Supporting Information

Highly Regio- and Enantio-Selective Dienylation of p-Quinone Methides Enabled by Organocatalyzed Isomerization/Addition Cascade of Allenoates

De Wang, ${ }^{\text {, Ze-Feng Song, Wei-Jia Wang and Tao Xu }}$ *
School of Medicine and Pharmacy, Ocean University of China

Table of Contents

1. General information S2
2. The condition optimizations (Table S1-S2) S3
3. Experimental procedure and characterization data S4
4. References S48
5. X-ray data of compound 3a and 50' S49
6. NMR Spectra S53
7. Deuterium-labeling experiments \quad S92

1. General Informations

Unless otherwise mentioned, all reactions were carried out under a nitrogen atmosphere under anhydrous conditions and all reagents were purchased from commercial suppliers without further purification. Solvent purification was conducted according to Purification of Laboratory Chemicals (Peerrin, D. D.; Armarego, W. L. and Perrins, D. R., Pergamon Press: Oxford, 1980). Yields refer to chromatographically and spectroscopically (${ }^{1} \mathrm{H}$ NMR) homogeneous materials. Optical rotations were determined at 589 nm (sodium D line) by using a Perkin-Elmer-341 MC digital polarimeter; $[\alpha]_{D}$-values are given in unit of $10 \mathrm{deg}^{-1}$ $\mathrm{cm}^{2} \mathrm{~g}^{-1}$. Chiral HPLC was performed on Agilent 1290 Infinity II LC System with chiral columns [Chiralpak IB-H, IC-H and AD-H columns $4.6 \times 250 \mathrm{~mm}$, (Daicel Chemical Ind., Ltd.)]. Commercially obtained reagents were used without further purification. All these reactions were monitored by TLC with silica-gel-coated plates. Flash column chromatography was carried out by using silica gel at increased pressure.

Catalysts CP3-CP10 were purchased from J\&K Chemical Ltd., STREM or Alfa Aesar companies and used directly without further purification. S1 and different aldehydes $\mathbf{S 2}$ were purchased from Energy Chemical Company and used directly.

CP1 ${ }^{[1]}$ and CP2 ${ }^{[2]}$ were prepared according to the previously reported procedures.
Compounds p-quinone methides $\mathbf{1}^{[3]}$ and δ-allenoates $\mathbf{2}^{[4]}$ were prepared according to the previously reported procedures. Compounds $\mathbf{1 a}-\mathbf{1 t},{ }^{[3]} \mathbf{2 a}{ }^{[4]}$ and $\mathbf{4}^{[5]}$ are known products, The known $\mathbf{S 3}(\mathbf{a}-\mathrm{g})$ and $\mathbf{S 4}(\mathbf{a}-\mathbf{d})$ were prepared according to the previously reported procedures ${ }^{[6]}$

All the racemic products were carried out with triphenylphosphine PPh_{3} ($20 \mathrm{~mol} \%$) or diphenylmethylphosphine $\mathrm{Ph}_{2} \mathrm{MeP}$ ($20 \mathrm{~mol} \%$) as catalyst in toluene at room temperature.

2. The condition optimizations

Table S1

	${ }^{t} \mathrm{Bu}$		 iral phosphine solvent, additiv		 3a 4Z), >20:1		 allenoate intramolecular isomerization
entry ${ }^{\text {a }}$	cat.*	2: R^{1}	solvent	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	additive	yield $^{\text {b }}$ (\%)	ee^{c} (\%)
1	CP10	2a: Bn	DCM	20	-	64	57
2	CP10	2a: Bn	THF	20	-	24	67
3	CP10	2a: Bn	$\mathrm{Et}_{2} \mathrm{O}$	20	-	42	62
4	CP10	2a: Bn	benzene	20	-	47	71
5	CP10	2a: $\mathrm{Bn} \quad \mathrm{c}$	chlorobenzene	20	-	62	70
6	CP10	2a: Bn	p-xylene	20	-	69	71
7	CP10	2a: Bn	$o-x y l e n e$	20	-	82	67
8^{f}	CP10	2a: Bn	toluene	20	$\mathrm{H}_{2} \mathrm{O}$	16	80
9^{f}	CP10	2a: $B n$	toluene	20	(R)-BINOL	16	70
10^{f}	CP10	2a: Bn	toluene	20	benzoic acid	- ${ }^{\text {e }}$	-
11	CP10	2a: Bn	toluene	20	4A MS	73	77
$12^{\text {g }}$	CP10	2a: Bn	toluene	0	4A MS	65	82
13^{9}	CP10	2a: Bn	o-xylene	0	$4 \AA$ MS	68	65
14^{9}	CP10	2a: Bn	toluene	-20	4Å MS	8	75
$15^{\text {g }}$	CP10	2a-1: Et	toluene	0	4 A MS	65	81
16^{9}	CP10	2a-2: ${ }^{\text {t }} \mathrm{Bu}$	toluene	0	$4 \AA$ MS	72	77
17^{9}	CP10	2a-3: $\mathrm{CH}(\mathrm{Ph})_{2}$	$)_{2}$ toluene	0	4A MS	85	79

${ }^{\text {a }}$ All reactions were carried out with 1a (0.1 mmol), 2a (0.12 mmol), catalyst ($10 \mathrm{~mol} \%$) in corresponding solvent (1.0 mL); ${ }^{\text {b }}$ Isolated yield; ${ }^{c}$ Determined by chiral HPLC; ${ }^{\text {d }}$ Obtained an allenotae isomerized product; ${ }^{\text {e }}$ Trace product, starting materials recover; ${ }^{\text {f }}$ Adding 20 mol \% additives to the reaction system. ${ }^{9}$ The reaction run 48 hours

Table S2

 1a	 2b	Ph solvent, $4 \AA$	$10(R)-\mathrm{SITCP}$ MS, T	 3b $(2 E, 4 Z)$		 4b
entry ${ }^{\text {a }}$	cat. (x mol\%)	solvent	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{mol}(1 \mathrm{a} / 2)$	yield ${ }^{\text {b }}$ (\%)	ee ${ }^{\text {c (\%) }}$
$1^{\text {d }}$	10	toluene	0	1/1	30 (38)	93 (90)
2	10	toluene	10	1/1	47	85
3	10	toluene	20	1/1	58	82
4	10	toluene	0	1/2	48	92
5	10	toluene	0	2/1	15	93
6	20	toluene	0	1/2	65	93
7	20	toluene	0	1/3	63	92
8	20	chlorobenzene	0	1/2	17	93
9	10	o-xylene	0	1/2	35	90
10	20	toluene/DCM	0	1/2	30	90
11	25	toluene	0	1/2	69	91
12^{e}	10	p-xylene	15	1/2	73	85
13^{f}	10	toluene	0	1/2	69	93
14^{9}	10	toluene	0	1/2	64	93

${ }^{a}$ All reactions were carried out with $\mathbf{1 a}(0.1 \mathrm{mmol})$, 2b (0.2 mmol), (R)-SITCP ($10 \mathrm{~mol} \%$) in corresponding solvent $(1.0 \mathrm{~mL})$ at indicated solvent; ${ }^{\mathrm{b}}$ Isolated yield; ${ }^{c}$ Determined by chiral HPLC; ${ }^{d}$ Repeat result in parentheses. ${ }^{e}$ Diluted in $2 \mathrm{~mL} p$-Xylene, without 4A MS as additive. ${ }^{f}$ Diluted in 4 mL toluene, without $4 \mathrm{~A} M S$ as additive. ${ }^{g}$ Diluted in 6 mL toluene, without 4A MS as additive.

3. Experimental procedure and characterization datas

General procedure (I) for the synthesis of \boldsymbol{p}-QM (1a-1r) ${ }^{[3]}$

To a solution of 2,6-di-tert-butylphenol $\mathbf{S}-\mathbf{1}(10 \mathrm{mmol})$ in toluene (30 mL) was added different aldehyde $\mathbf{S - 2}$ (10 mmol). The reaction mixture was heated in a dry Schlenk tube to reflux. Piperidine (20 mmol) was added drop wise slowly (approx. 0.5 h), and the reaction mixture continued to reflux for 12 h . After the mixture had cooled just below the boiling point of toluene, acetic anhydride (20 mmol) was added, and then the solution was stirred for one hour. The residue was extracted three times with dichloromethane. The combined organic layers were washed with water and brine sequentially, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude product was purified by flash column chromatography (pure PE to $\mathrm{PE} / \mathrm{EA}=200: 1, \mathrm{R}_{f}=0.9-0.6$) to afford the corresponding product yellow to red solid 1a-1r (Known products).

In a Dean-Stark apparatus, 3,5-dibromo-4-hydroxybenzaldehyde ($20 \mathrm{mmol}, 5.56 \mathrm{~g}$) and PTSA ($1 \mathrm{mmol}, 190 \mathrm{mg}$) were dissolved in toluene (60 mL) under N_{2} atmosphere and heated to reflux. To the stirred solution was added glycol ($40 \mathrm{mmol}, 2.23 \mathrm{~mL}$). After stirred overnight, $\mathrm{K}_{2} \mathrm{CO}_{3}(4.0 \mathrm{mmol}, 552 \mathrm{mg})$ was added and stirring was continued for 1 h . Then, the mixture was filtered and the solvents were removed under reduce pressure. The residue was purified by chromatography ($\mathrm{PE} / \mathrm{EA}=10 / 1$) to obtain the pure product SI-1 (white solid, $3.9 \mathrm{~g}, 61 \%$ yield).
A mixture of SI-1 ($2.44 \mathrm{~g}, 7.5 \mathrm{mmol}$), TMSCl ($11.25 \mathrm{mmol}, 1.43 \mathrm{~mL}$), DIPEA (11.25 $\mathrm{mmol}, 1.85 \mathrm{~mL}$) in THF (15 mL) was stirred for 1 hour at room temperature and then the solids were removed by filtration and the solution was concentrated by rotary evaporation. The crude TMS protecting product was cooled to $-78{ }^{\circ} \mathrm{C} .2 .5 \mathrm{M}{ }^{n} \mathrm{BuLi}$ $(7.5 \mathrm{mmol}, 3.0 \mathrm{~mL})$ was slowly added and the mixture was allowed warm to room temperature for 3 hours. After quenching with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, the mixture was extracted with EtOAc, washed with brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solids were removed by filtration and the solution was concentrated by rotary evaporation. The residue was purified by silica gel flash column chromatography (PE/EA $=12 / 1$) to afford product SI-2 (white solid, $1.74 \mathrm{~g}, 73 \%$ yield).
A mixture of SI-2 ($5.5 \mathrm{mmol}, 1.74 \mathrm{~g}$), TMSCl ($8.26 \mathrm{mmol}, 1.05 \mathrm{~mL}$), DIPEA (8.26 $\mathrm{mmol}, 1.36 \mathrm{~mL}$) in THF (15 mL) was stirred for 1 hour at room temperature and then the solids were removed by filtration and the solution was concentrated by rotary evaporation. The crude product was then cooled to $-78{ }^{\circ} \mathrm{C} .2 .5 \mathrm{M}{ }^{n} \mathrm{BuLi}(4.92 \mathrm{mmol}$, 3.1 mL) was slowly added and the mixture was allowed warm to room temperature for 3 hours. After quenching with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, the mixture was extracted with EtOAc, washed with brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solids were removed by filtration and the solution was concentrated by rotary evaporation to obtain a slight pink solid. The solid was washed with a small amount of n-hexane (5 mL) and filtered to afford white solid product SI-3 ($1.08 \mathrm{~g}, 63 \%$ yield).
SI-3 ($3.5 \mathrm{mmol}, 1.08 \mathrm{~g}$) was dissolved in acetone, and PTSA ($0.35 \mathrm{mmol}, 66 \mathrm{mg}$) was added. The mixture was stirred for 1 h and diluted with EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The mixture was extracted with EtOAc , washed with brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The
solids were removed by filtration and the solution was concentrated by rotary evaporation. The residue SI-4 (white solid, $901 \mathrm{mg}, 97 \%$ yield) was pure enough for next step.
SI-4 ($3.38 \mathrm{mmol}, 0.9 \mathrm{~g}$) was dissolved in anhydrous THF (15 mL) at $0{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. Then PhMgBr (3 M in $\mathrm{Et}_{2} \mathrm{O}, 13.54 \mathrm{mmol}, 4.5 \mathrm{~mL}$) was slowly added. Then the reaction mixture was refluxed for 1 hour and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. After extraction with EtOAc, the mixture was washed with brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solids were removed by filtration and the solution was concentrated by rotary evaporation. The residue was purified by silica gel flash column chromatography ($\mathrm{PE} / \mathrm{EA}=20 / 1$) to afford product $\mathbf{S I}-5$ (yellowish oil, 1.0 g , 86% yield).
A mixture of SI-5 ($1.0 \mathrm{mmol}, 344 \mathrm{mg}$), $\mathrm{Et}_{3} \mathrm{~N}(2.2 \mathrm{mmol}, 0.3 \mathrm{~mL})$ in dry DCM $(15 \mathrm{~mL})$ was slowly added $\mathrm{MsCl}(1.1 \mathrm{mmol}, 90 \quad \mathrm{~L})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was allowed warm to room temperature and stirred for 30 mins. The mixture was then diluted with DCM and $\mathrm{H}_{2} \mathrm{O}$, then the mixture was extracted with DCM, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was filtrated and concentrated by rotary evaporation. The crude product $1 \mathbf{s}$ (yellow solid, 330 mg) was used directly without any purification.

