrm{~g} \cdot \mathrm{~cm}^{-3}, \mu=1.400 \mathrm{~mm}^{-1}, F_{(000)}=1128, \operatorname{Goo} F\left(F^{2}\right)=1.083, R_{l}=0.0600, w R^{2}=0.1643$ for $\mathrm{I}>2 \sigma(\mathrm{I}), R_{1}=0.0647, w R^{2}=0.1684$ for all data, 4325 unique reflections $\left[\theta \leq 72.126^{\circ}\right]$ with a completeness of 99.9% and 361 parameters, 0 restraints.

Figure S89. Solid state structure of 9,10-bis(2,3,4,5,6-pentafluorostyryl)anthracene. C: black, F: green. H atoms omitted for clarity.

8. Computations

Figure S90. Geometry-optimized structure of $\mathbf{1}$ by DFT calculations at the B3LYP/6-31++G** level of theory.

Figure S91. Frontier molecular orbitals of $\mathbf{1}$ by DFT calculations at the B3LYP/6-31++G** level of theory. Isovalues for orbitals: $0.02 \mathrm{a} . \mathrm{u}$.

Figure S92. Geometry-optimized structure of $\mathbf{2}$ by DFT calculations at the B3LYP/6-31++G** level of theory.

Figure S93. Frontier molecular orbitals of 2 by DFT calculations at the B3LYP/6-31++G** level of theory. Isovalues for orbitals: $0.02 \mathrm{a} . \mathrm{u}$.

Figure S94. Geometry-optimized structure of $\mathbf{3}$ by DFT calculations at the B3LYP/6-31++G** level of theory.

Figure S95. Frontier molecular orbitals of $\mathbf{3}$ by DFT calculations at the B3LYP/6-31++G** level of theory. Isovalues for orbitals: 0.02 a.u.

Figure S96. Geometry-optimized structure of $\mathbf{4 a}$ by DFT calculations at the B3LYP/6-31++G** level of theory.

LUMO
$-3.15 \mathrm{eV}$

HOMO
$-5.50 \mathrm{eV}$

Figure S97. Frontier molecular orbitals of $\mathbf{4 a}$ by DFT calculations at the B3LYP/6-31++G** level of theory. Isovalues for orbitals: $0.02 \mathrm{a} . \mathrm{u}$.

Figure S98. Geometry-optimized structure of $\mathbf{4 b}$ by DFT calculations at the B3LYP/6-31++G** level of theory.

LUMO
$-3.65 \mathrm{eV}$

HOMO
-6.08 eV

Figure S99. Frontier molecular orbitals of $\mathbf{4 b}$ by DFT calculations at the B3LYP/6-31++G** level of theory. Isovalues for orbitals: $0.02 \mathrm{a} . \mathrm{u}$.

Figure S100. Geometry-optimized structure of $\mathbf{5}$ by DFT calculations at the B3LYP/6-31++G** level of theory.

Figure S101. Frontier molecular orbitals of 5 by DFT calculations at the B3LYP/6-31++G** level of theory. Isovalues for orbitals: $0.02 \mathrm{a} . \mathrm{u}$.

Figure S102. Geometry-optimized structure of $\mathbf{6}$ by DFT calculations at the B3LYP/6-31++G** level of theory.

LUMO
-2.81 eV

HOMO
$-5.47 \mathrm{eV}$

Figure S103. Frontier molecular orbitals of 6 by DFT calculations at the B3LYP/6-31++G** level of theory. Isovalues for orbitals: $0.02 \mathrm{a} . \mathrm{u}$.

Figure S104. Geometry-optimized structure of 7 by DFT calculations at the B3LYP/6-31++G** level of theory.

Figure S105. Frontier molecular orbitals of 7 by DFT calculations at the B3LYP/6-31++G** level of theory. Isovalues for orbitals: $0.02 \mathrm{a} . \mathrm{u}$.

Figure S106. Geometry-optimized structure of $\mathbf{8}$ by DFT calculations at the B3LYP/6-31++G** level of theory.

LUMO $-3.49 \mathrm{eV}$

HOMO
$-5.68 \mathrm{eV}$

Figure S107. Frontier molecular orbitals of $\mathbf{8}$ by DFT calculations at the B3LYP/6-31++G** level of theory.
Isovalues for orbitals: $0.02 \mathrm{a} . \mathrm{u}$.

Figure S108. Geometry-optimized structure of 9 by DFT calculations at the B3LYP/6-31++G** level of theory.

LUMO
$-3.41 \mathrm{eV}$

HOMO
$-5.79 \mathrm{eV}$

Figure S109. Frontier molecular orbitals of 9 by DFT calculations at the B3LYP/6-31++G** level of theory. Isovalues for orbitals: 0.02 a.u.

Figure S110. Geometry-optimized structure of $\mathbf{1 0}$ by DFT calculations at the B3LYP/6-31++G** level of theory.

LUMO
$-3.03 \mathrm{eV}$

HOMO
$-5.57 \mathrm{eV}$

Figure S111. Frontier molecular orbitals of $\mathbf{1 0}$ by DFT calculations at the B3LYP/6-31++G** level of theory. Isovalues for orbitals: $0.02 \mathrm{a} . \mathrm{u}$.

Table S1. Cartesian coordinates and absolute energy of the geometry-optimized structure (B3LYP/6-31++G**) of compound 1.

	x	y	z
C	-1.83400600	-2.51587000	0.20261100
C	-3.24308100	-2.60298500	0.21614700
C	-4.00710400	-1.45781000	0.12995600
C	-3.38705400	-0.18111600	0.02634800
C	-1.96039200	-0.08897400	0.01037800
C	-1.18106300	-1.29101500	0.10099400
C	-4.14972900	1.01330200	-0.06414600
C	-3.52907000	2.24315400	-0.16862100
C	-2.12011800	2.32279300	-0.18636000
C	-1.32239800	1.18450100	-0.09690800
B	0.23356900	1.24617900	-0.11486200
C	1.01469200	-0.09900500	0.02284800
C	0.27456300	-1.24212000	0.09985700
O	0.84161400	2.46615700	-0.28258900
C	2.49882100	-0.16191500	0.02241300
C	3.19730100	-1.04970000	-0.81835500
C	4.59208000	-1.10137500	-0.81297000
C	5.32681300	-0.26121000	0.02929600
C	4.65165100	0.62857200	0.86846000
C	3.25532700	0.68058800	0.86202600
H	-1.24328300	-3.42593900	0.27362300
H	-3.72009600	-3.57524000	0.29535600
H	-5.09246000	-1.51694500	0.13940700
H	-5.23481500	0.94447400	-0.05091700
H	-4.12391200	3.14940400	-0.23823800
H	-1.64078400	3.29419500	-0.27165600
H	0.77610400	-2.20682100	0.19151200

H	1.80608100	2.41254400	-0.31737500
H	2.63618700	-1.69011500	-1.49309800
H	5.10659500	-1.79315200	-1.47425000
H	6.41211600	-0.29949300	0.03055800
H	5.21029900	1.27872900	1.53606600
H	2.74382700	1.34930400	1.55019000

$E=-793.96553969$ a.u.

