A Synthesis of Multifunctionalized Indoles from [3+2]

Annulation of 2-Bromocyclopropenes with Anilines

Zhu Cao, ${ }^{\text {q. } \dagger}$ Jian-Bo Zhu, ${ }^{\text {9, } \ddagger \text { Lijia Wang, }}{ }^{\S *}$ Saihu Liao ${ }^{\dagger *}$ and Yong Tang ${ }^{\ddagger}$
${ }^{\dagger}$ College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou, Fujian 350108, China
*State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese
Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
${ }^{\S}$ School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
ljwang@chem.ecnu.edu.cn; shliao@fzu.edu.cn

Supporting Information

Contents

1. General Information S3
2. Synthesis of Cyclopropenes S4
3. General Procedure for the Synthesis of Indoles S8
4. Proposed Mechanism S21
5. Chemical Transformation of the Products S22
6. X-ray Crystallographic Data S25
7. References S27
8. Copies of NMR Spectra of Products S28

1. General Information

All reactions were carried out under Ar unless otherwise noted. All compounds and solvents were purified according to standard methods unless otherwise noted. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Varian Mercury 400 MHz or Agilent Mercury 400 MHz spectrometer (${ }^{1} \mathrm{H}: 400 \mathrm{MHz}$ and ${ }^{13} \mathrm{C}: 100 \mathrm{MHz}$) in chloroform-d or DMSO- d_{6}. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were internally referenced to the proton $\left({ }^{1} \mathrm{H}\right)$ of the internal TMS signal at 0.00 ppm or the solvent residue of DMSO at 2.54 ppm and the residual carbon nuclei $\left({ }^{13} \mathrm{C}\right)$ of the solvent at 77.0 or 40.0 ppm , respectively. Data for ${ }^{1} \mathrm{H}$ NMR were recorded as follows: chemical $\operatorname{shift}(\delta, \mathrm{ppm})$, multiplicity ($\mathrm{s}=\operatorname{singlet}, \mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet or unresolved, coupling constant(s) in Hz, integration). IR spectra were recorded on a Bruker-Tensor 27; frequencies are given in reciprocal centimeters $\left(\mathrm{cm}^{-1}\right)$ and only selected absorbance is reported. High resolution mass spectra were recorded on Agilent Technologies 6224 TOF LC/MS (ESI) or Thermo Scientific Q Exactive HF Orbitrap-FTMS (ESI) mass spectrometers. Substrates are commercially available or were prepared according to the literatures ${ }^{1-4}$.

2. Synthesis of Cyclopropenes

A mixture of $\mathbf{S 1}$ (20.2 g, 91.8 mmol), CHBr_{3} ($80.2 \mathrm{~mL}, 918.0 \mathrm{mmol}$), 35% aq. $\mathrm{NaOH}(185.0 \mathrm{~mL})$ and benzyltriethylammonium chloride ($4.20 \mathrm{~g}, 18.4 \mathrm{mmol}$) was stirred at room temperature. After the completion of the reaction (monitored by ${ }^{1} \mathrm{H}$ NMR, in 4.0 hours), water was added and the mixture was extracted with DCM, and the organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration in vacuo, the residue was purified by column chromatography on silica gel to provide the $\mathbf{S 2}\left(24.3 \mathrm{~g}, 85 \%\right.$ yield) as white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 7.62-7.59$ $(\mathrm{m}, 2 \mathrm{H}), 7.46-7.44(\mathrm{~m}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.2,130.5$, 129.5, 128.9, 122.9, 112.5, 84.8, 52.6, 39.0; IR v/ cm ${ }^{-1} 2957$, 1738, 1428, 1057, 758; HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{BrO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 310.9913$; Found: 310.9919.

A mixture of $\mathbf{S 3}(10.0 \mathrm{~g}, 30.0 \mathrm{mmol}), \mathrm{CHBr}_{3}(26.2 \mathrm{~mL}, 300.0 \mathrm{mmol}), 35 \%$ aq. $\mathrm{NaOH}(45.0 \mathrm{~mL})$ and benzyltriethylammonium chloride ($1.37 \mathrm{~g}, 6.0 \mathrm{mmol}$) was stirred at $40^{\circ} \mathrm{C}$. After the completion of the reaction (monitored by TLC, in 4.0 hours), water was added and the mixture was extracted with DCM, and the organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration in vacuo, the residue was purified by column chromatography on silica gel to provide the $\mathbf{S 4}$ (10.3 g, 81\% yield) as brown oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) δ 7.63-7.61 (m, 2H), 7.45-7.42 (m, $3 \mathrm{H}), 3.87\left(\mathrm{ABd}, J_{A B}=10.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.84\left(\mathrm{ABd}, J_{B A}=10.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 0.89(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 168.8,130.5,129.5,128.9,123.1,112.8,85.1,74.5,39.5$, 31.4, 26.3; IR v / cm^{-1} 2958, 1731, 1241, 1051, 759; HRMS-ESI (m / z): calcd for
$\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{BrO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 423.1165; Found: 423.1174.

