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S1. Normalized number densities for neat ILs
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Figure S1: Bulk-normalized number densities ρI(z)/ρI for cations (red line) and anions (blue
line) in front of the uncharged wall (located at z = 0 nm) for neat ILs with xH2O = 0.000. The
results for EMIM/DCA are shown at the top panel, whereas the outcomes for EMIM/BF4

and BMIM/BF4 are shown in the middle and in the bottom panel, respectively.
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S2. Normalized number densities for xH2O=0.125
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Figure S2: Bulk-normalized number densities ρI(z)/ρI of cations (red line), anions (blue line)
and water molecules (black line) in front of the uncharged wall (located at z = 0 nm) for
water mole fractions xH2O = 0.125. The results for EMIM/DCA are shown in the top panel,
whereas the outcomes for EMIM/BF4 and BMIM/BF4 are shown in the middle and in the
bottom panel, respectively.
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S3. Normalized number densities for xH2O=0.98
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(b) EMIM/BF4
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Figure S3: Bulk-normalized number densities ρI(z)/ρI of cations (red line), anions (blue line)
and water molecules (black line) in front of the uncharged wall (located at z = 0 nm) for
water mole fractions xH2O = 0.98. The results for EMIM/DCA are shown in the top panel,
whereas the outcomes for EMIM/BF4 and BMIM/BF4 are shown in the middle and in the
bottom panel, respectively.
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S4. Discussion of experimental results

Vibrational SFG spectra of EMIM/DCA, EMIM/BF4 and BMIM/BF4 room-temperature

ionic liquids (RTIL) and their mixtures with H2O were recorded at the liquid/gas interface

and are presented in the main text. The water-free ILs show strong bands centered at 2850,

2880, and 2943 cm−1. These are attributable to methylene νs(CH2) and methyl νs(CH3)

symmetric stretching vibrations, as well as to the methyl Fermi resonance νFR(CH3) of the

alkyl side chains1–4. Additional vibrational modes are observed at ∼3124 and 3166 cm−1

and are assigned to H-C(4)-C(5)-H stretching vibrations of the imidazolium ring3,5. The

shape of SFG spectra can be described with the following expression for the second-order

electric susceptibility χ(2)

ISF = |χ(2)|2 =

∣∣∣∣∣χ(2)
NR +

∑
q

Aq

ωq − ω + iΓq

∣∣∣∣∣
2

(1)

which is zero in the isotropic bulk solution but non-zero at the interface due the symmetry

break at the interface. In equation (1), χ
(2)
NR, Aq, Γq and ωq are the nonresonant contribution

to the second-order susceptibility, the oscillator strength, as well as the bandwidth and

resonance frequency of the q-th vibrational mode. We point out that for a more rigorous

treatment of the inhomogenously broadened O-H bands, the latter should be treated with a

Voigt rather than with a Lorentzian line shape as indicated in equation (1)6,7.

Besides the contribution of O-H stretching vibrations to the SFG spectra, we can now discuss

the changes in C-H vibrational bands, which also clearly show substantial changes as a

function of water concentration. These apparent changes point to structural rearrangements

of the interfacial EMIM cations. In case of BMIM/BF4 and EMIM/DCA mixtures with

water, the SFG intensities of the C-H bands increase with increasing water concentration,

while for EMIM/BF4 a loss in C-H intensities is observed. Previously, Rivera-Rubero and

Baldelli8, as well as Sung et al.9 studied liquid/gas interfaces from BMIMBF4 mixtures with

water and attributed the changes in the νs(CH2) and νs(CH3) modes to a reorientation of the
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butyl chain and an increase of the alkyl chains tilt angle with respect to the surface normal,

when the water concentration was increased. This will necessarily also lead to an increase in

the νs(CH2)/νs(CH3) intensity ratio9, when both good signal-to-noise and spectral resolution

are paired like in our case. The changes in νs(CH2) and νs(CH3) modes are also associated

with a decrease in the intensity of H-C(4)-C(5)-H stretching vibrations of the imidazolium

ring when the water concentration was increased. Previously, Baldelli and co-workers8 have

done a rigorous polarization analysis of the latter vibrational band and concluded that low

intensities point to a close to flat lying orientation of the imadazolium ring at the interface

with a tilt angle of >70◦.
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