Table S2. Cartesian coordinates and absolute energy of the geometry-optimized structure (B3LYP/6-31++G**) of compound 2.

	x	y	z
B	-2.94860800	-1.31159300	-0.02652200
C	-5.94499100	-0.60811400	0.92156100
H	-5.44334100	-1.24760100	1.64389000
C	-7.33924700	-0.51883300	0.93847700
H	-7.90715200	-1.11328700	1.64874300
C	-8.00025800	0.33782700	0.05477900
H	-9.08410900	0.40477600	0.06427800
C	-7.25384200	1.10754900	-0.84277900
H	-7.75792500	1.77259500	-1.53853500
C	-5.86113800	1.01882200	-0.85901000
H	-5.29150400	1.60307700	-1.57613400
C	-5.17677600	0.16369000	0.02618200
C	-3.69566700	0.06188300	0.01714700
C	-2.92245400	1.18380700	-0.00192000
H	-3.39324500	2.16767400	0.01932700
C	-1.46393100	1.19000400	-0.01817900
C	-0.78096200	2.40516800	-0.02133100
H	-1.34991600	3.33194600	-0.01961200
C	0.62409800	2.45296700	-0.02700200
H	1.12568100	3.41661900	-0.03324700
C	1.39045700	1.29028000	-0.02317600
C	0.71253500	0.03211400	-0.01919600
O	-3.58828000	-2.52234100	-0.10187900
H	-4.55172900	-2.44737000	-0.13189900
B	2.94860800	1.3158800	-0.02651200
C	5.94499400	0.60808300	0.92152300
H	5.44334500	1.24754100	1.64387900
C	7.33925100	0.51881200	0.93842200
H	7.90716000	1.11324200	1.64870400
C	8.0025800	-0.33781000	0.05468400
H	9.08411000	-0.40475200	0.06416900
H			

C	7.25383900	-1.10750100	-0.84289800
H	7.75791900	-1.77251500	-1.53868700
C	5.86113400	-1.01878300	-0.85911200
H	5.29149700	-1.60301100	-1.57625500
C	5.17677500	-0.16369300	0.02612400
C	3.69566600	-0.06189100	0.01710300
C	2.92245400	-1.18381400	-0.00199200
H	3.39324600	-2.16768200	0.01922100
C	1.46393000	-1.19001100	-0.01823200
C	0.78096100	-2.40517400	-0.02141500
H	1.34991500	-3.33195200	-0.01973300
C	-0.62409900	-2.45297300	-0.02707500
H	-1.12568200	-3.41662400	-0.03334600
C	-1.39045700	-1.29028500	-0.02320300
C	-0.71253400	-0.03212100	-0.01918900
O	3.58828200	2.52233700	-0.10181200
H	4.55173200	2.44736500	-0.13183400

$E=-1202.01008512$ a.u.

Table S3. Cartesian coordinates and absolute energy of the geometry-optimized structure (B3LYP/6-31++G**) of the anion of compound 2.

	x	y	z
B	-2.93652800	-1.32670100	-0.01275600
C	-5.95455600	-0.65883400	0.86468800
H	-5.46552000	-1.34399300	1.55266600
C	-7.34778200	-0.55519900	0.87640700
H	-7.92645100	-1.18719200	1.54641400
C	-7.99734200	0.36433600	0.04741700
H	-9.08106700	0.44585200	0.05477400
C	-7.22822500	1.17914900	-0.79173500
H	-7.71652200	1.89654600	-1.44767500
C	-5.83743300	1.06948100	-0.80675900
H	-5.25616900	1.68979700	-1.48321900
C	-5.15663700	0.15026600	0.02325600
C	-3.68195200	0.02874200	0.01595400
C	-2.90444700	1.17382000	-0.01297300
H	-3.38966600	2.15246300	0.00938600
C	-1.47281000	1.19107200	-0.02383300
C	-0.77459500	2.42225600	-0.02507200
H	-1.35192500	3.34619000	-0.02628600
C	0.61069100	2.47044600	-0.02538600
H	1.11730300	3.43250000	-0.02890500

C	1.39630500	1.29342200	-0.01976000
C	0.71792600	0.03529800	-0.02108400
O	-3.58375600	-2.56825700	-0.07398200
H	-4.54210500	-2.47223200	-0.12572400
B	2.93652700	1.32669900	-0.01272700
C	5.95456400	0.65881300	0.86464400
H	5.46553500	1.34395500	1.55264300
C	7.34779000	0.55518200	0.87634100
H	7.92646700	1.18716000	1.54635700
C	7.99734200	-0.36433000	0.04731900
H	9.08106800	-0.44584200	0.05465900
C	7.22821700	-1.17912200	-0.79184600
H	7.71650800	-1.89649900	-1.44781200
C	5.83742500	-1.06945700	-0.80684900
H	5.25615400	-1.68975600	-1.48331800
C	5.15663700	-0.15026800	0.02320200
C	3.68195200	-0.02874500	0.01592000
C	2.90444700	-1.17382200	-0.01304200
H	3.38966700	-2.15246600	0.00927400
C	1.47281000	-1.19107400	-0.02388900
C	0.77459500	-2.42225800	-0.02516900
H	1.35192500	-3.34619200	-0.02642500
C	-0.61069100	-2.47044900	-0.02547500
H	-1.11730300	-3.43250200	-0.02902800
C	-1.39630500	-1.29342500	-0.01979800
C	-0.71792600	-0.03530100	-0.02108000
O	3.58375700	2.56825600	-0.07390500
H	4.54210500	2.47223200	-0.12565500

$E=-1202.07784196$ a.u.

Table S4. Cartesian coordinates and absolute energy of the geometry-optimized structure (B3LYP/6-31++G**) of compound 3.

	x	y	z
C	2.88325200	1.24554500	0.14396500
C	5.96058200	-0.53829000	0.87399900
H	5.47837800	-1.26708800	1.52105800
C	7.35118700	-0.40694800	0.90755600
H	7.93678900	-1.05585700	1.55282000
C	7.98580900	0.56012900	0.12403100
H	9.06695100	0.65998300	0.14612800
C	7.21657200	1.39737700	-0.68985700
H	7.70025700	2.14830200	-1.30843700

C	5.82740800	1.26681900	-0.72237900
H	5.24057000	1.90573500	-1.37622200
C	5.16934600	0.30045300	0.06273000
C	3.69237100	0.15339400	0.03541800
B	2.98957700	-1.22720800	-0.17181700
C	1.42842100	-1.25771600	-0.17573500
C	0.70329100	-2.43885700	-0.32580700
H	1.24157100	-3.37522800	-0.44520400
C	-0.70335100	-2.43882000	-0.32596200
H	-1.24166800	-3.37515600	-0.44547900
C	-1.42842800	-1.25764700	-0.17602600
C	-0.71327900	-0.03228900	-0.02574100
B	-2.98964100	-1.22694000	-0.17237600
C	-5.96039800	-0.53865900	0.87377700
H	-5.47809300	-1.26784300	1.52031900
C	-7.35102700	-0.40746100	0.90755800
H	-7.93646900	-1.05679300	1.55253800
C	-7.98582800	0.55992300	0.12457400
H	-9.06697000	0.65973100	0.14686200
C	-7.21675600	1.39761900	-0.68901700
H	-7.70059400	2.14881900	-1.30714700
C	-5.82759300	1.26720300	-0.72177900
H	-5.24091900	1.90650200	-1.37539100
C	-5.16933900	0.30052900	0.06280000
C	-3.69235300	0.15348900	0.03518800
C	-2.88321800	1.24564300	0.14369000
H	-3.32241400	2.23470700	0.28230300
C	-1.42777000	1.20587000	0.12368600
C	-0.70267400	2.38588100	0.26573500
H	-1.23514200	3.32656300	0.38126700
C	0.70271900	2.38586600	0.26582300
H	1.23518100	3.32654300	0.38139000
C	1.42780400	1.20582200	0.12387000
C	0.71329200	-0.03231500	-0.02561300
O	-3.66651900	-2.39947000	-0.38603900
H	-4.62721200	-2.29170200	-0.40347900
O	3.66654000	-2.39981600	-0.38425900
H	4.62723700	-2.29215900	-0.40146200
H	3.32246400	2.23461600	0.28257100
H			

$E=-1202.00985560$ a.u.