Compound 1s: This is a known compound, yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87\left(\mathrm{dd}, J_{l}=0.8 \mathrm{~Hz}, J_{2}=2.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.50-7.41(\mathrm{~m}, 5 \mathrm{H}), 7.35\left(\mathrm{dd}, J_{l}=0.4 \mathrm{~Hz}, J_{2}\right.$ $=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 0.25(\mathrm{~s}, 9 \mathrm{H}), 0.22(\mathrm{~s}, 9 \mathrm{H})$. The data was in accordance with reported ref[3b]

General procedure (II) for the synthesis of δ-substituted allenoates (2a-2i) ${ }^{[4]}$

To a solution of phosphine ylide $\mathbf{S 3}$ (5 or 10 mmol) in DCM (40 mL) was added 3-arylpropanoyl chloride $\mathbf{S 4}$ (1.1 eq.) and triethylamine ($1.1 \mathrm{eq)}$.) sequentially under nitrogen protection at $0{ }^{\circ} \mathrm{C}$, then the reaction mixture was allowed warm to room temperature. After two to three hours later (TLC monitor), $\mathrm{Et}_{2} \mathrm{O}$ was added to the
reaction mixture and filter to remove the white salt $\left(\mathrm{Et}_{3} \mathrm{~N} \mathrm{HCl}\right)$. The organic phase was then concentrated on a rotary evaporator under reduce pressure and the residue was subjected to purification by column chromatography $\left({\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}: 20 / 1 \text { to } 10 / 1, \mathrm{R}_{f}=}^{=}\right.$ $0.5-0.6$) to afford the corresponding allenoate product 2. (all the allenoates contain an alkynyl isomer as minor products, inseparable).

Phenyl 5-phenylpenta-2,3-dienoate (2b)

Compound 2b $(2.12 \mathrm{~g}, 85 \%$ yield, allenoate: isomer $=>19: 1)$ was obtained as a yellowish oil following the general procedure II from S3-b (10 mmol, 3.96 g) and S4-a ($11 \mathrm{mmol}, 1.65 \mathrm{~mL}$) stirred for 3 hours. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.42-7.38 (m, 2H), 7.32-7.31 (m, 4H), 7.26-7.22 (m, 2H), 7.14-7.12 (m, 2H), 5.89 (dt, $\left.J_{1}=6.0 \mathrm{~Hz}, J_{2}=7.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.80\left(\mathrm{dt}, J_{1}=2.8 \mathrm{~Hz}, J_{2}=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.60-3.48(\mathrm{~m}$, 2H); ${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 213.8,164.4,150.8,138.3,129.4,128.6,128.5$, 126.7, 125.8, 121.5, 95.4, 88.3, 34.0; IR (neat) v 3028, 2917, 1957, 1739, 1724, 1590, 1488, 1451, 1409, 1195, 1128, 748, $700 \mathrm{~cm}^{-1}$; HRMS Calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 251.1072, found: 251.1067

Metyl-4-(5-phenoxy-5-penta-2,3-dien-1-yl)benzene (2c)

Compound 2c $(2.01 \mathrm{~g}, 76 \%$ yield, allenoate:isomer $=5.6: 1)$ was obtained as a yellowish oil following the general procedure II from S3-b (10 mmol, 3.96 g) and S4-b ($11 \mathrm{mmol}, 1.82 \mathrm{~g}$) stirred for 3 hours. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.42-7.38 $(\mathrm{m}, 2 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.11(\mathrm{~m}, 4 \mathrm{H}), 5.87\left(\mathrm{dt}, J_{I}=6.0\right.$
$\left.\mathrm{Hz}, J_{2}=7.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.79\left(\mathrm{dt}, J_{1}=2.8 \mathrm{~Hz}, J_{2}=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.56-3.44(\mathrm{~m}, 2 \mathrm{H}), 2.33$ ($\mathrm{s}, 3 \mathrm{H}$) ; ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 213.8,164.4,150.8,136.3,135.3,129.5$, $129.4,129.2,128.4,127.8,126.1,125.8,121.5,121.3,95.6,88.2,33.6,21.0$; IR (neat) v 3028, 2917, 1957, 1723, 1491, 1231, 1194, 1160, 1127, 802, $686 \mathrm{~cm}^{-1}$; HRMS Calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{2}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 265.1229$, found: 265.1221.

1-Bromo-4-(5-phenoxy-5-penta-2,3-dien-1-yl)benzene (2d)

Compound 2d $(2.69 \mathrm{~g}, 82 \%$ yield, allenoate: isomer $=4.7: 1)$ was obtained as a yellowish oil following the general procedure II from S3-b (10 mmol, 3.96 g) and $\mathbf{S 4 - c}(11 \mathrm{mmol}, 2.46 \mathrm{~g})$ stirred for 3 hours. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.46-7.39 $(\mathrm{m}, 4 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.13(\mathrm{~m}, 2 \mathrm{H}), 5.90-5.81(\mathrm{~m}, 2 \mathrm{H})$, 3.54-3.43 (m, 2H); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 213.8,164.1,150.6,137.2,131.5$, 130.3, 129.4, 125.8, 121.4, 94.9, 88.5, 33.3; IR (neat) v 3032, 2918, 1960, 1723, 1488, 1409, 1194, 1129, 1011, 802, $686 \mathrm{~cm}^{-1}$; HRMS Calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Br}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 329.0177, found: 329.0170.

Fluoro-4-(5-phenoxy-5-penta-2,3-dien-1-yl)benzene (2e)

Compound 2e $(2.44 \mathrm{~g}, 91 \%$ yield, allenoate: isomer $=5.0: 1)$ was obtained as a yellowish oil following the general procedure II from S3-b (10 mmol, 3.96 g) and S4-d ($11 \mathrm{mmol}, 1.86 \mathrm{~g}$) stirred for 2 hours. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.38$ (m, 2H), 7.28-7.22 (m, 3H), 7.13-7.11 (m, 2H), 7.02-6.97 (m, 2H), $5.87\left(\mathrm{dt}, J_{l}=6.0\right.$
$\left.\mathrm{Hz}, J_{2}=7.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.79\left(\mathrm{dt}, J_{1}=2.8 \mathrm{~Hz}, J_{2}=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.56-3.44(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 213.8,164.3,161.7(\mathrm{~d}, J=243.4 \mathrm{~Hz}), 150.8,133.9(\mathrm{~d}, J=$ $3.0 \mathrm{~Hz}), 130.1(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 129.4,125.9,121.5,115.3(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 95.4,88.5$, 33.2; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-116.07$ to -116.13 (m) ppm; IR (neat) v 3042, 2917, 1960, 1725, 1593, 1508, 1491, 1412, 1223, 1194, 1160, 1129, 821, $686 \mathrm{~cm}^{-1}$; HRMS Calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~F}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 269.0978$, found: 269.0972.
p-Tolyl 5-phenylpenta-2,3-dienoate (2f)

Compound $2 \mathrm{f}(830 \mathrm{mg}, 63 \%$ yield, allenoate: isomer $=5.8: 1)$ was obtained as a yellowish oil following the general procedure II from $\mathbf{S 3} \mathbf{- c}(5 \mathrm{mmol}, 2.05 \mathrm{~g})$ and $\mathbf{S 4}$-a $(5.5 \mathrm{mmol}, 0.82 \mathrm{~mL})$ stirred for 2 hours. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.30(\mathrm{~m}$, 4H), 7.24-7.22 (m, 1H), 7.19 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.91-5.85$ $(\mathrm{m}, 1 \mathrm{H}), 5.80-5.77(\mathrm{~m}, 1 \mathrm{H}), 3.57-3.48(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 213.7,164.6,148.6,138.4,135.4,129.9,128.6,128.5,126.7,121.2,95.3$, 88.3, 34.0, 20.9; IR (neat) v 3028, 2917, 1957, 1723, 1599, 1505, 1451, 1193, 1127, 1030, $698 \mathrm{~cm}^{-1}$; HRMS Calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 265.1229$, found: 265.1220 .

4-Methoxyphenyl 5-phenylpenta-2,3-dienoate (2g)

Compound $2 \mathrm{~g}(1.74 \mathrm{~g}, 62 \%$ yield, allenoate: isomer $=16.7: 1)$ was obtained as a yellow oil following the general procedure II from S3-d (10 mmol, 4.26 g) and $\mathbf{S 4}$-a $(11 \mathrm{mmol}, 1.65 \mathrm{~mL})$ stirred for 2 hours. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.29(\mathrm{~m}$, $4 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.07-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.93-6.89(\mathrm{~m}, 2 \mathrm{H}), 5.88\left(\mathrm{dt}, J_{l}=6.4 \mathrm{~Hz}\right.$, $\left.J_{2}=7.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.78\left(\mathrm{dt}, J_{l}=2.8 \mathrm{~Hz}, J_{2}=6.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.59-3.48(\mathrm{~m}$,

2H); ${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 213.7,164.8,157.2,144.3,138.4,128.6,128.5$, 126.7, 122.3, 114.4, 95.3, 88.3, 55.6, 34.0; IR (neat) v 3028, 2917, 1957, 1728, 1598, 1505, 1451, 1234, 1192, 1127, 1031, $697 \mathrm{~cm}^{-1} ;$ HRMS Calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 281.1178, found: 281.1169.

3,5-Dimethoxyphenyl 5-phenylpenta-2,3-dienoate (2h)

Compound $\mathbf{2 h}(1.79 \mathrm{~g}, 58 \%$ yield, allenoate: isomer $=2.4: 1$) was obtained as a yellow oil following the general procedure from S3-e ($10 \mathrm{mmol}, 4.56 \mathrm{~g}$) and $\mathbf{S 4}-\mathbf{a}$ (11 mmol , 1.65 mL) stirred for 3 hours. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.28(\mathrm{~m}, 4 \mathrm{H})$, 7.25-7.22 (m, 1H), $6.36(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.31-6.30(\mathrm{~m}, 2 \mathrm{H}), 5.89\left(\mathrm{dt}, J_{l}=6.0 \mathrm{~Hz}\right.$, $\left.J_{2}=7.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.78\left(\mathrm{dt}, J_{l}=2.8 \mathrm{~Hz}, J_{2}=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.78(\mathrm{~s}, 6 \mathrm{H}), 3.57-3.52(\mathrm{~m}$, $2 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 213.8,171.2,164.2,161.0,152.3,140.0,138.3$, $128.6,128.5,128.4,127.9,126.7,126.4,100.1,98.3,98.2,95.4,88.2,55.5,55.4,36.0$, 34.0, 30.9; IR (neat) v 3028, 2937, 1957, 1737, 1612, 1474, 1426, 1208, 1155, 1132, 1059, 830, $697 \mathrm{~cm}^{-1}$; HRMS Calcd. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{O}_{4}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 311.1283, found: 311.1274 .

4-Chlorophenyl 5-phenylpenta-2,3-dienoate (2i)

Compound $2 \mathbf{2 i}(1.46 \mathrm{~g}, 52 \%$ yield, allenoate: isomer $=8.3: 1)$ was obtained as a yellowish oil following the general procedure II from S3-f ($10 \mathrm{mmol}, 4.3 \mathrm{~g}$) and $\mathbf{S 4}$-a ($11 \mathrm{mmol}, 1.65 \mathrm{~mL}$) stirred for 3 hours. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.34$ (m , $2 H), 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.06(\mathrm{~m}, 2 \mathrm{H}), 5.93-5.87(\mathrm{~m}, 1 \mathrm{H})$, 5.79-5.76 (m, 1H), 3.57-3.48 (m, 2H); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 214.0,164.1$,
149.3, 138.3, 131.1, 129.5, 128.6, 128.5, 127.9, 126.8, 122.9, 95.6, 88.1, 34.0; IR (neat) v 3025, 2920, 1960, 1734, 1486, 1201, 1127, 1087, 1014, 737, $700 \mathrm{~cm}^{-1}$; HRMS Calcd. for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{Cl}^{-}[\mathrm{M}-\mathrm{H}]^{-}: 283.0526$, found: 283.0527.

General procedure (III) for enantioselective dienylation to prepare 3 and 5.