A mixture of $\mathbf{S 5}(2.0 \mathrm{~g}, 5.5 \mathrm{mmol}), \mathrm{CHBr}_{3}(4.8 \mathrm{~mL}, 55.0 \mathrm{mmol}), 35 \% \mathrm{aq} . \mathrm{NaOH}$ $(12.0 \mathrm{~mL})$ and benzyltriethylammonium chloride $(0.25 \mathrm{~g}, 1.1 \mathrm{mmol})$ was stirred at $40^{\circ} \mathrm{C}$. After the completion of the reaction (monitored by TLC, in 3.5 hours), water was added and the mixture was extracted with DCM, and the organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration in vacuo, the residue was purified by column chromatography on silica gel to provide the $\mathbf{S 6}$ ($2.1 \mathrm{~g}, 83 \%$ yield) as white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 7.57-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.41(\mathrm{~m}$, $2 \mathrm{H}), 3.88\left(\mathrm{ABd}, J_{A B}=10.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.84\left(\mathrm{ABd}, J_{B A}=10.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 0.89(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.5,136.6,130.6,129.3,121.7,112.0,86.0,74.6,39.4$, 31.4, 26.2; $\operatorname{IR~} v / \mathrm{cm}^{-1} 2956,1730,1367,1168,743$; HRMS-ESI (m / z): calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{BrClO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 457.0776; Found: 457.0779.

A mixture of $\mathbf{S 7}(2.5 \mathrm{~g}, 6.1 \mathrm{mmol}), \mathrm{CHBr}_{3}(5.3 \mathrm{~mL}, 61.0 \mathrm{mmol}), 35 \% \mathrm{aq} . \mathrm{NaOH}$ $(15.0 \mathrm{~mL})$ and benzyltriethylammonium chloride $(0.28 \mathrm{~g}, 1.2 \mathrm{mmol})$ was stirred at $40^{\circ} \mathrm{C}$. After the completion of the reaction (monitored by TLC, in 4.0 hours), water was added and the mixture was extracted with DCM, and the organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration in vacuo, the residue was purified by column chromatography on silica gel to provide the $\mathbf{S 8}$ (2.3 g, 76\% yield)
as white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 7.60-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.47(\mathrm{~m}$, $2 \mathrm{H}), 3.88\left(\mathrm{ABd}, J_{A B}=10.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.84\left(\mathrm{ABd}, J_{B A}=10.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 0.89(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.5,132.2,130.8,125.0,122.1,112.1,86.2,74.6,39.4$, 31.4, 26.3; $\operatorname{IR~} v / \mathrm{cm}^{-1} 2955,1729,1367,1168,737$; HRMS-ESI (m / z): calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{Br}_{2} \mathrm{O}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 501.0271; Found: 501.0272.

A mixture of $\mathbf{S 9}(4.4 \mathrm{~g}, 14.8 \mathrm{mmol}), \mathrm{CHBr}_{3}(13.0 \mathrm{~mL}, 148.0 \mathrm{mmol}), 35 \%$ aq. $\mathrm{NaOH}(34.0 \mathrm{~mL})$ and benzyltriethylammonium chloride $(0.68 \mathrm{~g}, 3.0 \mathrm{mmol})$ was stirred at $40^{\circ} \mathrm{C}$. After the completion of the reaction (monitored by TLC, in 1.5 hours), water was added and the mixture was extracted with DCM, and the organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration in vacuo, the residue was purified by column chromatography on silica gel to provide the $\mathbf{S 1 0}$ ($3.8 \mathrm{~g}, 65 \%$ yield) as white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 7.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.0,133.4,131.9,131.7,127.5,124.8,124.4,111.2,88.9,52.6$, 38.6; IR $v / \mathrm{cm}^{-1} 2955,1720,1250,1063,784,736$; HRMS-ESI (m / z): calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{Br}_{2} \mathrm{O}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 388.9019$; Found: 388.9025.