Table S5. Cartesian coordinates and absolute energy of the geometry-optimized structure (B3LYP/6-31++G**) of compound 4a.

	x	y	z
C	-0.13695700	-3.74463100	-0.00286700
C	-1.51248200	-3.42531400	-0.00989300
C	-1.94459700	-2.10942000	-0.00718400
C	-0.97364000	-1.04562000	-0.00253400
C	0.43330200	-1.35831600	0.00023400
C	0.80188400	-2.74015900	0.00231800
C	-1.40890500	0.31014200	-0.00213400
C	-0.43330300	1.35831100	0.00033300
C	0.97364000	1.04561500	-0.00244000
C	1.40890400	-0.31014700	-0.00213500
C	-0.80188600	2.74015300	0.00252900
C	0.13695500	3.74462600	-0.00256600
C	1.51248000	3.42531000	-0.00960800
C	1.94459600	2.10941600	-0.00699700
B	3.46216700	1.77949300	-0.01119400
C	3.85369800	0.27843700	0.02247500
C	2.82922100	-0.62586000	0.00567600
B	-3.46216900	-1.77949600	-0.01137600
C	-3.85370000	-0.27844300	0.02239300
C	-2.82922100	0.62585400	0.00567300
C	-5.26253900	0.18706600	0.01872000
C	5.26253900	-0.18706700	0.01879000
C	6.20401300	0.36546500	0.91120900
C	7.53364600	-0.06333700	0.91450500
C	7.95794200	-1.04830600	0.01892400
C	7.03881000	-1.60366200	-0.87646400
C	5.71009300	-1.17664500	-0.87829200
C	-5.71007300	1.17672100	-0.87828900
C	-7.03878800	1.60374500	-0.87644700
C	-7.95793800	1.04832100	0.01888100
C	-7.53366100	0.06327600	0.91438800
C	-6.20403100	-0.36553300	0.91107900
H	0.18238400	-4.78287400	-0.00172600
H	-2.25099500	-4.22200800	-0.01688200
H	1.84630800	-3.02228400	0.00847000
H	-1.84630900	3.02227600	0.00870200
H	-0.18238700	4.78286900	-0.00134200
H	2.25099300	4.22200500	-0.01653000
H	3.09683800	-1.67703600	0.02265300
H	-3.09683800	1.67702900	0.02271200
H	5.87970300	1.10234000	1.64208800
H	8.23537600	0.36774400	1.62313200
H	8.99243800	-1.37866500	0.01752500

H	7.35951700	-2.36467500	-1.58252500
H	5.01056100	-1.59552900	-1.59625200
H	-5.01052800	1.59566000	-1.59620300
H	-7.35948000	2.36481700	-1.58245000
H	-8.99243200	1.37868600	0.01749300
H	-8.23540500	-0.36785900	1.62297000
H	-5.87973600	-1.10246800	1.64190500
O	-4.36527400	-2.81285500	-0.07954500
H	-5.28407600	-2.51564900	-0.11612600
O	4.36527500	2.81285500	-0.07927600
H	5.28407700	2.51565000	-0.11585900

$E=-1355.64780994$ a.u.

Table S6. Cartesian coordinates and absolute energy of the geometry-optimized structure (B3LYP/6-31++G**) of the anion of compound $\mathbf{4 a}$.

	x	y	z
C	0.15757900	-3.76216000	-0.04048200
C	1.51941700	-3.44961700	-0.02747600
C	1.95399800	-2.11796900	-0.02219500
C	0.98170200	-1.05875800	-0.02250700
C	-0.42400200	-1.37387500	-0.02801400
C	-0.78716100	-2.74294000	-0.04192300
C	1.41628800	0.31088800	-0.01595500
C	0.42400200	1.37387400	-0.02810800
C	-0.98170200	1.05875700	-0.02260700
C	-1.41628900	-0.31088800	-0.01595900
C	0.78716200	2.74293800	-0.04211000
C	-0.15757900	3.76215800	-0.04076600
C	-1.51941700	3.44961600	-0.02776500
C	-1.95399800	2.11796800	-0.02239300
B	-3.46437900	1.78955000	-0.01331600
C	-3.85211200	0.30589800	-0.02814900
C	-2.80930300	-0.61196800	-0.00813700
B	3.46437800	-1.78955000	-0.01311000
C	3.85211200	-0.30590000	-0.02805500
C	2.80930200	0.61196900	-0.00813300
C	5.24768400	0.18120900	-0.00071000
C	-5.24768400	-0.18120900	-0.00078200
C	-6.24578800	0.40803500	-0.81127400
C	-7.57011100	-0.03600300	-0.78456500
C	-7.94775400	-1.09032900	0.05237700
C	-6.97639800	-1.69334900	0.86006600

C	-5.65610700	-1.24359900	0.83792300
C	5.65609600	1.24366900	0.83791100
C	6.97638800	1.69342100	0.86003400
C	7.94775400	1.09033100	0.05241000
C	7.57012200	0.03593300	-0.78444700
C	6.24579900	-0.40810600	-0.81113600
H	-0.17143800	-4.79918800	-0.04993100
H	2.26321800	-4.24209200	-0.02299500
H	-1.83328300	-3.02416100	-0.05565300
H	1.83328300	3.02415800	-0.05583900
H	0.17143800	4.79918500	-0.05028500
H	-2.26321900	4.24209100	-0.02336000
H	-3.08513900	-1.66281100	-0.01690800
H	3.08513800	1.66281000	-0.01698200
H	-5.96218800	1.19236600	-1.50882700
H	-8.30630900	0.43553900	-1.43169800
H	-8.97749500	-1.43688700	0.07461600
H	-7.25254800	-2.51134200	1.52172000
H	-4.92204400	-1.70284500	1.49407100
H	4.92202500	1.70297100	1.49401000
H	7.25252900	2.51147000	1.52162100
H	8.97749500	1.43689000	0.07463300
H	8.30632900	-0.43566600	-1.43152900
H	5.96220900	-1.19249800	-1.50862400
O	4.37717900	-2.84661500	0.05401100
H	5.28617300	-2.53043600	0.12008100
O	-4.37718000	2.84662000	0.05371100
H	-5.28617600	2.53044700	0.11979100

$E=-1355.72454051$ a.u.

Table S7. Cartesian coordinates and absolute energy of the geometry-optimized structure (B3LYP/6-31++G**) of compound 4b.

	x	y	z
B	3.33148500	-2.02181900	-0.04119500
F	5.67876700	-1.47822400	1.95602900
F	8.28620900	-0.79576100	1.99148400
F	9.29473000	0.90639400	0.09993800
F	7.64598600	1.91186700	-1.83538300
F	5.04588500	1.23581500	-1.89938100
O	4.14153800	-3.12591800	-0.10302800
H	5.08740800	-2.94800200	-0.04989700
C	3.81614600	-0.54741800	0.00762500