Compounds p-quinone methides $1(0.1 \mathrm{mmol})$, (R)-SITCP (0.01 mmol) and anhydrous toluene (4.0 mL) were added into a pre-heated Schlenk tube and cooled to $0{ }^{\circ} \mathrm{C}$, then allenoate $2(0.2 \mathrm{mmol})$ was added to the above mixture under nitrogen protection. The reaction mixture was stirred at this temperature for the indicated time (TLC monitored). The reaction mixture was then concentrated on a rotary evaporator under reduce pressure and the residue was subjected to purification by column chromatography (PE/EA: 100/1-20/1) to afford the corresponding product $\mathbf{3}$ or 5 .
(S)-Benzyl
(2E,4Z)-6-(3,5-di-tert-butyl-4-hydroxyphenyl)-5,6-diphenylhexa-2,4-dienoate (3a)

Compound $\mathbf{3 a}$ ($37.7 \mathrm{mg}, 65 \%$ yield) was obtained as a yellowish solid following the general procedure III from $\mathbf{1 a}(0.1 \mathrm{mmol}, 29.4 \mathrm{mg})$ and $\mathbf{2 a}(0.12 \mathrm{mmol}, 32 \mathrm{mg}, 30 \mu \mathrm{~L})$ stirred for 12 hours. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.25(\mathrm{~m}$, $9 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{~s}, 2 \mathrm{H}), 5.99(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.85(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 18 \mathrm{H}),{ }^{13} \mathrm{C}$

NMR (100 MHz, CDCl_{3}) $\delta 167.1,156.1,152.5,142.9,142.2,140.3,136.4,135.7$, $131.6,129.6,129.0,128.8,128.6,128.4,128.24,128.16,128.1,127.8,126.6,126.2$, 121.1, 66.0, 59.9, 34.5, 30.5; IR (neat) v 3624, 2957, 1697, 1621, 1494, 1434, 1375, 1262, 1234, 1149, 1121, 991, 771, $694 \mathrm{~cm}^{-1}$; Mp: 122-124 ${ }^{\circ} \mathrm{C}$. HRMS Calcd. for $\mathrm{C}_{39} \mathrm{H}_{42} \mathrm{O}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 581.3032$, found: 581.3026.
$[\alpha]^{20}{ }_{\mathrm{D}}=+1.2\left(\mathrm{c} 0.27, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ for 82% ee; Enantiomeric excess was determined by HPLC with a Chiralcel IB-H column, Hexane $/^{i} \mathrm{PrOH}=99 / 1,0.3 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$, $t_{\text {minor }}=15.528 \mathrm{~min}, t_{\text {major }}=14.896 \mathrm{~min}$.

Racemic Sample 3a

Enantiomeric Sample 3a

(S)-Phenyl
(2E,4Z)-6-(3,5-ditert-butyl-4-hydroxyphenyl)-5,6-diphenylhexa-2,4-dienoate (3b)

Compound 3b (39.1 mg , 69% yield) was obtained as a yellowish solid following the general procedure III from 1a ($0.1 \mathrm{mmol}, 29.4 \mathrm{mg}$) and $\mathbf{2 b}(0.2 \mathrm{mmol}, 50 \mathrm{mg}, 45 \mu \mathrm{~L}$) stirred for 48 hours. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49\left(\mathrm{dd}, J_{l}=11.6, J_{2}=15.2 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 7 \mathrm{H}), 7.23-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.07(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, 2H), $6.97(\mathrm{~s}, 2 \mathrm{H}), 6.09(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H})$, $5.13(\mathrm{~s}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 18 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.5,156.9,152.4,150.8$, 144.0, 141.9, 140.0, 135.6, 131.4, 129.4, 129.2, 128.8, 128.3, 128.1, 128.0, 127.8, $126.5,126.1,125.5,121.6,120.4,59.8,34.3,30.3$; IR (neat) v 3630, 2957, 1726, 1621, $1590,1491,1434,1231,1194,1160,1115,751,700 \mathrm{~cm}^{-1}$; MP: $77-79{ }^{\circ} \mathrm{C}$. HRMS Calcd. for $\mathrm{C}_{38} \mathrm{H}_{40} \mathrm{O}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 567.2875$, found: 567.2871.
$[\alpha]^{20}{ }_{D}=+10.5\left(\mathrm{c} 0.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ for 93% ee; Enantiomeric excess was determined by HPLC with a Chiralcel IB-H column, Hexane $/^{i} \mathrm{PrOH}=99 / 1,0.3 \mathrm{~mL} / \mathrm{min}, 270 \mathrm{~nm}$, $t_{\text {minor }}=21.825 \mathrm{~min}, t_{\text {major }}=14.707 \mathrm{~min}$.

Racemic Sample of 3b

Enantiomeric Sample of 3b

(S)-Phenyl(2E,4Z)-6-(3,5-di-tert-butyl-4-hydroxyphenyl)-6-phenyl-5-(p-tolyl)hex

a-2,4-dienoate (3c)

Compound 3b ($34.5 \mathrm{mg}, 62 \%$ yield) was obtained as a white solid following the general procedure III from 1b ($0.1 \mathrm{mmol}, 29.4 \mathrm{mg}$) and 2c ($0.2 \mathrm{mmol}, 53 \mathrm{mg}, 50 \mu \mathrm{~L}$) stirred for 48 hours. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50\left(\mathrm{dd}, J_{l}=11.6, J_{2}=15.2 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 7.36-7.28$ (m, 4H), 7.23-7.18 (m, 4H), 7.10-7.04 (m, 6H), 6.93 (s, 2H), 6.03 (d, J $=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H})$, 1.38 (s, 18H); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.6,157.0,152.4,150.8,144.3$, $142.1,137.7,137.1,135.5,131.5,129.4,129.3,128.9,128.7,128.3,127.8,126.5$, 126.1, 125.5, 121.6, 120.0, 59.7, 34.3, 30.3, 21.2; IR (neat) v 3629, 2957, 2920, 1728, 1621, 1491, 1434, 1234, 1195, 1160, 1116, 1128, $701 \mathrm{~cm}^{-1}$; MP: $46-47{ }^{\circ} \mathrm{C}$. HRMS Calcd. for $\mathrm{C}_{39} \mathrm{H}_{41} \mathrm{O}_{3}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-}: 557.3056$, found: 557.3061.
$[\alpha]^{20}{ }_{\mathrm{D}}=+5.9\left(\mathrm{c} 0.46, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ for 91% ee; Enantiomeric excess was determined by HPLC with a Chiralcel IB-H column, Hexane $/{ }^{i} \operatorname{PrOH}=99 / 1,0.3 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$, $t_{\text {minor }}=22.510 \mathrm{~min}, t_{\text {major }}=14.354 \mathrm{~min}$.

Racemic Sample of 3c

Enantiomeric Sample of 3c

(S)-Phenyl(2E,4Z)-5-(4-bromophenyl)-6-(3,5-di-tert-butyl-4-hydroxyphenyl)-6-p henylhexa-2,4-dienoate (3d)

Compound 3d ($49.7 \mathrm{mg}, 81 \%$ yield) was obtained as a corlorless solid following the
general procedure III from $\mathbf{1 a}(0.1 \mathrm{mmol}, 29.4 \mathrm{mg})$ and $\mathbf{2 d}(0.2 \mathrm{mmol}, 66 \mathrm{mg}, 65 \mu \mathrm{~L}$) stirred for 48 hours. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.42-7.38 (m, 3H), 7.37-7.29 (m, $5 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.06-7.01(\mathrm{~m}, 4 \mathrm{H}), 6.91(\mathrm{~s}, 2 \mathrm{H}), 6.06$ (d, J $=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 18 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.4,155.4,152.5,150.7,143.3,141.5,138.9,135.7$, $131.4,130.9,130.5,129.4,129.3,128.4,128.3,126.7,126.0,125.6,122.0,121.6$, 121.1, 59.8, 34.3, 30.3; IR (neat) v 3629, 2957, 1728, 1621, 1489, 1434, 1234, 1195, 1160, 1119, 1008, 737, $700 \mathrm{~cm}^{-1}$; MP: 49-51 ${ }^{\circ} \mathrm{C}$. HRMS Calcd. for $\mathrm{C}_{38} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Br}^{-1}$ (M-H) $: 621.2004$, found: 621.2008.
$[\alpha]^{20}{ }_{\mathrm{D}}=+3.3\left(\mathrm{c} 0.21, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ for 96% ee; Enantiomeric excess was determined by HPLC with a Chiralcel IB-H column, Hexane $/{ }^{i} \operatorname{PrOH}=99 / 1,0.3 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$, $t_{\text {minor }}=28.545 \mathrm{~min}, t_{\text {major }}=14.808 \mathrm{~min}$.

Racemic Sample of 3d

Enantiomeric Sample of 3d

(S)-Phenyl(2E,4Z)-6-(3,5-di-tert-butyl-4-hydroxyphenyl)-5-(4-fluorophenyl)-6-ph enylhexa-2,4-dienoate (3e)

Compound $\mathbf{3 e}$ ($39.2 \mathrm{mg}, 70 \%$ yield) was obtained as a white solid following the general procedure III from 1a $(0.1 \mathrm{mmol}, 29.4 \mathrm{mg})$ and $\mathbf{2 e}(0.2 \mathrm{mmol}, 54 \mathrm{mg}, 50 \mu \mathrm{~L})$ stirred for 48 hours. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41\left(\mathrm{dd}, J_{l}=11.2, J_{2}=15.2 \mathrm{~Hz}\right.$, $1 \mathrm{H}), ~ 7.36-7.29$ (m, 4H), 7.25-7.17 (m, 4H), 7.13-7.09 (m, 2H), 7.06-7.04 (m, 2H), 6.99-6.95 (m, 2H), $6.92(\mathrm{~s}, 2 \mathrm{H}), 6.07(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.15(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.5,162.3$ $(\mathrm{d}, J=246.2 \mathrm{~Hz}), 155.7,152.5,150.7,143.6,141.6,135.9,135.7,131.1,130.5(\mathrm{~d}, J=$ 8 Hz), 129.4, 129.3, 128.4, 128.1, 126.6, 126.0, 125.6, 121.5, 120.7, 115.2 (d, $J=21.5$ Hz), $60.0,34.3,30.3 ;{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CFCl}_{3}$) $\delta-110.96$ to -110.90 (m); IR (neat) v 3630, 2957, 1725, 1621, 1595, 1505, 1491, 1432, 1231, 1195, 1158, 1116, 844, 734, $700 \mathrm{~cm}^{-1}$; MP: $65-66{ }^{\circ} \mathrm{C}$; HRMS Calcd. for $\mathrm{C}_{38} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{~F}^{-}[\mathrm{M}-\mathrm{H}]^{-}: 561.2809$, found: 561.2811 .
$[\alpha]^{20}{ }_{D}=+6.7\left(\mathrm{c} 0.15, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ for 93% ee; Enantiomeric excess was determined by HPLC with a Chiralcel IB-H column, Hexane $/{ }^{i} \operatorname{PrOH}=99 / 1,0.3 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$, $t_{\text {minor }}=31.153 \mathrm{~min}, t_{\text {major }}=14.768 \mathrm{~min}$.

Racemic Sample of 3e

Enantiomeric Sample of 3e

(S)-p-Tolyl(2E,4Z)-6-(3,5-di-tert-butyl-4-hydroxyphenyl)-5,6-diphenylhexa-2,4-di enoate (3f)

Compound 3 f ($31.7 \mathrm{mg}, 57 \%$ yield) was obtained as a white solid following the general procedure III from 1a ($0.1 \mathrm{mmol}, 29.4 \mathrm{mg}$) and $\mathbf{2 f}(0.2 \mathrm{mmol}, 53 \mathrm{mg}, 50 \mu \mathrm{~L}$) stirred for 48 hours. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45\left(\mathrm{dd}, J_{l}=11.6, J_{2}=15.2 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 4 \mathrm{H}), 6.94-6.92(\mathrm{~m}, 4 \mathrm{H})$, $6.05(\mathrm{~d}, J=11.6,1 \mathrm{H}), 5.98(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 2.32(\mathrm{~s}$, 3H), 1.39 ($\mathrm{s}, 18 \mathrm{H}$) ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.8,156.7,152.4,148.5,143.8$, $142.0,140.0,135.6,135.1,131.4,129.8,129.4,128.8,128.3,128.1,128.0,127.8$, 126.5, 126.1, 121.2, 120.5, 59.8, 34.3, 30.3, 20.8; IR (neat) v 3629, 2954, 1728, 1621, 1505, 1434, 1197, 1115, 768, $701 \mathrm{~cm}^{-1}$; MP: 56-57 ${ }^{\circ} \mathrm{C}$; HRMS Calcd. for $\mathrm{C}_{39} \mathrm{H}_{41} \mathrm{O}_{3}{ }^{-}$ [M-H]: 557.3062, found: 557.3061.
$[\alpha]^{20}{ }_{D}=+12.8\left(\mathrm{c} 0.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ for 93% ee; Enantiomeric excess was determined by HPLC with a Chiralcel IB-H column, Hexane $/^{i} \operatorname{PrOH}=99 / 1,0.3 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$, $t_{\text {minor }}=17.718 \mathrm{~min}, t_{\text {major }}=14.282 \mathrm{~min}$.