A mixture of $\mathbf{S 1 1}(2.0 \mathrm{~g}, 7.0 \mathrm{mmol}), \mathrm{CHBr}_{3}(6.1 \mathrm{~mL}, 70.0 \mathrm{mmol}), 35 \%$ aq. NaOH $(16.0 \mathrm{~mL})$ and benzyltriethylammonium chloride $(0.32 \mathrm{~g}, 1.4 \mathrm{mmol})$ was stirred at at $40^{\circ} \mathrm{C}$. After the completion of the reaction (monitored by ${ }^{1} \mathrm{H}$ NMR, in 1.0 hours), water
was added and the mixture was extracted with DCM, and the organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration in vacuo, the residue was purified by column chromatography on silica gel to provide the $\mathbf{S 1 2}$ ($1.5 \mathrm{~g}, 55 \%$ yield) as white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 7.74-7.69(\mathrm{~m}, 4 \mathrm{H}), 3.79(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.1(\mathrm{~s}, 3 \mathrm{~F}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.7$, $131.9\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=32.6 \mathrm{~Hz}\right), 129.6,126.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=1.2 \mathrm{~Hz}\right), 125.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.7 \mathrm{~Hz}\right), 124.9$, $123.5\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=270.7 \mathrm{~Hz}\right), 111.7,88.2,52.6,39.1 ; \mathrm{IR} v / \mathrm{cm}^{-1} 2960,1730,1438,1319$, 1246, 1053, 837, 747; HRMS-ESI (m / z): calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{BrF}_{3} \mathrm{NaO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 400.9607; Found: 400.9605.

3. General Procedure for the Synthesis of Indoles

For 3a-3r and 5a-5h. A mixture of $\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(22.0 \mathrm{mg}, 0.06 \mathrm{mmol})$ and the $\mathbf{L 5}(5.2 \mathrm{mg}, 0.036 \mathrm{mmol})$ in 1,2-dichloroethane (2.0 mL), with activated 4 MS (500.0 mg) was stirred at room temperature for 4.0 h under nitrogen. Then, the cyclopropene $\mathbf{2}(0.3 \mathrm{mmol})$, the aromatic amine $\mathbf{1}$ or $\mathbf{4}(0.6 \mathrm{mmol})$ and 1,2-dichloroethane (1.0 mL) were added to the mixture of catalyst successively. The resulting suspension was allowed to stir at $80{ }^{\circ} \mathrm{C}$. Upon disappearance of 2 as confirmed by thin-layer chromatography, the reaction was filtered through a glass funnel with a thin layer (20 mm) of silica gel ($100-200$ mesh) with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and EtOAc. The filtrate was concentrated under reduced pressure, and the residue was purified by flash chromatography (EtOAc/petroleum) to afford the product $\mathbf{3}$ or $\mathbf{5}$.

For 5i. A mixture of $\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(11.0 \mathrm{mg}, 0.03 \mathrm{mmol})$ and the $\mathbf{L 4}(8.1 \mathrm{mg}$, $0.036 \mathrm{mmol})$ in 1,2-dichloroethane (1.0 mL), with activated $4 \AA \mathrm{MS}(500.0 \mathrm{mg})$ was stirred at room temperature for 5.0 h under nitrogen. Then, the cyclopropene $\mathbf{2 b}$ (152.0 $\mathrm{mg}, 0.36 \mathrm{mmol})$, the aromatic amine $4 \mathbf{i}(48.4 \mathrm{mg}, 0.3 \mathrm{mmol})$ and 1,2-dichloroethane $(2.0 \mathrm{~mL})$ were added to the mixture of catalyst successively. The resulting suspension was allowed to stir at $80^{\circ} \mathrm{C}$. Upon disappearance of $\mathbf{4 i}$ as confirmed by thin-layer chromatography, the reaction was filtered through a glass funnel with a thin layer (20 $\mathrm{mm})$ of silica gel ($100-200$ mesh) with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and EtOAc. The filtrate was concentrated under reduced pressure, and the residue was purified by flash chromatography (EtOAc/petroleum) to afford the product $\mathbf{5 i}$.