C	2.85939300	0.42724500	-0.01788300
H	3.19322800	1.45754800	0.00615500
C	1.42251400	0.21045800	-0.05245600
C	0.89758500	-1.11216600	-0.06131900
C	-1.79314000	2.23808200	-0.06405500
C	-1.27067400	3.52085700	-0.08583500
H	-1.95223000	4.36643000	-0.08945600
C	0.12344000	3.74471300	-0.10708300
H	0.51220400	4.75840300	-0.13183200
C	0.99171400	2.67912900	-0.09870400
H	2.05259400	2.88933100	-0.12294500
C	0.52713600	1.32701000	-0.07000900
C	5.24834900	-0.15083400	0.02989100
C	6.13702200	-0.64763900	0.99533900
C	7.48583600	-0.30372000	1.03482400
C	8.00051600	0.56624400	0.07707500
C	7.15580000	1.08115100	-0.90373200
C	5.81022200	0.72262200	-0.91587900
B	-3.33147400	2.02174000	-0.04134500
F	-5.04604000	-1.23568300	-1.89951700
F	-7.64621400	-1.91160000	-1.83541900
F	-9.29475700	-0.90621900	0.10005100
F	-8.28604400	0.79573500	1.99171200
F	-5.67854900	1.47805100	1.95615700
O	-4.14156700	3.12580900	-0.10333800
H	-5.08743000	2.94783000	-0.05023900
C	-3.81612200	0.54734000	0.00755500
C	-2.85937600	-0.42732800	-0.01790200
H	-3.19321800	-1.45763500	0.00623500
C	-1.42250500	-0.21052600	-0.05250700
C	-0.89757600	1.11210600	-0.06131300
C	1.79314700	-2.23814500	-0.06403500
C	1.27067400	-3.52091600	-0.08593000
H	1.95223100	-4.36649100	-0.08951700
C	-0.12343800	-3.74476800	-0.10735600
H	-0.51220100	-4.75845300	-0.13225000
C	-0.99170900	-2.67918200	-0.09897900
H	-2.05259100	-2.88936400	-0.12338600
C	-0.52712600	-1.32707100	-0.07010800
C	-5.24834000	0.15081000	0.02987600
C	-5.81030400	-0.72253900	-0.91594900
C	-7.15589700	-1.08098600	-0.90374000
C	-8.00053100	-0.56611900	0.07716700
C	-7.48576200	0.30373700	1.03496400
C	-6.13692600	0.64757000	0.99541400

$E=-2347.97054139$ a.u.

Table S8. Cartesian coordinates and absolute energy of the geometry-optimized structure (B3LYP/6-31++G**) of compound 5.

	x	y	z
H	2.80681600	-3.65278500	0.00465000
C	2.14346200	-2.79150100	0.00310900
C	2.70824700	-1.49869100	0.00227000
C	-0.11010500	-1.88182600	0.00117700
C	1.84914900	-0.36713200	0.00304600
C	0.76993400	-2.98424100	0.00107500
C	0.43884700	-0.56221800	0.00407500
C	2.39777200	0.9676200	-0.00049900
H	0.35915900	-3.99024300	-0.00065200
C	1.53060800	2.03971700	-0.00334800
H	1.93618600	3.04893100	-0.00917000
C	0.11010500	1.88182400	0.00107700
C	-0.76993400	2.98423900	0.00092100
C	-0.43884800	0.56221600	0.00404700
C	-2.14346200	2.79150000	0.00296900
H	-0.35915800	3.99024100	-0.00086100
H	-2.80681500	3.65278400	0.00446600
C	-2.70824700	1.4986900	0.00219900
C	-1.84914900	0.36713000	0.00303300
C	-2.39777200	-0.96762400	-0.00043800
C	-1.53060800	-2.03971900	-0.00323400
H	-1.93618600	-3.04893300	-0.00900200
C	-4.15537800	1.34738200	0.01040800
C	-4.81805700	0.15364500	0.02527800
C	-6.30207600	0.11769100	0.01757900
C	-9.13044100	0.02840300	0.00798400
C	-7.05185100	0.90568900	-0.87734200
C	-7.00759500	-0.72200000	0.90354500
C	-8.40423500	-0.76292000	0.90148800
C	-8.44676000	0.86428100	-0.88021500
H	-6.53017400	1.53968700	-1.58872700
H	-6.45846000	-1.31125100	1.63403800
H	-8.92379000	-1.40776600	1.60480900
H	-9.00098800	1.47930000	-1.58386800
C	-10.21586800	-0.00597200	0.00287500
C	4.15537700	-1.34738300	0.01046400
C	4.81805800	-0.15364400	0.02526500
C	6.30207600	-0.11769200	0.01755700
9.13044100	-0.02839900	0.00794400	

C	7.00759700	0.72208000	0.90344500
C	7.05185000	-0.90576300	-0.87730100
C	8.44675800	-0.86435400	-0.88018100
C	8.40423600	0.76300200	0.90138000
H	6.45846300	1.31139800	1.63388500
H	6.53017300	-1.53982000	-1.58863300
H	9.00098600	-1.47943200	-1.58378300
H	8.92379300	1.40791300	1.60464100
H	10.21586800	0.00597900	0.00282700
H	4.72310800	-2.27891600	0.02717600
H	-4.72310800	2.27891600	0.02707200
B	-3.94601100	-1.14235800	-0.00810800
B	3.94601200	1.14235500	-0.00818200
O	4.46584400	2.41072700	-0.08095100
H	5.43144800	2.42852300	-0.11943600
O	-4.46584600	-2.41073200	-0.08082500
H	-5.43144900	-2.42852800	-0.11930600

$E=-1431.89943858$ a.u.

Table S9. Cartesian coordinates and absolute energy of the geometry-optimized structure (B3LYP/6-31++G**) of the anion of compound 5 .

	x	y	z
H	-2.81565500	3.66383200	0.00383500
C	-2.14794800	2.80363500	0.00487300
C	-2.72572400	1.50283100	0.00268100
C	0.11097800	1.88640600	0.00818200
C	-1.85643700	0.36204300	0.00899700
C	-0.78582000	2.99685000	0.00631700
C	-0.44155300	0.56097900	0.01051600
C	-2.40047500	-0.96639400	0.01025300
H	-0.37129600	4.00242700	0.00536500
C	-1.51278600	-2.04546900	0.00713000
H	-1.91867900	-3.05524600	0.00322800
C	-0.11097800	-1.88640600	0.00806300
C	0.78582000	-2.99684900	0.00613200
C	0.44155200	-0.56097800	0.01048300
C	2.14794700	-2.80363500	0.00470800
H	0.37129600	-4.00242700	0.00511500
H	2.81565500	-3.66383100	0.00361900
C	2.72572400	-1.50283000	0.00260100
C	1.85643700	-0.36204300	0.00898300
C	2.40047500	0.96639400	0.01032500

C	1.51278600	2.04546900	0.00726600
H	1.91867900	3.05524700	0.00342800
C	4.14493400	-1.34411800	0.00453200
C	4.80836300	-0.12703800	0.02873700
C	6.28779100	-0.10548000	0.01319200
C	9.13516100	-0.04305000	-0.01624100
C	7.03864700	-0.95397400	-0.83155500
C	7.01857100	0.77639700	0.84199200
C	8.41531400	0.80847600	0.82707900
C	8.43340100	-0.92816300	-0.84280700
H	6.50864400	-1.62665600	-1.50011500
H	6.47942000	1.41018600	1.54173300
H	8.94234300	1.49322100	1.48759300
H	8.97642400	-1.59389800	-1.50993600
H	10.22149600	-0.01876900	-0.02937500
C	-4.14493400	1.34411900	0.00459600
C	-4.80836300	0.12703700	0.02872300
C	-6.28779100	0.10547900	0.01317000
C	-9.13516100	0.04304800	-0.01627900
C	-7.01857300	-0.77644100	0.84192200
C	-7.03864400	0.95401500	-0.83153800
C	-8.43339800	0.92820300	-0.84279800
C	-8.41531700	-0.80852000	0.82700100
H	-6.47942500	-1.41026600	1.54163300
H	-6.50863800	1.62673100	-1.50006100
H	-8.97641800	1.59397100	-1.50989600
H	-8.94234900	-1.49329800	1.48747800
H	-10.22149500	0.01876700	-0.02942000
H	-4.72588900	2.26913900	0.01959500
H	4.72588800	-2.26913900	0.01947800
B	3.93675700	1.14986300	0.00860800
B	-3.93675700	-1.14986300	0.00852000
O	-4.45468100	-2.44543000	-0.05625600
H	-5.41745200	-2.44837800	-0.11688100
O	4.45468100	2.44543400	-0.05608900
H	5.41745200	2.44838600	-0.11671200
H			0

$E=-1431.97337020$ a.u.