Racemic Sample of $3 f$

Enantiomeric Sample of 3f

(S)-4-Methoxyphenyl(2E,4Z)-6-(3,5-di-tert-butyl-4-hydroxyphenyl)-5,6-diphenyl hexa-2,4-dienoate (3g)

Compound $\mathbf{3 g}$ ($30.3 \mathrm{mg}, 53 \%$ yield) was obtained as a yellow solid following the general procedure III from $\mathbf{1 a}(0.1 \mathrm{mmol}, 29.4 \mathrm{mg})$ and $\mathbf{2 g}(0.2 \mathrm{mmol}, 56 \mathrm{mg}, 55 \mu \mathrm{~L})$ stirred for 48 hours. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46\left(\mathrm{dd}, J_{l}=11.6 \mathrm{~Hz}, J_{2}=15.2\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.15(\mathrm{~m}, 6 \mathrm{H}), 6.97(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~s}, 2 \mathrm{H})$, 6.85 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.07(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~s}$,
$1 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.9$, $157.0,156.7,152.4,144.3,143.8,141.9,140.0,135.6,131.4,129.4,128.8,128.3$, 128.1, 128.0, 127.8, 126.5, 126.1, 122.3, 120.5, 114.3, 59.8, 55.5, 34.3, 30.3; IR (neat) v 3627, 2957, 1725, 1624, 1502, 1434, 1234, 1194, 1118, 1033, 836, $703 \mathrm{~cm}^{-1}$; MP: 68-70 ${ }^{\circ} \mathrm{C}$; HRMS Calcd. for $\mathrm{C}_{39} \mathrm{H}_{41} \mathrm{O}_{4}^{-}[\mathrm{M}-\mathrm{H}]^{-}: 573.3005$, found: 573.3012.
$[\alpha]^{20}{ }_{D}=+6.7\left(\mathrm{c} 0.37, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ for 96% ee; Enantiomeric excess was determined by HPLC with a Chiralcel IB-H column, Hexane $/^{i} \operatorname{PrOH}=99 / 1,0.3 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$, $t_{\text {minor }}=48.130 \mathrm{~min}, t_{\text {major }}=22.237 \mathrm{~min}$.

Racemic Sample of $\mathbf{3 g}$

Enantiomeric Sample of $\mathbf{3 g}$

(S)-4-Chlorophenyl(2E,4Z)-6-(3,5-di-tert-butyl-4-hydroxyphenyl)-5,6-diphenylhe xa-2,4-dienoate (3h)

Compound 3h ($28.2 \mathrm{mg}, 47 \%$ yield) was obtained as a yellow solid following the general procedure III from 1a $(0.1 \mathrm{mmol}, 29.4 \mathrm{mg})$ and $\mathbf{2 g}(0.2 \mathrm{mmol}, 62 \mathrm{mg}, 60 \mu \mathrm{~L})$ stirred for 48 hours. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44\left(\mathrm{dd}, J_{1}=11.6 \mathrm{~Hz}, J_{2}=15.2\right.$ Hz, 1H), 7.32-7.26 (m, 4H), 7.24-7.18 (m, 4H), 7.16-7.13 (m, 2H), 6.97 ($\mathrm{s}, 2 \mathrm{H}), 6.30$ (t, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.05(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~d}, J=$ $15.2 \mathrm{~Hz}, 1 \mathrm{H}$), $5.21(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H}), 1.38(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.4,161.0,157.0,152.4,152.3,144.1,141.9,140.0,135.6,131.3$, $129.4,128.8,128.3,128.1,128.0,127.9,126.5,126.1,120.3,100.2,98.1,59.8,55.4$, 53.4, 34.3, 30.3; IR (neat) v 3028, 2917, 1957, 1739, 1724, 1590, 1488, 1451, 1409, 1195, 1128, 748, $700 \mathrm{~cm}^{-1}$; MP: 66-68 ${ }^{\circ} \mathrm{C}$; HRMS Calcd. for $\mathrm{C}_{40} \mathrm{H}_{43} \mathrm{O}_{5}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-}$: 603.3110, found: 603.3118.
$[\alpha]^{20}{ }_{D}=+6.9\left(\mathrm{c} 1.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ for 98% ee; Enantiomeric excess was determined by HPLC with a Chiralcel IB-H column, Hexane $/^{i} \operatorname{PrOH}=99 / 1,0.3 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$, $t_{\text {minor }}=15.057 \mathrm{~min}, t_{\text {major }}=13.902 \mathrm{~min}$.

Racemic Sample of 3h

Enantiomeric Sample of $\mathbf{3 h}$

(S)-4-Chlorophenyl(2E,4Z)-6-(3,5-di-tert-butyl-4-hydroxyphenyl)-5,6-diphenylhe xa-2,4-dienoate (3i)

Compound 3 Bi ($15.6 \mathrm{mg}, 27 \%$ yield) was obtained as a yellow solid following the general procedure III from $1 \mathrm{a}(0.1 \mathrm{mmol}, 29.4 \mathrm{mg})$ and $\mathbf{2 i}(0.2 \mathrm{mmol}, 57 \mathrm{mg}, 55 \mu \mathrm{~L})$ stirred for 48 hours. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45\left(\mathrm{dd}, J_{l}=11.6 \mathrm{~Hz}, J_{2}=15.2\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 7.31-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.14(\mathrm{~m}, 3 \mathrm{H})$, $7.00(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~s}, 2 \mathrm{H}), 6.06(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=15.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 18 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.3$, $157.4,152.4,149.3,144.5,141.9,140.0,135.6,131.3,130.8,129.4,129.3,128.8$, $128.5,128.3,128.2,127.9,126.6,126.1,122.9,119.9,59.9,34.3,30.3$; IR (neat) v 3028, 2917, 1957, 1739, 1724, 1590, 1488, 1451, 1409, 1195, 1128, 748, $700 \mathrm{~cm}^{-1}$; MP: 54-55 ${ }^{\circ} \mathrm{C}$; HRMS Calcd. for $\mathrm{C}_{38} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Cl}^{-}[\mathrm{M}-\mathrm{H}]^{-}: 577.2509$, found: 577.2516. $[\alpha]^{20}{ }_{\mathrm{D}}=+3.7\left(\mathrm{c} 0.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ for 93% ee; Enantiomeric excess was determined by HPLC with a Chiralcel IB-H column, Hexane $/^{i} \operatorname{PrOH}=99 / 1,0.3 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$, $t_{\text {minor }}=15.057 \mathrm{~min}, t_{\text {major }}=13.902 \mathrm{~min}$.

Racemic Sample of 3i

Enantiomeric Sample of 3i

(S)-Phenyl(2E,4Z)-6-(4-bromophenyl)-6-(3,5-di-tert-butyl-4-hydroxyphenyl)-5-p henylhexa-2,4-dienoate (5 b)

Compound $\mathbf{5 b}$ ($42.8 \mathrm{mg}, 69 \%$ yield) was obtained as a yellowish solid following the general procedure III from 1b ($0.1 \mathrm{mmol}, 37.2 \mathrm{mg}$) and $\mathbf{2 b}(0.2 \mathrm{mmol}, 50 \mathrm{mg}, 45 \mu \mathrm{~L})$ stirred for 48 hours. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.48-7.41 (m, 3H), 7.36-7.28 (m,

5H), 7.21-7.19 (m, 1H), 7.17-7.13 (m, 2H), 7.06 (t, $J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.91$ ($\mathrm{s}, 2 \mathrm{H}), 6.04$ $(\mathrm{d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 1.38(\mathrm{~s}$, $18 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.5,156.1,152.6,150.7,143.7,141.1,139.7$, $135.8,131.4,131.2,130.8,129.3,128.8,128.2,128.1,128.0,125.9,125.6,121.6$, $120.8,120.4,59.2,34.4,30.3$; IR (neat) v 3626, 2957, 1728, 1621, 1488, 1432, 1234, 1198, 1161, 1119, 765, $700 \mathrm{~cm}^{-1}$; MP: 67-69 ${ }^{\circ} \mathrm{C}$; HRMS Calcd. for $\mathrm{C}_{38} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Br}^{-}$ [M-H]: 621.2004, found: 621.2010.
$[\alpha]^{20}{ }_{D}=+19.3\left(\mathrm{c} 0.15, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$) for 93% ee; Enantiomeric excess was determined by HPLC with a Chiralcel IB-H column, Hexane $/{ }^{i} \operatorname{PrOH}=99 / 1,0.3 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$, $t_{\text {minor }}=38.638 \mathrm{~min}, t_{\text {major }}=18.527 \mathrm{~min}$.

Racemic Sample of 5b

Enantiomeric Sample of 5b

(S)-Phenyl(2E,4Z)-6-(4-chlorophenyl)-6-(3,5-di-tert-butyl-4-hydroxyphenyl)-5-p

henylhexa-2,4-dienoate (5c)

Compound 5c ($42.1 \mathrm{mg}, 73 \%$ yield) was obtained as a yellowish solid following the general procedure III from $\mathbf{1 c}(0.1 \mathrm{mmol}, 32.8 \mathrm{mg})$ and $\mathbf{2 b}(0.2 \mathrm{mmol}, 50 \mathrm{mg}, 45 \mu \mathrm{~L})$ stirred for 48 hours. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47\left(\mathrm{dd}, J_{l}=11.6 \mathrm{~Hz}, J_{2}=15.6\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 7 \mathrm{H}), 7.22-7.13(\mathrm{~m}, 5 \mathrm{H}), 7.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~s}, 2 \mathrm{H})$, $6.06(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 1.40(\mathrm{~s}$, 18 H) ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.4,156.2,152.6,150.7,143.7,140.6,139.7$, $135.8,132.3,130.9,130.8,129.3,128.8,128.5,128.2,128.1,125.94,125.88,125.6$, 121.6, 120.8, 59.1, 34.3, 30.3; IR (neat) v 3629, 2957, 1725, 1624, 1593, 1488, 1434, 1231, $1194,1160,1118,751,703 \mathrm{~cm}^{-1}$; MP: 61-63 ${ }^{\circ} \mathrm{C}$; HRMS Calcd. for $\mathrm{C}_{38} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Cl}^{-}$ [M-H]: 577.2509, found: 577.2515.
$[\alpha]^{20}{ }_{\mathrm{D}}=+22.7\left(\mathrm{c} 0.15, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ for 90% ee; Enantiomeric excess was determined by HPLC with a Chiralcel IB-H column, Hexane $/^{i} \operatorname{PrOH}=99 / 1,0.3 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$, $t_{\text {minor }}=23.491 \mathrm{~min}, t_{\text {major }}=15.839 \mathrm{~min}$.

Racemic Sample of 5c

Enantiomeric Sample of 5c

(S)-Phenyl(2E,4Z)-6-(3,5-di-tert-butyl-4-hydroxyphenyl)-6-(4-fluorophenyl)-5-ph enylhexa-2,4-dienoate (5 d)

Compound $\mathbf{5 d}$ ($42.6 \mathrm{mg}, 76 \%$ yield) was obtained as a white solid following the general procedure III from $\mathbf{1 d}(0.1 \mathrm{mmol}, 31.2 \mathrm{mg})$ and $\mathbf{2 b}(0.2 \mathrm{mmol}, 50 \mathrm{mg}, 45 \mu \mathrm{~L})$ stirred for 48 hours. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46\left(\mathrm{dd}, J_{l}=11.6 \mathrm{~Hz}, J_{2}=15.6\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.14$ (m, 6H), 7.05 (d, J=7.6 Hz, $2 \mathrm{H}), 6.99(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~s}, 2 \mathrm{H}), 6.04(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~d}, J=15.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 165.5, 161.5 (d, $J=243.8 \mathrm{~Hz}$), 156.6, 152.5, 150.8, 143.8, 139.8, 137.6, 135.7, 131.2, $130.9(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 129.3,128.8,128.2,128.0(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 125.9,125.6,121.6$, 120.6, $115.2(\mathrm{~d}, J=21.1 \mathrm{~Hz}), 59.0,34.3,30.3 ;{ }^{19} \mathbf{F} \mathbf{N M R}\left(376 \mathrm{MHz}, \mathrm{CFCl}_{3}\right)$ $\delta-116.24$ to $-116.31(\mathrm{~m}) ;$ IR (neat) v 3629, 2957, 1728, 1621, 1505, 1491, 1432, 1231, 1194, 1158, 1115, $700 \mathrm{~cm}^{-1}$; MP: 50-52 ${ }^{\circ} \mathrm{C}$; HRMS Calcd. for $\mathrm{C}_{38} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{~F}^{-}[\mathrm{M}-\mathrm{H}]^{-}$: 561.2805, found: 561.2810.
$[\alpha]^{20}{ }_{\mathrm{D}}=+29.7\left(\mathrm{c} 0.31, \mathrm{CHCl}_{3}\right)$ for $94 \% \mathrm{ee}$; Enantiomeric excess was determined by HPLC with a Chiralcel IB-H column, Hexane $/{ }^{i} \operatorname{PrOH}=99 / 1,0.3 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$,
$t_{\text {minor }}=17.924 \mathrm{~min}, t_{\text {major }}=15.296 \mathrm{~min}$.
Racemic Sample 5d

Enant
iomeric Sample 5d

(S)-Phenyl(2E,4Z)-6-(3,5-di-tert-butyl-4-hydroxyphenyl)-5-phenyl-6-(4-(trifluoro methyl)phenyl)hexa-2,4-dienoate (5e)

