Supplementary Information for Optical Properties of $In_{2x}Ga_{2-2x}O_3$ Nanowires Revealed by Photoacoustic Spectroscopy

Szymon J. Zelewski,*,‡ Ziyao Zhou,¶§ Fangzhou Li,¶ Xiaolin Kang,¶ You Meng,¶ Johnny C. Ho,*,¶§ and Robert Kudrawiec*,‡

‡ Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

¶ Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China

§ Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, P. R. China

Corresponding E-mail: szymon.zelewski@pwr.edu.pl; johnnyho@cityu.edu.hk; robert.kudrawiec@pwr.edu.pl

Keywords: In_2O_3 , Ga_2O_3 , InGaO, nanowire, photoacoustic spectroscopy

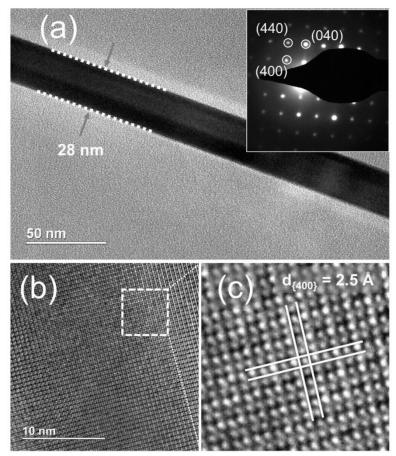


Figure S1. (a) TEM image and (inset) the corresponding SAED patterns of $In_{1.8}Ga_{0.2}O_3$ NWs. (b) and (c) HRTEM images of $In_{1.8}Ga_{0.2}O_3$ NWs.

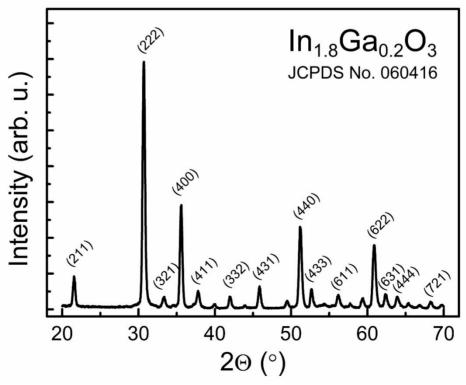


Figure S2. XRD patterns of the obtained In_{1.8}Ga_{0.2}O₃ NWs.

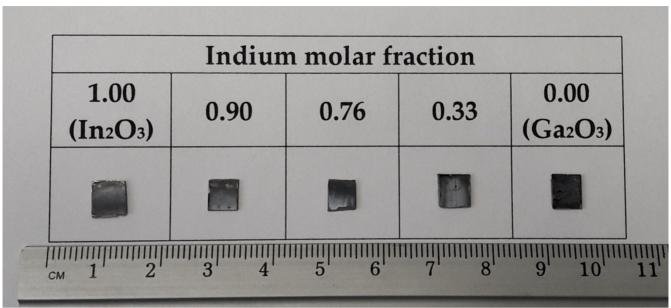


Figure S3. Photograph of the In₂O₃, Ga₂O₃, and mixed In_{2x}Ga_{2-2x}O₃ samples.

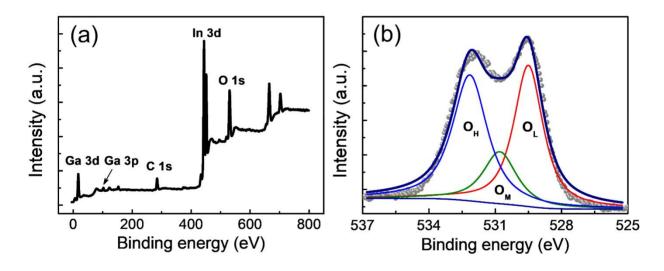


Figure S4. (a) XPS wide scans and (b) O 1s peak analysis of In_{1.8}Ga_{0.2}O₃ NWs.