Table S10. Cartesian coordinates and absolute energy of the geometry-optimized structure (B3LYP/6-31++G**) of compound 6 .

	x	y	z
H	-2.81565500	3.66383200	0.00383500
C	-2.14794800	2.80363500	0.00487300

C	-2.72572400	1.50283100	0.00268100
C	0.11097800	1.88640600	0.00818200
C	-1.85643700	0.36204300	0.00899700
C	-0.78582000	2.99685000	0.00631700
C	-0.44155300	0.56097900	0.01051600
C	-2.40047500	-0.96639400	0.01025300
H	-0.37129600	4.00242700	0.00536500
C	-1.51278600	-2.04546900	0.00713000
H	-1.91867900	-3.05524600	0.00322800
C	-0.11097800	-1.88640600	0.00806300
C	0.78582000	-2.99684900	0.00613200
C	0.44155200	-0.56097800	0.01048300
C	2.14794700	-2.80363500	0.00470800
H	0.37129600	-4.00242700	0.00511500
H	2.81565500	-3.66383100	0.00361900
C	2.72572400	-1.50283000	0.00260100
C	1.85643700	-0.36204300	0.00898300
C	2.40047500	0.96639400	0.01032500
C	1.51278600	2.04546900	0.00726600
H	1.91867900	3.05524700	0.00342800
C	4.14493400	-1.34411800	0.00453200
C	4.80836300	-0.12703800	0.02873700
C	6.28779100	-0.10548000	0.01319200
C	9.13516100	-0.04305000	-0.01624100
C	7.03864700	-0.95397400	-0.83155500
C	7.01857100	0.77639700	0.84199200
C	8.41531400	0.80847600	0.82707900
C	8.43340100	-0.92816300	-0.84280700
H	6.50864400	-1.62665600	-1.50011500
H	6.47942000	1.41018600	1.54173300
H	8.94234300	1.49322100	1.48759300
H	8.97642400	-1.59389800	-1.50993600
H	10.22149600	-0.01876900	-0.02937500
C	-4.14493400	1.34411900	0.00459600
C	-4.80836300	0.12703700	0.02872300
C	-6.28779100	0.10547900	0.01317000
C	-9.13516100	0.04304800	-0.01627900
C	-7.01857300	-0.77644100	0.84192200
C	-7.03864400	0.95401500	-0.83153800
C	-8.43339800	0.92820300	-0.84279800
C	-8.41531700	-0.80852000	0.82700100
H	-6.47942500	-1.41026600	1.54163300
H	-6.50863800	1.62673100	-1.50006100
H	-8.97641800	1.59397100	-1.50989600
H	-8.94234900	-1.49329800	1.48747800
H	-10.22149500	0.01876700	-0.02942000
H	-4.72588900	2.26913900	0.01959500

H	4.72588800	-2.26913900	0.01947800
B	3.93675700	1.14986300	0.00860800
B	-3.93675700	-1.14986300	0.00852000
O	-4.45468100	-2.44543000	-0.05625600
H	-5.41745200	-2.44837800	-0.11688100
O	4.45468100	2.44543400	-0.05608900
H	5.41745200	2.44838600	-0.11671200

$E=-1589.16864211$ a.u.

Table S11. Cartesian coordinates and absolute energy of the geometry-optimized structure (B3LYP/6-31++G**) of compound 7.

	x	y	z
C	0.24691800	2.51307300	-0.04632600
C	1.55171300	1.99303800	-0.02476300
C	1.79795500	0.61744300	-0.01034100
C	0.66563200	-0.25480600	-0.02654600
C	-0.66564100	0.25482600	-0.02651200
C	-0.86606200	1.67182000	-0.04566000
C	0.86604900	-1.67180300	-0.04565400
C	-0.24693100	-2.51305400	-0.04621000
C	-1.55172600	-1.99301700	-0.02457900
C	-1.79796400	-0.61742200	-0.01020200
B	-3.25020200	-0.03597500	0.01318400
C	-3.36822600	1.52346800	-0.08394900
C	-2.20304700	2.24078900	-0.08215600
C	2.20303200	-2.24077400	-0.08221000
B	3.25019400	0.03599700	0.01298100
C	3.36820900	-1.52345200	-0.08409400
C	-4.48706200	-1.01302200	0.12155800
C	-5.25366700	-1.33665700	-1.02349700
C	-6.33110600	-2.22397700	-0.91713900
C	-6.69049700	-2.80624300	0.30338000
C	-5.93472700	-2.47411500	1.43261600
C	-4.84251900	-1.59983600	1.35960600
C	-4.07056700	-1.27507000	2.62407000
C	-4.91731200	-0.73243200	-2.37132900
C	-7.84195400	-3.78150800	0.39259600
C	-4.65290100	2.26832800	-0.18947800
C	-4.78500800	3.34173100	-1.09353200
C	-5.97354100	4.06727100	-1.18840000
C	-7.06454800	3.73704000	-0.37976500
C	-6.95407700	2.67090300	0.51705300
C	-5.76723800	1.9414600	0.60588100

C	4.48706700	1.01303200	0.12132700
C	4.84250300	1.59990800	1.35939800
C	5.93472100	2.47411400	1.43242000
C	6.69057300	2.80616300	0.30317300
C	6.33122300	2.22386500	-0.91730300
C	5.25371500	1.33657200	-1.02367800
C	4.91744600	0.73228500	-2.37150400
C	4.07047400	1.27520400	2.62382900
C	7.84196000	3.78149700	0.39254800
C	4.65287800	-2.26831500	-0.18968000
C	4.78493500	-3.34173100	-1.09372400
C	5.97346300	-4.06727200	-1.18864700
C	7.06451300	-3.73702900	-0.38007600
C	6.95409100	-2.67087800	0.51673300
C	5.76725700	-1.94143900	0.60561400
H	0.09783100	3.59003200	-0.06473100
H	2.39322000	2.68053300	-0.02213400
H	-0.09784700	-3.59001400	-0.06457600
H	-2.39323200	-2.68051300	-0.02186300
H	-2.24108400	3.33066800	-0.09756900
H	2.24106800	-3.33065400	-0.09759000
H	-6.90745200	-2.46141800	-1.80963000
H	-6.20210900	-2.90411700	2.39626600
H	-4.54475900	-1.72404200	3.50169500
H	-3.03996100	-1.64511900	2.57670900
H	-4.00923500	-0.19350600	2.79841300
H	-3.88699300	-0.95866400	-2.67189700
H	-5.58077800	-1.11433500	-3.15278800
H	-5.01780600	0.35908300	-2.35339400
H	-8.64305600	-3.51980200	-0.30636200
H	-7.51729100	-4.80123200	0.14824300
H	-8.26669200	-3.80705900	1.40100600
H	-3.95296200	3.59276000	-1.74561200
H	-6.04950000	4.88457000	-1.90038400
H	-7.99125100	4.29889500	-0.45274400
H	-7.79505500	2.40260200	1.15035500
H	-5.70241900	1.11650400	1.30578200
H	6.20210200	2.90412500	2.39607300
H	6.90762700	2.46123100	-1.80977100
H	5.58093500	1.11418000	-3.15294600
H	5.01798500	-0.35922700	-2.35351700
H	3.88713500	0.95846100	-2.67213600
H	4.00895900	0.19364300	2.79812500
H	4.54471400	1.72406400	3.50148400
H	3.03992900	1.64542100	2.57645200
H	7.51550300	4.80254200	0.15621400
H	8.27179800	3.80112400	1.39895000

H	8.63962500	3.52452300	-0.31203400
H	3.95285200	-3.59276700	-1.74575400
H	6.04938300	-4.88458100	-1.90062400
H	7.99121300	-4.29888500	-0.45309600
H	7.79510400	-2.40256900	1.14998400
H	5.70247900	-1.11646300	1.30550200

$E=-1749.48735162$ a.u.