Compound $\mathbf{5 e}$ ($38.4 \mathrm{mg}, 63 \%$ yield) was obtained as a yellowish solid following the general procedure III from $\mathbf{1 e}(0.1 \mathrm{mmol}, 36.2 \mathrm{mg})$ and $\mathbf{2 b}(0.2 \mathrm{mmol}, 50 \mathrm{mg}, 45 \mu \mathrm{~L})$ stirred for 48 hours. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{dd}$, $\left.J_{I}=11.6 \mathrm{~Hz}, J_{2}=15.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.36-7.28(\mathrm{~m}, 7 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.05(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~s}, 2 \mathrm{H}), 6.03(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~s}$, $1 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 165.4, 155.7, 152.7, 150.7, 146.3, 143.6, 139.5, 135.9. 130.4, 129.7, 129.3, 128.79 (q, $J=32.2 \mathrm{~Hz}$), 128.77, $128.4,128.3,128.1,127.5(\mathrm{q}, J=270.5 \mathrm{~Hz}), 126.0,125.6,125.3(\mathrm{q}, J=3.8 \mathrm{~Hz})$, 121.5, 121.0, 59.5, 34.4, 30.3; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CFCl}_{3}$) δ-62.2; IR (neat) v 3632, 2957, 1731, 1621, 1491, 1434, 1324, 1197, 1160, 1121, 1067, $700 \mathrm{~cm}^{-1}$; MP: $82-83{ }^{\circ} \mathrm{C}$; HRMS Calcd. for $\mathrm{C}_{39} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{~F}_{3}^{-}[\mathrm{M}-\mathrm{H}]^{-}: 611.2773$, found: 611.2769 .
$[\alpha]^{20}{ }_{D}=+19.1$ (c 1.1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) for 95% ee; Enantiomeric excess was determined by HPLC with a Chiralcel IB-H column, Hexane $/^{i} \operatorname{PrOH}=99 / 1,0.3 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$, $t_{\text {minor }}=22.317 \mathrm{~min}, t_{\text {major }}=15.000 \mathrm{~min}$.

Racemic Sample 5e

Enantiomeric Sample 5e

(S)-Phenyl

(2E,4Z)-6-(4-cyanophenyl)-6-(3,5-di-tert-butyl-4-hydroxyphenyl)-5-phenylhexa-2 ,4-dienoate (5f)

Compound $\mathbf{5 f}$ ($46.5 \mathrm{mg}, 82 \%$ yield) was obtained as a yellowish solid following the general procedure III from $\mathbf{1 f}(0.1 \mathrm{mmol}, 31.9 \mathrm{mg})$ and $\mathbf{2 b}(0.2 \mathrm{mmol}, 50 \mathrm{mg}, 45 \mu \mathrm{~L})$ stirred for 48 hours. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{dd}$, $\left.J_{l}=11.6 \mathrm{~Hz}, J_{2}=15.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.37-7.28(\mathrm{~m}, 7 \mathrm{H}), 7.22-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.07-7.04(\mathrm{~m}$, $2 \mathrm{H}), 6.90(\mathrm{~s}, 2 \mathrm{H}), 6.03(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H})$, $5.19(\mathrm{~s}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.3,155.0,152.8,150.7$, 147.7, 143.3, 139.3, 136.0, 132.2, 130.2, 130.0, 129.3, 128.7, 128.5, 128.4, 128.2, $125.9,125.6,121.5,121.3,118.9,110.4,59.7,34.4,30.2$; IR (neat) v 3629, 2957, 2225, 1728, 1624, 1488, 1434, 1197, 1160, 1118, 737, $700 \mathrm{~cm}^{-1}$; MP: $75-77{ }^{\circ} \mathrm{C}$; HRMS Calcd. for $\mathrm{C}_{39} \mathrm{H}_{38} \mathrm{NO}_{3}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-}: 568.2852$, found: 568.2848.
$[\alpha]^{20}{ }_{\mathrm{D}}=+1.7\left(\mathrm{c} 0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ for 92% ee; Enantiomeric excess was determined by HPLC with a Chiralcel IB-H column, Hexane $/^{i} \operatorname{PrOH}=99 / 1,0.3 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$, $t_{\text {minor }}=26.584 \mathrm{~min}, t_{\text {major }}=20.529 \mathrm{~min}$.

Racemic Sample of $5 \mathbf{f}$

Enantiomeric Sample of 5 f

(S)-Phenyl

(2E,4Z)-6-(3,5-di-tert-butyl-4-hydroxyphenyl)-6-(4-nitrophenyl)-5-phenylhexa-2,

4-dienoate (5g)

Compound $\mathbf{5 g}$ ($41.2 \mathrm{mg}, 70 \%$ yield) was obtained as a yellow solid following the general procedure III from $\mathbf{1 g}(0.1 \mathrm{mmol}, 33.9 \mathrm{mg})$ and $\mathbf{2 b}(0.2 \mathrm{mmol}, 50 \mathrm{mg}, 45 \mu \mathrm{~L})$ stirred for 48 hours. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.17(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{dd}$, $\left.J_{1}=12.0 \mathrm{~Hz}, J_{2}=15.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.39-7.27(\mathrm{~m}, 7 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~s}, 2 \mathrm{H}), 6.05(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~s}$, $1 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.3,154.9,152.9$, $150.7,149.9,146.6,143.3,139.2,136.1,130.2,129.9,129.3,128.7,128.6,128.4$, $128.3,125.9,125.6,123.6,121.5,121.4,57.5,34.4,30.2$; IR (neat) v 3626, 2957, $1725,1624,1519,1488,1434,1344,1194,1160,1118,700 \mathrm{~cm}^{-1}$; MP: $74-76{ }^{\circ} \mathrm{C}$; HRMS Calcd. for $\mathrm{C}_{38} \mathrm{H}_{38} \mathrm{NO}_{5}^{-}[\mathrm{M}-\mathrm{H}]^{-}: 588.2750$, found: 588.2756.
$[\alpha]^{20}{ }_{D}=-1.33\left(c 0.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ for 93% ee; Enantiomeric excess was determined by HPLC with a Chiralcel IB-H column, Hexane $/{ }^{i} \operatorname{PrOH}=95 / 5,0.3 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$, $t_{\text {minor }}=56.861 \mathrm{~min}, t_{\text {major }}=35.358 \mathrm{~min}$.

Racemic Sample of $\mathbf{5 g}$

Enantiomeric Sample of $\mathbf{5 g}$

(S)-Phenyl(2E,4Z)-6-(3,5-di-tert-butyl-4-hydroxyphenyl)-5-phenyl-6-(p-tolyl)hex a-2,4-dienoate (5h)

Compound $\mathbf{5 h}$ ($35.6 \mathrm{mg}, 64 \%$ yield) was obtained as a yellowish solid following the general procedure III from $\mathbf{1 h}(0.1 \mathrm{mmol}, 30.8 \mathrm{mg})$ and $\mathbf{2 b}(0.2 \mathrm{mmol}, 50 \mathrm{mg}, 45 \mu \mathrm{~L})$ stirred for 48 hours. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47\left(\mathrm{dd}, J_{l}=11.6 \mathrm{~Hz}, J_{2}=15.2\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 7.41-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 4 \mathrm{H}), 7.13-7.05(\mathrm{~m}, 6 \mathrm{H})$,
$6.95(\mathrm{~s}, 2 \mathrm{H}), 6.08(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{~s}$, $1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 165.6, 157.2, 152.3, $150.8,144.1,140.1,138.9,136.0,135.5,131.5,129.3,129.0,128.8,128.1,127.8$, $126.0,125.5,121.6,120.3,59.5,34.3,30.3,21.0$; IR (neat) v 3629, 2957, 1729, 1621, 1488, 1435, 1231, 1198, 1161, 1156, $700 \mathrm{~cm}^{-1}$; MP: 49-51 ${ }^{\circ} \mathrm{C}$; HRMS Calcd. for $\mathrm{C}_{39} \mathrm{H}_{41} \mathrm{O}_{3}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-}: 557.3060$, found: 557.3061.
$[\alpha]^{20}{ }_{D}=+6.2\left(\mathrm{c} 0.26, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$) for 91% ee; Enantiomeric excess was determined by HPLC with a Chiralcel IB-H column, Hexane $/{ }^{i} \operatorname{PrOH}=99 / 1,0.3 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$, $t_{\text {minor }}=22.241 \mathrm{~min}, t_{\text {major }}=14.382 \mathrm{~min}$.

Racemic Sample 5h

Enantiomeric Sample 5h

(S)-Phenyl(2E,4Z)-6-(3,5-di-tert-butyl-4-hydroxyphenyl)-6-(4-methoxyphenyl)-5-phenylhexa-2,4-dienoate (5i)

Compound $\mathbf{5 i}$ ($24.6 \mathrm{mg}, 43 \%$ yield) was obtained as a yellowish solid following the general procedure III from $\mathbf{1 i}(0.1 \mathrm{mmol}, 32.4 \mathrm{mg})$ and $\mathbf{2 b}(0.2 \mathrm{mmol}, 50 \mathrm{mg}, 45 \mu \mathrm{~L}$) stirred for 48 hours. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47\left(\mathrm{dd}, J_{l}=11.6 \mathrm{~Hz}, J_{2}=15.2\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.24$ (m, 3H), 7.21-7.10 (m, 5H), 7.06 (dd, $J_{l}=1.2$ $\left.\mathrm{Hz}, J_{2}=8.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.94(\mathrm{~s}, 2 \mathrm{H}), 6.85\left(\mathrm{dd}, J_{l}=2.0 \mathrm{~Hz}, J_{2}=6.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.06(\mathrm{~d}, J=$ $11.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.00$ (d, $J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.16$ (s, 1H), 5.11 ($\mathrm{s}, 1 \mathrm{H}), 3.81$ (s, 3H), 1.39 (s, 18 H) $;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.6,158.1,157.3,152.3,150.8,144.1$, 140.1, 135.6, 134.0, 131.7, 130.4, 129.2, 128.8, 128.1, 127.8, 126.0, 125.5, 121.6, 120.3, 113.7, 59.0, 55.2, 34.3, 30.3; IR (neat) v 3629, 2954, 1728, 1621, 1508, 1488, 1434, 1248, 1197, 1160, 1119, 1033, 734, $703 \mathrm{~cm}^{-1}$; MP: 62-63 ${ }^{\circ} \mathrm{C}$; HRMS Calcd. for $\mathrm{C}_{39} \mathrm{H}_{41} \mathrm{O}_{4}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-}: 573.3005$, found: 573.3010.
$[\alpha]^{20}{ }_{D}=-2.0\left(\mathrm{c} 0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ for 92% ee; Enantiomeric excess was determined by HPLC with a Chiralcel IB-H column, Hexane $/^{i} \operatorname{PrOH}=99 / 1,0.3 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$, $t_{\text {minor }}=40.024 \mathrm{~min}, t_{\text {major }}=22.619 \mathrm{~min}$.

Racemic Sample 5i

Enantiomeric Sample 5i

(S)-Phenyl(2E,4Z)-6-(3-bromophenyl)-6-(3,5-di-tert-butyl-4-hydroxyphenyl)-5-p henylhexa-2,4-dienoate ($\mathbf{5 j}$)

Compound $\mathbf{5 j}$ ($40.3 \mathrm{mg}, 65 \%$ yield) was obtained as a yellowish solid following the general procedure III from $\mathbf{1 j}$ ($0.1 \mathrm{mmol}, 37.2 \mathrm{mg}$) and $\mathbf{2 b}(0.2 \mathrm{mmol}, 50 \mathrm{mg}, 45 \mu \mathrm{~L}$) stirred for 48 hours. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48\left(\mathrm{dd}, J_{l}=11.6 \mathrm{~Hz}, J_{2}=15.2\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 7.39-7.27(\mathrm{~m}, 7 \mathrm{H}), 7.27-7.14(\mathrm{~m}, 5 \mathrm{H}), 7.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~s}, 2 \mathrm{H})$, $6.07(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 1.41(\mathrm{~s}$, 18H); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.4,155.9,152.6,150.7,144.4,143.7,139.6$, $135.8,132.5,130.6,129.8,129.7,129.3,128.8,128.2,128.0,126.0,125.5,122.5$, 121.5, 120.9, 59.4, 34.3, 30.3; IR (neat) v 3629, 2957, 1731, 1621, 1590, 1488, 1434, 1234, 1197, 1160, 1118, $756,701 \mathrm{~cm}^{-1}$; MP: 67-69 ${ }^{\circ} \mathrm{C}$; HRMS Calcd. for $\mathrm{C}_{38} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Br}^{-}$ [M-H]: 621.2004, found: 621.1999.
$[\alpha]^{20}{ }_{\mathrm{D}}=+2.8\left(\mathrm{c} 0.32, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ for 97% ee; Enantiomeric excess was determined by HPLC with a Chiralcel IB-H column, Hexane $/^{i} \operatorname{PrOH}=99 / 1,0.3 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$, $t_{\text {minor }}=32.882 \mathrm{~min}, t_{\text {major }}=15.556 \mathrm{~min}$.