Table S12. Cartesian coordinates and absolute energy of the geometry-optimized structure (B3LYP/6-31++G**) of compound 8 .

	x	y	z
C	1.61049000	3.37829300	0.07857500
C	2.74381500	2.53780300	0.07755100
C	2.62917900	1.15245400	0.05560300
C	1.30984200	0.57356200	0.02329300
C	0.14393100	1.41648700	0.02023700
C	0.34923700	2.83022400	0.05247600
C	1.16947200	-0.84108500	-0.00869600
C	-0.14392500	-1.41627100	0.02200100
C	-1.30984600	-0.57333700	0.02408400
C	-1.16946400	0.84126200	-0.00968500
C	-0.34923800	-2.82997100	0.05584600
C	-1.61048400	-3.37801800	0.08261800
C	-2.74381700	-2.53753800	0.08077500
C	-2.62917800	-1.15220600	0.05718900
B	-3.90834100	-0.26268200	0.04990700
C	-3.65123200	1.26163900	-0.09297800
C	-2.34396500	1.68315300	-0.08678000
B	3.90835600	0.26293000	0.04902600
C	3.65125800	-1.26160600	-0.09225400
C	2.34396800	-1.68306200	-0.08493100
C	4.71302800	-2.29099500	-0.25653400
C	-4.71313300	2.29078200	-0.25778200
C	-4.57031600	3.32416800	-1.20625900
C	-5.54771900	4.30896900	-1.35846900
C	-6.69727100	4.28630700	-0.56406500
C	-6.85988700	3.26463700	0.37572500
C	-5.88562700	2.27575200	0.52126800
C	4.56862600	-3.32643100	-1.20258100
C	5.54597600	-4.31126500	-1.35471700
C	6.69718200	-4.28656100	-0.56275300
C	6.86143000	-3.26286600	0.37451900
C	5.88712600	-2.27401100	0.52007900

C	-5.34191700	-0.92277900	0.15793600
C	-6.12960300	-1.12272600	-1.00141100
C	-7.38571300	-1.73208300	-0.89949900
C	-7.90692900	-2.14783700	0.33083900
C	-7.12480700	-1.94577700	1.47234400
C	-5.85857100	-1.34893900	1.40439500
C	-5.06502100	-1.15505500	2.68216900
C	-5.62205300	-0.68889200	-2.36142300
C	-9.28130200	-2.77075800	0.42325500
C	5.34174600	0.92337200	0.15716800
C	6.13350100	1.11615000	-1.00046600
C	7.39294300	1.71848800	-0.89651900
C	7.91110000	2.13881200	0.33340400
C	7.12750000	1.93804700	1.47430200
C	5.85835000	1.34794800	1.40438700
C	5.06465600	1.15184100	2.68175100
C	5.63061800	0.67505300	-2.35986500
C	9.26266600	2.81042000	0.42021600
H	1.73209800	4.45726900	0.10425500
H	3.73464000	2.98308800	0.09807100
H	-0.49955600	3.50107900	0.06785900
H	0.49954900	-3.50081400	0.07194700
H	-1.73211300	-4.45696000	0.10949500
H	-3.73460600	-2.98289300	0.10181600
H	-2.17192500	2.75262000	-0.14260200
H	2.17186700	-2.75258700	-0.13919700
H	-3.69479100	3.33814500	-1.84977200
H	-5.41512000	5.08793100	-2.10437400
H	-7.46029400	5.05040300	-0.68133800
H	-7.74991400	3.23405400	0.99805400
H	-6.03073600	1.48973400	1.25323600
H	3.69191300	-3.34193300	-1.84443300
H	5.41209400	-5.09179100	-2.09875800
H	7.46024900	-5.05060600	-0.68007500
H	7.75282800	-3.23049800	0.99477600
H	6.03375900	-1.48643100	1.25003900
H	-7.97194600	-1.88487700	-1.80405700
H	-7.50702700	-2.26270000	2.44110000
H	-5.64593400	-1.46077000	3.55731900
H	-4.13705300	-1.73842700	2.67788700
H	-4.77598400	-0.10643100	2.82644000
H	-4.65424500	-1.14705100	-2.59829200
H	-6.32382100	-0.96732000	-3.15318100
H	-5.48429700	0.39795100	-2.40612200
H	-9.48477900	-3.42006600	-0.43480900
H	-9.38879700	-3.36870300	1.33361300
H	-10.06463700	-2.00209900	0.44118900

H	7.98589700	1.85858300	-1.79870700
H	7.51265300	2.24664500	2.44458800
H	4.77591500	0.10296400	2.82486000
H	5.64510300	1.45702700	3.55739200
H	4.13650600	1.73490700	2.67768700
H	4.66354400	1.13199900	-2.60195700
H	6.33477900	0.94994000	-3.15073900
H	5.49318000	-0.41201000	-2.39975800
H	9.18562100	3.88540500	0.21188000
H	9.69979600	2.70169000	1.41775100
H	9.96577100	2.38898400	-0.30575400

$E=-1903.12841168$ a.u.

Table S13. Cartesian coordinates and absolute energy of the geometry-optimized structure (B3LYP/6-31++G**) of compound 9 .

	x	y	z
C	0.21100800	3.07383400	-0.00061900
C	0.69690700	1.74773800	0.00566100
C	-0.24063500	0.67085600	0.00927300
C	-1.63918100	0.92981000	0.00961200
C	-2.09563800	2.27233500	-0.00575500
C	-1.15207800	3.32427900	-0.00653100
C	2.09336600	1.44827300	0.01241100
C	2.58959100	0.15583400	0.02217700
C	1.63924800	-0.92985700	0.00971800
C	0.24070200	-0.67090300	0.00934000
C	-0.69683900	-1.74778600	0.00580900
C	-2.09329800	-1.44832200	0.01251300
C	-2.58952300	-0.15588100	0.02216600
C	2.09570700	-2.27238200	-0.00551200
C	1.15214700	-3.32432600	-0.00620200
C	-0.21094000	-3.07388200	-0.00033700
B	4.12246700	-0.13837100	0.03395900
C	4.52498900	-1.64727600	-0.04030000
C	3.51277200	-2.57380600	-0.03368600
B	-4.12239700	0.13832600	0.03396200
C	-4.52491300	1.64722100	-0.04044100
C	-3.51270200	2.57375600	-0.03396300
C	-5.15578400	-1.05688900	0.10034200
C	-5.81144000	-1.50580400	-1.07274400
C	-6.70907700	-2.57663300	-1.00767200
C	-6.99457300	-3.22934000	0.19792000
C	-6.34601400	-2.78023600	1.35147500

C	-5.43252700	-1.71649300	1.32012300
C	-4.76575000	-1.28121800	2.61124100
C	-5.54332900	-0.84009900	-2.40702200
C	-7.97446100	-4.37979100	0.24264800
C	-5.92583600	2.14104300	-0.13993600
C	-6.25836800	3.18322600	-1.02892700
C	-7.56245200	3.67293300	-1.11694800
C	-8.57190600	3.13111300	-0.31650900
C	-8.26241600	2.09155300	0.56475300
C	-6.95940600	1.59787000	0.64637300
C	5.15580000	1.05688900	0.10034000
C	5.81156400	1.50576500	-1.07267600
C	6.70944900	2.57640300	-1.00748100
C	6.99482400	3.22912600	0.19810800
C	6.34650200	2.77974300	1.35170700
C	5.43278300	1.71622800	1.32023500
C	4.76637500	1.28051500	2.61139400
C	5.54364400	0.83999900	-2.40696000
C	7.97184400	4.38203200	0.24235500
H	0.91945500	3.89773700	-0.00227400
H	-1.51157700	4.35006600	-0.01552900
H	2.79235100	2.28200600	0.01076200
H	-2.79228000	-2.28205800	0.01093000
H	1.51164700	-4.35011400	-0.01509700
H	-0.91938700	-3.89778500	-0.00192800
H	3.76058900	-3.63600100	-0.04019300
H	-3.76052800	3.63594900	-0.04060400
H	-7.20152800	-2.90710600	-1.92077300
H	-6.55540700	-3.26716100	2.30220300
H	-4.86066200	-0.20107500	2.77710900
H	-5.20841500	-1.78838700	3.47360400
H	-3.69257500	-1.50531800	2.60971400
H	-4.48281700	-0.89696400	-2.68119400
H	-6.11795400	-1.31447300	-3.20799600
H	-5.81536200	0.22169000	-2.38617200
H	-8.96427100	-4.07481500	-0.11719300
H	-7.64333800	-5.21119100	-0.39117900
H	-8.09251400	-4.76302700	1.26055300
H	-5.48896200	3.59624800	-1.67547200
H	-7.79108300	4.47118100	-1.81781100
H	-9.58804800	3.50879000	-0.38442000
H	-9.03800400	1.65951900	1.19100900
H	-6.73997000	0.78943400	1.33388400
H	7.20234800	2.90654800	-1.92045300
H	6.55644900	3.26614400	2.30258100
H	5.20882800	1.78790100	3.47373800
H	3.69307900	1.50403100	2.60995200