Racemic Sample of 5i

Enantiomeric Sample of 5i

(S)-Phenyl(2E,4Z)-6-(2-bromophenyl)-6-(3,5-di-tert-butyl-4-hydroxyphenyl)-5-p henylhexa-2,4-dienoate (5k)

Compound 5k ($25.4 \mathrm{mg}, 41 \%$ yield) was obtained as a yellowish solid following the general procedure III from $\mathbf{1 k}(0.1 \mathrm{mmol}, 37.2 \mathrm{mg})$ and $\mathbf{2 b}(0.2 \mathrm{mmol}, 50 \mathrm{mg}, 45 \mu \mathrm{~L})$ stirred for 48 hours. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51$ (dd, $\left.J_{l}=11.6 \mathrm{~Hz}, J_{2}=15.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.36-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.04(\mathrm{~m}$, $3 \mathrm{H}), 7.00-6.99$ (m, 3H), 5.96 (d, $J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.88$ (d, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.58$ (s, $1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 18 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.5,155.1,152.6$, $150.8,143.9,142.0,139.7,135.8,133.1,131.3,129.8,129.3,129.0,128.1,127.4$,
127.2, 126.44, 126.39, 125.6, 125.5, 121.6, 120.6, 58.9, 34.4, 30.3; IR (neat) v 3629, 2957, 1732, 1621, 1488, 1434, 1194, 1160, 1118, $748,700 \mathrm{~cm}^{-1}$; MP: $65-67{ }^{\circ} \mathrm{C}$; HRMS Calcd. for $\mathrm{C}_{38} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Br}^{-}[\mathrm{M}-\mathrm{H}]^{-}: 621.2004$, found: 621.2012.
$[\alpha]^{20}{ }_{\mathrm{D}}=+18.9\left(\mathrm{c} 0.44, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ for 93% ee; Enantiomeric excess was determined by HPLC with a Chiralcel IB-H column, Hexane $/^{i} \operatorname{PrOH}=99 / 1,0.3 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$, $t_{\text {minor }}=16.154 \mathrm{~min}, t_{\text {major }}=14.954 \mathrm{~min}$.

Racemic Sample 5k

Enantiomeric Sample 5k

(S)-Phenyl(2E,4Z)-6-(3,5-di-tert-butyl-4-hydroxyphenyl)-6-(naphthalen-2-yl)-5-p henylhexa-2,4-dienoate (5l)

Compound $\mathbf{5 l}$ ($36.5 \mathrm{mg}, 62 \%$ yield) was obtained as a yellowish solid following the general procedure III from $1 \mathbf{1 l}(0.1 \mathrm{mmol}, 34.4 \mathrm{mg})$ and $\mathbf{2 b}(0.2 \mathrm{mmol}, 50 \mathrm{mg}, 45 \mu \mathrm{~L})$ stirred for 48 hours. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84-7.75(\mathrm{~m}, 3 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H})$, 7.53-7.39 (m, 5H), $7.34(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 4 \mathrm{H})$, 7.05 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~s}, 2 \mathrm{H}), 6.12(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~d}, J=15.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 18 \mathrm{H}){ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.5$, $156.6,152.5,150.8,144.0,140.0,139.6,135.7,133.4,132.3,131.2,129.3,128.8$, 128.2, 127.9, 127.6, 126.2, 125.9, 125.6, 125.5, 121.6, 120.5, 59.9, 34.3, 30.3; IR (neat) $v 3629,2960,1728,1621,1488,1434,1234,1194,1160,1115,748,700 \mathrm{~cm}^{-1}$; MP: $62-64{ }^{\circ} \mathrm{C}$; HRMS Calcd. for $\mathrm{C}_{42} \mathrm{H}_{41} \mathrm{O}_{3}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-}: 593.3056$, found: 593.3063.
$[\alpha]^{20}{ }_{D}=+18.5\left(\mathrm{c} 0.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ for 93% ee; Enantiomeric excess was determined by HPLC with a Chiralcel IB-H column, Hexane $/^{i} \operatorname{PrOH}=99 / 1,0.3 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$, $t_{\text {minor }}=52.316 \mathrm{~min}, t_{\text {major }}=21.136 \mathrm{~min}$.

Racemic Sample of 51

Enantiomeric Sample of 51

(S)-Phenyl
(2E,4Z)-6-(3,5-di-tert-butyl-4-hydroxyphenyl)-5-phenyl-6-(pyridin-3-yl)hexa-2,4dienoate (5m)

Compound $\mathbf{5 m}$ ($40.8 \mathrm{mg}, 75 \%$ yield) was obtained as a brown solid following the general procedure III from $\mathbf{1 m}(0.1 \mathrm{mmol}, 29.5 \mathrm{mg})$ and $\mathbf{2 b}(0.2 \mathrm{mmol}, 50 \mathrm{mg}, 45 \mu \mathrm{~L})$ stirred for 48 hours. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.48-8.47 (m, 2H), $7.54(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45\left(\mathrm{dd}, J_{l}=11.6 \mathrm{~Hz}, J_{2}=15.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.36-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.21-7.15$ $(\mathrm{m}, 3 \mathrm{H}), 7.06-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{~s}, 2 \mathrm{H}), 6.04(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~d}, J=15.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.25(\mathrm{~s}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ $165.4,155.4,152.7,150.9,150.7,147.9,143.5,139.3,137.6,136.7,136.0,130.1$, $129.3,128.8,128.3,128.1,125.9,125.6,123.2,121.5,121.1,57.3,34.4,30.3$; IR (neat) v 3629, 2957, 1728, 1624, 1491, 1434, 1262, 1197, 1160, 1118, $703 \mathrm{~cm}^{-1}$; MP: $69-71{ }^{\circ} \mathrm{C}$; HRMS Calcd. for $\left.\mathrm{C}_{37} \mathrm{H}_{38} \mathrm{NO}_{3}{ }^{-}[\mathrm{M}-\mathrm{H}]\right]^{-}: 544.2852$, found: 544.2857.
$[\alpha]^{20}{ }_{\mathrm{D}}=+5.3\left(\mathrm{c} 0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ for 95% ee; Enantiomeric excess was determined by HPLC with a Chiralcel IB-H column, Hexane $/^{i} \operatorname{PrOH}=99 / 1,0.3 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$, $t_{\text {minor }}=54.389 \mathrm{~min}, t_{\text {major }}=23.636 \mathrm{~min}$.

Racemic Sample of 5m

Enantiomeric Sample of 5m

(S)-Phenyl(2E,4Z)-6-(3,5-di-tert-butyl-4-hydroxyphenyl)-5-phenyl-6-(1-tosyl-1H-indol-3-yl)hexa-2,4-dienoate (5n)

Compound 5n ($43.4 \mathrm{mg}, 59 \%$ yield) was obtained as a yellow solid following the general procedure III from $\mathbf{1 n}(0.1 \mathrm{mmol}, 48.7 \mathrm{mg})$ and $\mathbf{2 b}(0.2 \mathrm{mmol}, 50 \mathrm{mg}, 45 \mu \mathrm{~L})$ stirred for 48 hours. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45\left(\mathrm{dd}, J_{1}=11.6 \mathrm{~Hz}, J_{2}=15.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.40-7.38(\mathrm{~m}, 1 \mathrm{H})$, 7.36-7.29 (m, 6H), 7.24-7.21 (m, 2H), 7.20-7.16 (m, 4H), 7.06-7.02 (m, 2H),
6.99-6.94 (m, 3H), 5.97 (d, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 1 \mathrm{H})$, $5.18(\mathrm{~s}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.4,153.6$, $152.8,150.7,144.9,143.6,139.6,135.9,135.0,130.4,129.8,129.5,129.3,128.7$, 128.3, 128.1, 127.3, 126.7, 126.13, 126.07, 125.6, 125.4, 124.9, 123.4, 121.5, 120.9, 120.1, 114.1, 50.9, 34.4, 30.3, 21.6; IR (neat) v 3629, 2954, 1728, 1624, 1488, 1434, 1369, 1192, 1172, 1118, 980, $745 \mathrm{~cm}^{-1}$; MP: 85-87 ${ }^{\circ} \mathrm{C}$.; HRMS Calcd. for $\mathrm{C}_{47} \mathrm{H}_{46} \mathrm{NO}_{5} \mathrm{~S}^{-}[\mathrm{M}-\mathrm{H}]^{-}: 736.3097$, found: 736.3101.
$[\alpha]^{20}{ }_{D}=+66.2\left(\mathrm{c} 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$) for 94% ee; Enantiomeric excess was determined by HPLC with a Chiralcel IB-H column, Hexane $/^{i} \mathrm{PrOH}=95 / 5,0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$, $t_{\text {minor }}=30.042 \mathrm{~min}, t_{\text {major }}=42.305 \mathrm{~min}$.

Racemic Sample of 5 n

Enantiomeric Sample of 5n

(S)-Phenyl(2E,4Z)-6-(5-chloro-1-tosyl-1H-indol-3-yl)-6-(3,5-di-tert-butyl-4-hydro

xyphenyl)-5-phenylhexa-2,4-dienoate (5o)

Compound $\mathbf{5 0}$ ($40.0 \mathrm{mg}, 52 \%$ yield) was obtained as a yellow solid following the general procedure III from $\mathbf{1 0}(0.1 \mathrm{mmol}, 52.1 \mathrm{mg})$ and $\mathbf{2 b}(0.2 \mathrm{mmol}, 50 \mathrm{mg}, 45 \mu \mathrm{~L})$ stirred for 48 hours. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.46\left(\mathrm{dd}, J_{l}=11.6 \mathrm{~Hz}, J_{2}=15.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.37-7.29(\mathrm{~m}, 7 \mathrm{H})$, 7.23-7.20 (m, 3H), 7.18-7.16 (m, 2H), 7.07-7.03 (m, 3H), $6.96(\mathrm{~s}, 2 \mathrm{H}), 5.95(\mathrm{~d}, J=$ $11.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.83$ (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 5.14$ (s, 1H), 2.39 (s, 3H), 1.40 (s, 18 H) $;{ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.3,153.3,152.9,150.7,145.2,143.4$, 139.3, 136.0, 134.7, 134.2, 131.6, 129.9, 129.34, 129.29, 129.2, 128.7, 128.4, 128.2, $127.4,127.3,126.6,125.6,125.4,125.2,121.5,121.2,119.8,115.2,50.7,34.4,30.3$, 21.6; IR (neat) v 3626, 2957, 1725, 1624, 1491, 1440, 1372, 1197, 1118, 810, 669 cm^{-1}; MP: 89-91 ${ }^{\circ} \mathrm{C}$; HRMS Calcd. for $\mathrm{C}_{47} \mathrm{H}_{45} \mathrm{NO}_{5} \mathrm{SCl}^{-}[\mathrm{M}-\mathrm{H}]^{-}: 770.2707$, found: 770.2713.
$[\alpha]^{20}{ }_{D}=+62.3\left(\mathrm{c} 0.35, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ for 98% ee; Enantiomeric excess was determined by HPLC with a Chiralcel IB-H column, Hexane $/^{i} \operatorname{PrOH}=95 / 5,0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$, $t_{\text {minor }}=35.638 \mathrm{~min}, t_{\text {major }}=38.609 \mathrm{~min}$.

Racemic Sample of 50

Enantiomeric Sample of 50

(S)-Ethyl(2E,4Z)-6-(5-chloro-1-tosyl-1H-indol-3-yl)-6-(3,5-di-tert-butyl-4-hydrox yphenyl)-5-phenylhexa-2,4-dienoate (5o')

Compound $\mathbf{5 0}$, ($41.8 \mathrm{mg}, 58 \%$ yield) was obtained as a yellow solid following the general procedure III from $1 \mathbf{1 0}(0.1 \mathrm{mmol}, 52.1 \mathrm{mg})$ and $\mathbf{2 k}(0.2 \mathrm{mmol}, 40 \mathrm{mg}, 40 \mu \mathrm{~L})$ stirred for 48 hours. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{M}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.25-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.14-7.12 (m, 2H), $7.00(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 2 \mathrm{H}), 5.85(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H})$, 5.63 (d, $J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 4.13(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~s}$, $3 \mathrm{H}), 1.38(\mathrm{~s}, 18 \mathrm{H}), 1.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR $\left(400 \mathrm{M}, \mathrm{CDCl}_{3}\right) \delta 167.0,152.9$, $152.0,145.1,141.4,139.5,136.0,134.7$, 134.2, 131.7, 129.9, 129.4, 129.3, 128.7, $128.3,128.0,127.5,127.4,126.6,125.5,125.4,125.2,122.2,119.9,115.1,60.2,50.7$, 34.4, 30.3, 21.5, 14.2. IR (neat) ט 3626, 2957, 1711, 1621, 1432, 1265, 1172, 1118, 980, 807, $669 \mathrm{~cm}^{-1}$; MP: 190-192 ${ }^{\circ} \mathrm{C}$; HRMS Calcd. for $\mathrm{C}_{43} \mathrm{H}_{45} \mathrm{O}_{5} \mathrm{NSCl}^{-}[\mathrm{M}-\mathrm{H}]$: 722.2713, found: 722.2711;
$[\alpha]^{20}{ }_{D}=+48.7\left(\mathrm{c} 0.15, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$) for 93% ee; Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane $/{ }^{i} \operatorname{PrOH}=90 / 10,0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$, $t_{\text {minor }}=5.776 \mathrm{~min}, t_{\text {major }}=6.420 \mathrm{~min}$.

Racemic Sample of $\mathbf{5 0}{ }^{\text { }}$

Enantiomeric Sample of 50'

(S)-Phenyl(2E,4Z)-6-(6-bromo-1-tosyl-1H-indol-3-yl)-6-(3,5-di-tert-butyl-4-hydro xyphenyl)-5-phenylhexa-2,4-dienoate (5p)

Compound $\mathbf{5 p}$ ($51.2 \mathrm{mg}, 63 \%$ yield) was obtained as a yellowish solid following the general procedure III from 1p ($0.1 \mathrm{mmol}, 56.5 \mathrm{mg}$) and $\mathbf{2 b}(0.2 \mathrm{mmol}, 50 \mathrm{mg}, 45 \mu \mathrm{~L})$ stirred for 48 hours. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.65-7.63 (m, 2H), $7.44\left(\mathrm{dd}, J_{1}=11.6 \mathrm{~Hz}, J_{2}=15.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.36-7.29(\mathrm{~m}, 6 \mathrm{H})$, 7.25-7.19 (m, 4H), 7.15-7.13 (m, 2H), 7.06-7.03 (m, 2H), $6.96(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H})$,
6.95 (s, 2H), 5.94 (d, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.82$ (d, $J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.19$ (s, 1H), 5.15 (s, $1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.4,153.4,152.9$, 150.7, 145.3, 143.4, 139.3, 136.5, 136.0, 134.8, 130.0, 129.30, 129.27, 129.2, 128.7, $128.4,128.2,127.4,126.8,126.7,126.5,125.7,125.6,125.4,121.5,121.3,121.1$, 118.7, 117.1, 50.8, 34.4, 30.3, 21.6; IR (neat) v 3629, 2957, 2920, 1731, 1621, 1595, 1491, 1434, 1372, 1259, 1194, 1118, 807, $667 \mathrm{~cm}^{-1}$; MP: 80-82 ${ }^{\circ} \mathrm{C}$; HRMS Calcd. for $\mathrm{C}_{47} \mathrm{H}_{45} \mathrm{NO}_{5} \mathrm{BrS}^{-}[\mathrm{M}-\mathrm{H}]^{-}: 814.2207$, found: 814.2207.
$[\alpha]^{20}{ }_{D}=+70.2\left(\mathrm{c} 0.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$) for 96% ee; Enantiomeric excess was determined by HPLC with a Chiralcel IB-H column, Hexane $/{ }^{i} \operatorname{PrOH}=95 / 5,0.5 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$, $t_{\text {minor }}=24.166 \mathrm{~min}, t_{\text {major }}=22.923 \mathrm{~min}$.

Racemic Sample of 5p

Enantiomeric Sample of 5p

Peak RetTime Type	Width	Area	Height	Area	
$\#$	[min]	[min]	[mAU*s]	[mAU]	$\%$

(S)-Phenyl(2E,4Z)-6-(6-bromo-1-tosyl-1H-indol-3-yl)-6-(3,5-di-tert-butyl-4-hydro

xyphenyl)-5-phenylhexa-2,4-dienoate (5q)

Compound $\mathbf{5 q}$ ($39.0 \mathrm{mg}, 48 \%$ yield) was obtained as a yellow solid following the general procedure III from $\mathbf{1 q}(0.1 \mathrm{mmol}, 56.5 \mathrm{mg})$ and $\mathbf{2 b}(0.2 \mathrm{mmol}, 50 \mathrm{mg}, 45 \mu \mathrm{~L})$ stirred for 48 hours. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.56\left(\mathrm{dd}, J_{1}=12.0 \mathrm{~Hz}, J_{2}=15.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.41-7.35(\mathrm{~m}, 4 \mathrm{H})$, 7.28-7.14 (m, 8H), 7.07-7.05 (m, 2H), $7.01(\mathrm{~s}, 3 \mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H}), 5.76(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.72(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 18 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}) $\delta 165.5,154.8,152.7,150.7,145.4,143.9,139.2,137.1,135.9$, 134.5, 130.3, 129.9, 129.31, 129.29, 128.6, 128.4, 128.3, 128.1, 128.0, 127.1, 126.7, $126.1,125.9,125.7,125.6,121.6,120.7,114.7,113.3,50.3,34.4,30.4,21.6$; IR (neat) v 3629, 2957, 2920, 1728, 1621, 1593, 1491, 1434, 1372, 1237, 1192, 1172, 1160, 1118, $985,700 \mathrm{~cm}^{-1}$; MP: $78-81{ }^{\circ} \mathrm{C}$; HRMS Calcd. for $\mathrm{C}_{47} \mathrm{H}_{45} \mathrm{NO}_{5} \mathrm{BrS}^{-}[\mathrm{M}-\mathrm{H}]^{-}$: 814.2207, found: 814.2206.
$[\alpha]^{20}{ }_{\mathrm{D}}=+234.4\left(\mathrm{c} 0.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$) for 97% ee; Enantiomeric excess was determined by HPLC with a Chiralcel IB-H column, Hexane $/^{i} \operatorname{PrOH}=95 / 5,0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$, $t_{\text {minor }}=22.365 \mathrm{~min}, t_{\text {major }}=24.559 \mathrm{~min}$.

Racemic Sample of $5 \mathbf{q}$

Enantiomeric Sample of 5q

(S)-Phenyl(2E,4Z)-6-(4-hydroxy-3,5-diisopropylphenyl)-5,6-diphenylhexa-2,4-die noate (5r)

Compound $\mathbf{5 r}$ ($29.0 \mathrm{mg}, 57 \%$ yield) was obtained as a yellowish solid following the general procedure III from $\mathbf{1 r}(0.1 \mathrm{mmol}, 26.6 \mathrm{mg})$ and $\mathbf{2 b}(0.2 \mathrm{mmol}, 50 \mathrm{mg}, 45 \mu \mathrm{~L})$ stirred for 48 hours. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48\left(\mathrm{dd}, J_{l}=11.6 \mathrm{~Hz}, J_{2}=15.6\right.$ Hz, 1H), 7.36-7.27 (m, 6H), 7.24-7.23 (m, 1H), 7.21-7.17 (m, 6H), 7.07-7.04 (m, 2H), $6.84(\mathrm{~s}, 2 \mathrm{H}), 6.05(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{~s}$, $1 \mathrm{H}), 3.16-3.06(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $165.5,156.8,150.8,148.6,144.0,142.0,140.0,133.5,132.6,129.4,129.3,128.8$, $128.4,128.2,128.0,127.9,126.6,125.5,124.7,121.6,120.5,59.7,27.2,22.74,22.67$; IR (neat) v 3499, 2960, 2923, 1731, 1652, 1618, 1593, 1491, 1457, 1265, 1197, 1160, 1118, $703 \mathrm{~cm}^{-1}$; MP: $65-66^{\circ} \mathrm{C}$; HRMS Calcd. for $\mathrm{C}_{36} \mathrm{H}_{35} \mathrm{O}_{3}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-}: 515.2592$, found: 515.2595.
$[\alpha]^{20}{ }_{D}=+1.0\left(\mathrm{c} 0.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ for 95% ee; Enantiomeric excess was determined by HPLC with a Chiralcel IB-H column, Hexane $/^{i} \operatorname{PrOH}=95 / 5,0.3 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$,
$t_{\text {minor }}=22.238 \mathrm{~min}, t_{\text {major }}=19.670 \mathrm{~min}$.

Racemic Sample of $\mathbf{5 r}$

Enantiomeric Sample of $\mathbf{5 r}$

(S)-Phenyl(2E,4Z)-6-(4-hydroxy-3,5-diTMS)-5,6-diphenylhexa-2,4-dienoate (5s)

Compound 5 s ($38.2 \mathrm{mg}, 66 \%$ yield) was obtained as a colorless oil following the general procedure III from 1s ($0.1 \mathrm{mmol}, 32.6 \mathrm{mg}$) and $\mathbf{2 b}(0.2 \mathrm{mmol}, 50 \mathrm{mg}, 45 \mu \mathrm{~L})$ stirred for 48 hours. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48\left(\mathrm{dd}, J_{l}=11.6 \mathrm{~Hz}, J_{2}=15.2\right.$
$\mathrm{Hz}, 1 \mathrm{H}), 7.36-7.24(\mathrm{~m}, 7 \mathrm{H}), 7.21-7.17$ (m, 6H), 7.12 (s, 2H), 7.07-7.05 (m, 2H), 6.06 $(\mathrm{d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 0.30(\mathrm{~s}$, $18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.5,164.0,156.5,150.8,143.9,141.7,139.9$, 137.7, 132.3, 129.4, 129.3, 128.8, 128.4, 128.2, 128.1, 127.9, 126.6, 125.5, 123.9, 121.6, 120.6, 59.2, -0.6; IR (neat) v 3604, 2954, 2920, 1728, 1621, 1590, 1491, 1401, 1242, 1197, 1160, 1112, 855, 836, $697 \mathrm{~cm}^{-1}$; HRMS Calcd. for $\mathrm{C}_{36} \mathrm{H}_{39} \mathrm{O}_{3} \mathrm{Si}_{2}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-}:$ 575.2443, found: 575.2450.
$[\alpha]^{20}{ }_{D}=+16.3\left(c 0.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$) for 94% ee; Enantiomeric excess was determined by HPLC with a Chiralcel IB-H column, Hexane $/^{i} \operatorname{PrOH}=95 / 5,0.5 \mathrm{~mL} / \mathrm{min}, 270 \mathrm{~nm}$, $t_{\text {minor }}=7.067 \mathrm{~min}, t_{\text {major }}=8.050 \mathrm{~min}$.

Racemic Sample of 5S

Enantiomeric Sample of 5S

General procedure for the subgram-scale reaction

Enlarging the reaction scale up to 1.0 mmol afforded compound $\mathbf{5 g}$ in 63% yield and 93% ee value under reducing the catalyst loading to $5 \mathrm{~mol} \%$ following the general procedure III from $\mathbf{1 g}(1.0 \mathrm{mmol}, 339 \mathrm{mg})$ and $\mathbf{2 b}(1.5 \mathrm{mmol}, 380 \mathrm{mg})$.

Transformation experiments to afford compounds 6 and 7

To a solution of $\mathbf{5 g}(0.1 \mathrm{mmol}, 59 \mathrm{mg})$ in toluene $(3.0 \mathrm{~mL})$ was added $\mathrm{AlCl}_{3}(0.3$ $\mathrm{mmol}, 40 \mathrm{mg}$) at room temperature. The reaction mixture was vigorously stirred for 12 hours, then quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous. The resulting mixture was extracted with EA twice (5 mLx 2). The combined organic phases were collected and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic phase was then concentrated on a rotary evaporator under reduce pressure and the residue was subjected to purification by column chromatography ($\mathrm{PE} / \mathrm{EA}$: $4 / 1, \mathrm{R}_{f}=0.3$) to afford the corresponding product 6 as a brown solid.

Compound 6 (85% yield, 40.5 mg): ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.18-8.15(\mathrm{~m}, 2 \mathrm{H})$, $7.47\left(\mathrm{dd}, J_{1}=11.2 \mathrm{~Hz}, J_{2}=15.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.37-7.27(\mathrm{~m}, 7 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 3 \mathrm{H})$, $7.06-7.02(\mathrm{~m}, 4 \mathrm{H}), 6.82-6.78(\mathrm{~m}, 2 \mathrm{H}), 6.03(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~d}, J=11.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.36(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.4,155.0,154.5,150.6,149.3$, 146.7, 143.1, 139.0, 131.5, 130.6, 130.2, 129.3, 128.7, 128.6, 128.5, 128.4, 125.7, 123.7, 121.6, 121.5, 115.8, 58.6; IR (neat) v 3420, 2957, 2923, 1723, 1618, 1593, 1514, 1344, 1262, 1194, 1118, 853, $700 \mathrm{~cm}^{-1}$; MP: 106-109 ${ }^{\circ} \mathrm{C}$; HRMS Calcd. for
$\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{NO}_{5}^{-}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-}: 476.1504$, found: 476.1495 .
$[\alpha]^{20}{ }_{D}=-1.6\left(\mathrm{c} 0.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$) for 92% ee; Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane $/^{i} \operatorname{PrOH}=90 / 10,0.5 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$, $t_{\text {minor }}=26.392 \mathrm{~min}, t_{\text {major }}=37.115 \mathrm{~min}$.