H	4.86188400	0.20041500	2.77721900
H	4.48331100	0.89766100	-2.68166800
H	6.11902700	1.31379500	-3.20773200
H	5.81482500	-0.22199800	-2.38580000
H	7.61764900	5.22850600	-0.35845700
H	8.12013100	4.73934100	1.26572500
H	8.95070800	4.09120700	-0.15656200
C	5.92590800	-2.14111700	-0.13979300
C	6.95956000	-1.59773900	0.64626700
C	6.25836000	-3.18351700	-1.02856200
C	8.26256600	-2.09143200	0.56463300
H	6.74021000	-0.78912300	1.33359100
C	7.56243500	-3.67324100	-1.11659300
H	5.48889800	-3.59669800	-1.67493800
C	8.57197000	-3.13121500	-0.31639400
H	9.03821700	-1.65921700	1.19068500
H	7.79099800	-4.47166100	-1.81728400
H	9.58810800	-3.50889900	-0.38431900

$E=-1979.37960129$ a.u.

Table S14. Cartesian coordinates and absolute energy of the geometry-optimized structure (B3LYP/6-31++G**) of compound 10.

	x	y	z
C	1.24185200	-2.01852100	0.11094800
C	1.24831700	-0.60040800	0.04870300
C	0.00585100	0.09374700	0.01028300
C	-1.23390100	-0.60551500	0.05078800
C	-1.22189400	-2.02275400	0.11197300
C	0.01162800	-2.69282200	0.14335300
C	0.00323900	1.51220100	-0.07698600
C	-1.22744700	2.22747500	-0.12298300
C	-2.45163500	1.48826000	-0.06561400
C	-2.48913900	0.10783500	0.02554700
C	1.22845400	2.23210800	-0.12759200
C	1.19774300	3.63910700	-0.22966000
C	-0.00103100	4.36139600	-0.28163300
C	-1.19950700	3.62981400	-0.22317700
C	2.49927300	0.11797400	0.02084000
C	2.45482800	1.49917500	-0.07255800
B	-3.83999200	-0.67838300	0.08133800
C	-3.72282200	-2.23071000	0.08216600
C	-2.46145700	-2.77226000	0.11872900
C	2.48440100	-2.76273800	0.11821400

C	3.74316900	-2.21520400	0.08156700
B	3.85321700	-0.66215600	0.07761300
C	-4.88236500	-3.16505100	0.02194300
C	4.90704400	-3.14437500	0.02481900
C	-0.04700600	5.89758800	-0.39848200
C	1.36033600	6.52256800	-0.46283400
C	-0.80918900	6.29172800	-1.68744800
C	-0.78065100	6.48504000	0.83192800
C	-4.85548500	-4.28687800	-0.83061300
C	-5.92294000	-5.18518500	-0.88257400
C	-7.05085200	-4.98285400	-0.08279300
C	-7.09903900	-3.87064000	0.76213600
C	-6.03285900	-2.97083600	0.80895800
C	6.05560000	-2.94302000	0.81291500
C	7.12563000	-3.83846700	0.77034800
C	7.08333400	-4.95338300	-0.07132600
C	5.95747800	-5.16277500	-0.87219700
C	4.88618200	-4.26880100	-0.82451300
C	-5.20900400	0.11419300	0.11660800
C	-5.68812200	0.68943100	1.31779100
C	-6.90257600	1.38827900	1.32625600
C	-7.66519300	1.55490600	0.16532900
C	-7.18213300	0.98916200	-1.01936900
C	-5.97798400	0.27535000	-1.06029400
C	-5.51359200	-0.32380700	-2.37213600
C	-4.91144200	0.54495900	2.61261000
C	-8.95604200	2.34174800	0.18504300
C	5.21900300	0.13606900	0.11206100
C	5.69472600	0.71577200	1.31246200
C	6.90648800	1.41925600	1.32063800
C	7.66962600	1.58629800	0.16011500
C	7.18991300	1.01616700	-1.02382900
C	5.98855300	0.29763600	-1.06436500
C	5.52792100	-0.30637400	-2.37530700
C	4.91724700	0.57127400	2.60679600
C	8.95733900	2.37827800	0.17945900
H	0.01354500	-3.78037500	0.18543100
H	-3.38748200	2.04224600	-0.09656500
H	2.14938100	4.15773100	-0.26981300
H	-2.15241900	4.15075400	-0.25738000
H	3.38826300	2.05706500	-0.10621300
H	-2.34771700	-3.85636400	0.16412300
H	2.37546200	-3.84725700	0.16515700
H	1.27212600	7.61058400	-0.54665000
H	1.94615700	6.30991100	0.43800600
H	1.92526100	6.17072100	-1.33282400
H	-0.84991800	7.38254900	-1.78347800

H	-1.83880000	5.92081200	-1.68425200
H	-0.31087500	5.89017000	-2.57628100
H	-0.25915000	6.22708200	1.75990900
H	-0.82513400	7.57758600	0.75907600
H	-1.80774700	6.11570300	0.91054000
H	-3.99567400	-4.44206500	-1.47672000
H	-5.87637700	-6.03733100	-1.55526500
H	-7.88402300	-5.67862700	-0.12257900
H	-7.97043600	-3.70018500	1.38837800
H	-6.09053400	-2.11358500	1.46972300
H	6.10878000	-2.08358300	1.47120600
H	7.99536500	-3.66246100	1.39736800
H	7.91943600	-5.64581800	-0.10779500
H	5.91549800	-6.01710900	-1.54241200
H	4.02794400	-4.42962600	-1.47133100
H	-7.26232100	1.80909000	2.26373300
H	-7.76056800	1.09933600	-1.93500400
H	-6.18375400	-0.04882300	-3.19203000
H	-4.50539200	0.01572400	-2.63836600
H	-5.48187900	-1.41864200	-2.32112000
H	-3.96787000	1.10269600	2.58382200
H	-5.49028900	0.91649100	3.46338800
H	-4.65072800	-0.50031500	2.81913200
H	-9.65902200	1.97520500	-0.56988800
H	-9.44609200	2.28140600	1.16209900
H	-8.77706000	3.40431600	-0.02496100
H	7.26368700	1.84348800	2.25755400
H	7.76880200	1.12666100	-1.93914300
H	6.19640200	-0.02850300	-3.19561000
H	5.50305800	-1.40132000	-2.32261300
H	4.51762400	0.02640900	-2.64207000
H	4.65926800	-0.47436800	2.81486500
H	5.49425200	0.94591400	3.45747500
H	3.97215000	1.12633200	2.57611300
H	9.44726400	2.32089400	1.15676500
H	9.66206300	2.01378100	-0.57483600
H	8.77415600	3.43990900	-0.03166500
H			

$E=-2136.64846616$ a.u.