Racemic sample of 6

Eantiomeric sample of 6

To a solution of $\mathbf{5 g}(0.1 \mathrm{mmol}, 59 \mathrm{mg})$ in toluene $(3.0 \mathrm{~mL})$ was added DIBAL-H (1.0 M in toluene, $0.4 \mathrm{mmol}, 40 \mu \mathrm{~L}$) at $0{ }^{\circ} \mathrm{C}$. After addition of DIBAL-H, the reaction mixture was allowed to warm to room temperature for 2 hours, then quenched by
saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aq. The resulting mixture was extracted with EA twice (5 mLx). The combined organic phases were collected and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic phase was then concentrated on a rotary evaporator under reduce pressure and the residue was subjected to purification by column chromatography (PE/EA: 6/1, $\mathrm{R}_{\mathrm{f}}=$ 0.4) to afford the corresponding product 7 as a yellowish solid.

Compound 7 (82% yield, 40.8 mg): ${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.15-8.11(\mathrm{~m}, 2 \mathrm{H})$, 7.38-7.35 (m, 2H), 7.29-7.21 (m, 3H), 7.13-7.11 (m, 2H), 6.91 (s, 2H), 6.28-6.22 (m, $1 \mathrm{H}), 5.83(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.77\left(\mathrm{dt}, J_{I}=6.0 \mathrm{~Hz}, J_{2}=15.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.20(\mathrm{~s}, 1 \mathrm{H})$, $5.14(\mathrm{~s}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $152.6,150.9,146.4,145.2,140.4,135.9,133.2,130.6,130.3,128.9,128.5,128.2$, 127.2, 126.0, 123.4, 63.4, 59.2, 34.4, 30.3; IR (neat) v 3389, 2957, 2920, 1519, 1434, 1344, 1234, 1152, 974, $703 \mathrm{~cm}^{-1}$; MP: 61-63 ${ }^{\circ} \mathrm{C}$; HRMS Calcd. for $\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{NO}_{4}^{-}$ [M-H] : 498.2649 , found: 498.2654.
$[\alpha]^{20}{ }_{D}=-1.2\left(\mathrm{c} 0.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ for 91% ee; Enantiomeric excess was determined by HPLC with a Chiralcel IB-H column, Hexane $/ /^{i} \operatorname{PrOH}=90 / 10,0.5 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$, $t_{\text {minor }}=40.071 \mathrm{~min}, t_{\text {major }}=37.600 \mathrm{~min}$.

Racemic sample of 7

Enantiomeric sample of 7

4. References

[1] (a) H. Xiao, Z. Chai, C.-W. Zheng, Y.-Q. Yang, W. Liu, J.-K. Zhang, G. Zhao, Angew. Chem., Int. Ed. 2010, 49, 4467; (b) X. Han, Y. Wang, F. Zhong, Y. Lu, J. Am. Chem. Soc. 2011, 133, 1726.
[2] Y.-Q. Jiang, Y.-L. Shi, M. Shi, J. Am. Chem. Soc. 2008, 130, 7202.
[3] a) W.-D. Chu, L.-F. Zhang, X. Bao, X.-H. Zhao, C. Zeng, J.-Y. Du, G.-B. Zhang, F.-X. Wang, X.-Y. Ma, C.-A. Fan, Angew. Chem., Int. Ed. 2013, 52, 9229-9233; b)

Roiser, L.; Waser, M. Org. Lett. 2017, 19, 2338-2341.
[4] (a) R. W. Lange, H.-J. Hansen, Org. Synth. 1984, 62, 202; (b) B. T. B. Hue, J. Dijkink, S. Kuiper, S. Schaik, J. H. Maarseveen, H. Hiemstra, Eur. J. Org. Chem. 2006, 127.
[5] L. Schwarz, U. Girreser, B. Clement, Eur. J. Org. Chem. 2014, 1961.
[6] (a) Y. Fukata, K. Asano, S. MatsubaraJ. Am. Chem. Soc. 2013, 135, 12160; (b) D. Wang, Y. Lei, Y. Wei, M. Shi, Chem. Eur. J. 2014, 20, 15325.

5. X-ray data

Crystal data and structure refinement for compound 3a.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/Å
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
$\gamma /{ }^{\circ}$
Volume/A ${ }^{3}$
Z
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size $/ \mathrm{mm}^{3}$
Radiation
2Θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
exp_8822
$\mathrm{C}_{39} \mathrm{H}_{42} \mathrm{NO}_{3}$
558.73

293(2)
N/A
P21
9.6333(6)
16.6755(10)
10.1957(6)
90.00
97.399(6)
90.00
1624.20(17)

2
1.142
0.547
600.0
$0.30 \times 0.20 \times 0.01$
$\mathrm{CuK} \alpha(\lambda=1.54184)$
8.74 to 132.98
$-11 \leq \mathrm{h} \leq 10,-19 \leq \mathrm{k} \leq 19,-12 \leq 1 \leq 8$
6333
$4596\left[\mathrm{R}_{\text {int }}=0.0286, \mathrm{R}_{\text {sigma }}=\mathrm{N} / \mathrm{A}\right]$
4596/1/387

Goodness-of-fit on F^{2}	1.037
Final R indexes [I>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0545, \mathrm{wR}_{2}=0.1107$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0815, \mathrm{wR}_{2}=0.1330$
Largest diff. peak/hole $/ \mathrm{e} \AA^{-3}$	$0.19 /-0.12$
Flack parameter	$-0.0(4)$

Crystal data and structure refinement for compound 5o'.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/Å
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
$\gamma /{ }^{\circ}$
Volume/ \AA^{3}
Z
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size/ mm^{3}
Radiation
2Θ range for data collection $/{ }^{\circ}$
Index ranges

181205a
$\mathrm{C}_{43} \mathrm{H}_{46} \mathrm{ClNO}_{5} \mathrm{~S}$
724.32

298(2)
N/A
P-1
10.4270(9)
13.9139(11)
14.0151(12)
76.993(10)
85.818(2)
82.698(2)
1963.0(3)

2
1.225
0.195
768.0
$0.20 \times 0.17 \times 0.06$
$\operatorname{MoK} \alpha(\lambda=0.71073)$
4.84 to 50.04
$-12 \leq h \leq 12,-16 \leq k \leq 16,-16 \leq 1 \leq 10$

Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
$6839\left[\mathrm{R}_{\text {int }}=0.0307, \mathrm{R}_{\text {sigma }}=\mathrm{N} / \mathrm{A}\right]$
6839/0/460
1.023
$\mathrm{R}_{1}=0.0548, \mathrm{wR}_{2}=0.0592$
$\mathrm{R}_{1}=0.1246 \mathrm{wR}_{2}=0.0666$
0.20/-0.15

A plausible transition state

Scheme S1 A plausible transition state
The plausible transition state of this reaction is illustrated in Scheme S1 which may account for the stereoselectivity. The p-QMs approach the zwitterionic intermediate from (R)-SITCP and allenoate to form the corresponding products through less steric hindrance face due to the zwitterionic species stereochemistry, which is accordance with our experimental results.

6. NMR Spectra

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra of compound 2 e

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{2 f}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{2 g}$

1
\qquad

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{2 i}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3 a}$

18	1		1		1			1		1	1	10	1					T
180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3 c}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3 h}$

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra of compound $\mathbf{5 d}$

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra of compound $\mathbf{5 e}$

年告会
n
n
m
in
i

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 g}$

(

$\stackrel{\circ}{\mathrm{m}} \mathrm{O}_{0}^{\circ}$ EEO		\%	할

170	160	150	140	130	120	110	100	90	${ }^{1} 10$

7. Deuterium-labeling experiments $\left({ }^{1} H-{ }^{1} H\right.$ COSY NMR of $3 f$)

To identify the different protons, we run a ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} \operatorname{COSY} \mathrm{NMR}\left(400 \mathrm{M}, \mathrm{CDCl}_{3}\right)$. It clearly shows a signal of allylic proton " $\mathrm{H}^{3 "}$ interact with diaryl substituted proton " H^{4} " labelled as red cycle; The asterisk is the residue DCM peak.

Deuterium-labeling of product $\mathbf{3 a}{ }^{\prime}$ and 5 g '

Compound $\mathbf{1 a}$ or $\mathbf{1 g}(0.1 \mathrm{mmol}), \mathrm{PPh}_{3}(0.02 \mathrm{mmol})$ and anhydrous toluene $(1.0 \mathrm{~mL})$ were added into a dry Schlenk tube, then δ-substituted allenic ester 2a or 2b (0.2 mmol) and $\mathrm{D}_{2} \mathrm{O}$ ($0.6 \mathrm{mmol}, 6$ equiv.) were added subsequently under nitrogen
atmosphere. The reaction mixture was stirred at room temperature for 48 h under nitrogen atmosphere. The reaction mixture was then concentrated on a rotary evaporator under reduced pressure and the residue was subjected to purification by column chromatography $(\mathrm{PE} / \mathrm{EA}=100 / 1 \sim 50 / 1)$ to afford the corresponding product $\mathbf{3 a}{ }^{\prime}$ or $\mathbf{5 g}$ '.

The crude ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{M}\right)$ spectra showed that the phenol -OH group was completely deuterated (100%-OD group), during column chromatography on silica gel the - OD group exchanged to - OH again.

Comound 3a': ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.34$ ($\mathrm{m}, 1.37 \mathrm{H}, 63 \% \mathrm{D}$), 7.33-7.25 (m, 9H), 7.23-7.18 (m, 3H), 7.15-7.13 (m, 2H), 6.93 (s, 2H), 6.00-5.98 (m, 1H), $5.87-5.83(\mathrm{~m}, 0.22 \mathrm{H}, 78 \% \mathrm{D}), 5.19(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 18 \mathrm{H})$.

Comound 5g’: ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.17(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.49-7.42 (m, $0.49 \mathrm{H}, 51 \% \mathrm{D}), 7.38-7.27(\mathrm{~m}, 7 \mathrm{H}), 7.22-7.17$ (m, 3H), 7.06 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.93$ (s, 2H), 6.05-6.01 (m, 1.26H, 74\%D), 5.33 (s, 1H), 5.19 (s, 1H), 1.39 (s, 18H).

J/m

[^0]Synthesis of deuterated allenoate 2a-D1 and 2a-D2

Compounds S1-D, S2-D and S3-D were known compound and prepared according to the previous literatures (For S1-D see: Chem. Sci. 2014, 5, 2416; Tetrahedron Lett. 1983, 24, 743; For S2-D see: Adv. Synth. Catal. 2018, 360, 2303; For S3-D see: J. Am. Chem. Soc. 2017, 139, 13969).

The deuterated ratio of allenoate 2a-D1 and 2a-D2 decrease was due to H/D exchange during purification process on silica gel. And the deuterated allenoates containing small amount of isomers.

Comound 3a-D1 (51% yield, 29 mg) was obtained as a slurry oil following the general procedure III from 1a ($0.1 \mathrm{mmol}, 29.4 \mathrm{mg}$) and 2a-D1 $(0.2 \mathrm{mmol}, 52 \mathrm{mg}):{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.36(\mathrm{~m}, 1.72 \mathrm{H}, 28 \% \mathrm{D}), 7.33-7.25(\mathrm{~m}, 9 \mathrm{H})$, 7.23-7.18 (m, 3H), 7.15-7.13 (m, 2H), 6.93 (s, 2H), 6.00-5.98 (m, 1H), 5.88-5.84 (m, $0.22 \mathrm{H}, 78 \% \mathrm{D}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 18 \mathrm{H})$.

Comound 3a-D2 (35% yield, 20 mg) was obtained as a slurry oil following the general procedure III from 1a ($0.1 \mathrm{mmol}, 29.4 \mathrm{mg}$) and 2a-D2 $(0.2 \mathrm{mmol}, 52 \mathrm{mg}):{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.33(\mathrm{~m}, 1.25 \mathrm{H}, 75 \% \mathrm{D}), 7.32-7.26(\mathrm{~m}, 9 \mathrm{H})$, 7.20-7.16 (m, 3H), 7.14-7.12 (m, 2H), 6.93 (s, 2H), 5.99-5.96 (m, 0.24H, 76\%D), 5.86-5.82 (m, 0.76H, 24\%D), 5.18 (s, 1H), 5.12 (s, 2H), 5.09 (s, 1H), 1.36 (s, 18H).

			$\frac{1}{6}$							$\begin{array}{ll} 4 \\ 4 \\ 0 \\ 0 & 0 \\ 0 \end{array}$											
11.0	10.5	10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	$6^{6.0}{ }_{\mathrm{f} 1}^{5.5}(\mathrm{pran})$	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

[^0]: $\begin{array}{lllllllllllllllllllllllllllllllllllll}7.7 & 7.6 & 7.5 & 7.4 & 7.3 & 7.2 & 7.1 & 7.0 & 6.9 & 6.8 & 6.7 & 6.6 & 6.5 & 6.4 & 6.3 & 6.2 & 6.1 & 6.0 & 5.9 & 5.8 & 5.7 & 5.6 & 5.5 & 5.4 & 5.3 & 5.2 & 5.1 & 5.0 & 4.9 & 4.8\end{array}$