Figure S112. Simulated absorption spectra of compounds 1-3 and $\mathbf{7}$ based on the results obtained from TDDFT calculations (B3LYP/6-31++G**). A half-width at half height of 0.20 eV was used for the simulations.

Figure S113. Simulated absorption spectra of compounds $\mathbf{4 a}, \mathbf{b}$ and $\mathbf{8}$ based on the results obtained from TDDFT calculations (B3LYP/6-31++G**). A half-width at half height of 0.20 eV was used for the simulations.

Figure S114. Simulated absorption spectra of compounds 5, 6, 9 and 10 based on the results obtained from TDDFT calculations (B3LYP/6-31++G**). A half-width at half height of 0.20 eV was used for the simulations.

Table S15. Absorption properties of compounds $\mathbf{1 - 1 0}$ as obtained from TDDFT calculations (B3LYP/6$\left.31++G^{* *}\right)$. The relevant transitions are listed with the respective wavelengths and oscillator strengths as well as the orbitals that are mainly involved in the transitions (H indicates the highest occupied molecular orbital and L stands for the lowest unoccupied molecular orbital, respectively).

Compound	Wavelength [nm]	Oscillator strength	Character
$\mathbf{1}$	328	0.0643	$\mathrm{H}-1 \rightarrow \mathrm{~L}(70 \%)$
	389	0.2583	$\mathrm{H} \rightarrow \mathrm{L}(92 \%)$
$\mathbf{2}$	361	0.0714	$\mathrm{H}-2 \rightarrow \mathrm{~L}(82 \%)$
	457	0.5244	$\mathrm{H} \rightarrow \mathrm{L}(96 \%)$
$\mathbf{3}$	387	0.2033	$\mathrm{H}-8 \rightarrow \mathrm{~L}(47 \%)$
			$\mathrm{H}-9 \rightarrow \mathrm{~L}(45 \%)$
	514	0.3505	$\mathrm{H}-3 \rightarrow \mathrm{~L}(80 \%)$
	584	0.0945	$\mathrm{H} \rightarrow \mathrm{L}(82 \%)$
$\mathbf{4 a}$	379	0.1462	$\mathrm{H}-3 \rightarrow \mathrm{~L}(78 \%)$
	576	0.5173	$\mathrm{H} \rightarrow \mathrm{L}(99 \%)$
$\mathbf{4 b}$	380	0.1915	$\mathrm{H}-2 \rightarrow \mathrm{~L}(88 \%)$
	555	0.5090	$\mathrm{H} \rightarrow \mathrm{L}(99 \%)$

\(\left.\begin{array}{|c|c|c|c|}\hline \mathbf{5} \& 409 \& 0.1250 \& \mathrm{H}-3 \rightarrow \mathrm{~L}(86 \%)

\& 532 \& 0.7088 \& \mathrm{H} \rightarrow \mathrm{L}(100 \%)\end{array}\right]\)| $\mathrm{H}-2 \rightarrow \mathrm{~L}(36 \%)$ |
| :---: |
| |
| $\mathbf{6}$ |

9. Organic Thin-Film Transistors and Organic Solar Cells

Figure S115. (a) Transfer and (b) output characteristics of a vacuum-processed OTFT of $\mathbf{8}$ on $\mathrm{Si} / \mathrm{SiO}_{2} / \mathrm{AlO}_{x} / \mathrm{TPA}$ substrate measured under inert conditions.

Table S16. n-channel mobility $\left(\mu_{\mathrm{n}}\right)$, threshold voltage $\left(V_{\mathrm{T}}\right)$ and current on/off ratio ($I_{\mathrm{on}} / I_{\mathrm{off}}$) of vacuumprocessed OTFTs of $\mathbf{8}$ on $\mathrm{Si} / \mathrm{SiO}_{2} / \mathrm{AlO}_{\mathbf{x}} /$ TPA substrate. ${ }^{\text {a }}$

Compound	$T_{\text {sub }}$ $\left[{ }^{\circ} \mathrm{C}\right]$	μ_{n} $\left[\mathrm{cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}\right]$	V_{T} $[\mathrm{V}]$	$I_{\text {on }} / I_{\text {off }}$ $[1]$
$\mathbf{8}$	190	0.0031 ± 0.0002	26	10^{4}

${ }^{\text {a }}$ Statistical data taken from 20 independent devices.

Figure S116. AFM height images of a 30 nm vacuum-deposited thin film of $\mathbf{8}$ on $\mathrm{Si}^{2} / \mathrm{SiO}_{2} / \mathrm{AlO}_{\mathbf{x}} / \mathrm{TPA}$ substrate.

Figure S117. Donor polymers PBDB-T and PCE10 used in solar cell fabrication with 8.

Figure S118. UV-Vis absorption (thin film on ITO/ ZnO) spectra of $\mathbf{8}$ (dashed red line), donor polymer PBDB-T (dashed blue line) and the active layer (solid blue line; 1:1 mixing ratio) as well as the respective EQE curve (open blue symbol) of the BHJ organic solar cell.

Figure S119. UV-Vis absorption (thin film on ITO/ZnO) spectra of $\mathbf{8}$ (dashed red line), donor polymer PCE10 (dashed blue line) and the active layer (solid violet line; $1: 1$ mixing ratio) as well as the respective EQE curve (open violet symbol) of the BHJ organic solar cell.

10. References

[S1] Brahmi, M. M.; Monot, J.; Desage-El Murr, M.; Curran, D. P.; Fensterbank, L.; Lacôte, E.;
Malacria, M. J. Org. Chem. 2010, 75, 6983-6985.
[S2] Andrus, M. B.; Song, C.; Zhang, J. Org. Lett. 2002, 4, 2079-2082.
[S3] Meier, H.; Praß, E.; Zertani, R.; Eckes, H.-L. Chem. Ber. 1989, 122, 2139-2146.
[S4] Liu, Q.-X.; Zhang, W.; Zhao, X.-J.; Zhao, Z.-X.; Shi, M.-C.; Wang, X.-G. Eur. J. Org. Chem. 2013, 2013, 1253-1261.
[S5] Ju, H.; Wang, K.; Zhang, J.; Geng, H.; Liu, Z.; Zhang, G.; Zhao, Y.; Zhang, D. Chem. Mater. 2017, 29, 3580-3588.
[S6] Berlman, I. B., Handbook of Fluorescence Spectra of Aromatic Molecules; Academic Press: London, 1971.
[S7] Seybold, G.; Wagenblast, G. Dyes Pigm. 1989, 11, 303-317.
[S8] Würth, C.; Grabolle, M.; Pauli, J.; Spieles, M.; Resch-Genger, U. Nat. Protoc. 2013, 8, 1535-1550.
[S9] Fry, A. J. Laboratory Techniques in Electroanalytical Chemistry; 2nd ed.; Marcel Dekker Ltd:
New York, 1996.
[S10] Sheldrick, G. Acta Cryst. A 2008, 64, 112-122.
[S11] Becke, A. D. Phys. Rev. A 1988, 38, 3098-3100.
[S12] Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.
[S13] Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.
[S14] Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650-654.
[S15] Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. v. R. J. Comput. Chem. 1983, 4, 294-301.
[S16] Frisch, M. J.; Pople, J. A.; Binkley, J. S. J. Chem. Phys. 1984, 80, 3265-3269.
[S17] Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2013.
[S18] Filippetti, A. Phys. Rev. A 1998, 57, 914-919.
[S19] Dennington, R. K., T.; Millam, J. GaussView, Version 5, Semichem Inc.: 2009.
[S20] Sun, Y.; Seo, J. H.; Takacs, C. J.; Seifter, J.; Heeger A. J. Adv. Mater. 2011, 23, 1679-1683.