For 3s. A mixture of $\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.29 \mathrm{~g}, 0.8 \mathrm{mmol})$ and the $\mathbf{L 4}(0.22 \mathrm{~g}, 0.96$ $\mathrm{mmol})$ in 1,2-dichloroethane (20.0 mL), with activated $4 \AA$ MS (13.0 g) was stirred at room temperature for 9.0 h under nitrogen. Then, the cyclopropene $\mathbf{2 b}(4.05 \mathrm{~g}, 9.6$ $\mathrm{mmol})$, the aromatic amine $1 \mathrm{~s}(0.86 \mathrm{~g}, 8.0 \mathrm{mmol})$ and 1,2-dichloroethane (20.0 mL) were added to the mixture of catalyst successively. The resulting suspension was allowed to stir at $80{ }^{\circ} \mathrm{C}$. Upon disappearance of $\mathbf{1 s}$ as confirmed by thin-layer chromatography, the reaction was filtered through a glass funnel with a thin layer (20 $\mathrm{mm})$ of silica gel (100-200 mesh) with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and EtOAc. The filtrate was
concentrated under reduced pressure, and the residue was purified by flash chromatography (EtOAc/petroleum) to afford the product 3s.

dimethyl 2-(1-benzyl-5-chloro-2-phenyl-1H-indol-3-yl)malonate

3a

3a, white solid, $94 \mathrm{mg}, 70 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 7.78$ (s, $1 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.90$ (d, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.9,141.7,137.3,135.2,130.7,129.9,129.2,128.7,127.6,127.3,126.1,126.0$, 122.7, 120.4, 111.4, 105.1, 52.7, 49.6, 47.9; IR v/ cm ${ }^{-1} 2950,1727,1357,1130,730$; HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{ClNO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 448.1310; Found: 448.1309.

dimethyl 2-(1-benzyl-2-phenyl-1 H -indol-3-yl)malonate

3b

3b, white solid, 81 mg , 65% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 7.82-7.79$ $(\mathrm{m}, 1 \mathrm{H}), 7.42-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.15(\mathrm{~m}, 6 \mathrm{H}), 6.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 5.19(\mathrm{~s}, 2 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.2$, $140.3,137.7,136.7,130.8,130.3,128.9,128.6,128.5,127.1,126.6,126.0,122.3,120.8$, 120.3, 110.4, 105.4, 52.6, 49.8, 47.7; IR v/ cm ${ }^{-1} 2949,1730,1364,1145,725$; HRMSESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{NO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 414.1700; Found: 414.1704 .

dimethyl 2-(1-benzyl-5-methyl-2-phenyl-1H-indol-3-yl)malonate

3c, white solid, $84 \mathrm{mg}, 66 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 7.57$ (s, $1 \mathrm{H}), 7.40-7.34$ (m, 5H), 7.22-7.15 (m, 3H), 7.07-6.97 (m, 2H), 6.92 (d, J=6.8 Hz, 2H), 5.16 (s, 2H), 4.79 (s, 1H), 3.70 (s, 6H), 2.46 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $169.2,140.4,137.9,135.1,130.7,130.4,129.6,128.8,128.52,128.48,127.0,126.8$, 126.0, 123.9, 120.3, 110.0, 104.8, 52.6, 49.7, 47.7, 21.6; IR v/ cm ${ }^{-1} 2950,1731,1361$, 1174, 729; HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{NO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 428.1856; Found: 428.1862 .

dimethyl 2-(1-benzyl-5-methoxy-2-phenyl-1 H -indol-3-yl)malonate
3d
3d, white solid, $102 \mathrm{mg}, 77 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 7.41-$ $7.20(\mathrm{~m}, 9 \mathrm{H}), 7.07-6.81(\mathrm{~m}, 4 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 4.79(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13}{ }^{1} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.2,154.4,140.9,137.8,131.9,130.7,130.4,128.8$, 128.6, 128.5, 127.1, 127.0, 126.0, 112.5, 111.1, 104.9, 102.5, 55.8, 52.6, 49.7, 47.8; IR $\mathrm{v} / \mathrm{cm}^{-1} 2951,1732,1351,1145,734 ;$ HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{NO}_{5}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 444.1805; Found: 444.1818.

dimethyl 2-(1-benzyl-5-(tert-butyl)-2-phenyl-1 H -indol-3-yl)malonate 3 e
3e, white solid, $99 \mathrm{mg}, 70 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 7.78$ (s, $1 \mathrm{H}), 7.41(\mathrm{t}, J=3.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.35-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.12(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.98(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 6 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.2,143.0,140.4,137.9,135.0,130.8,130.6,128.7,128.5$, 128.4, 127.1, 126.3, 126.2, 120.5, 116.6, 109.8, 105.3, 52.5, 49.8, 47.7, 34.6, 31.9; IR $\mathrm{v} / \mathrm{cm}^{-1} 2954,1734,1362,1150,734 ; \operatorname{HRMS}-E S I(\mathrm{~m} / \mathrm{z})$: calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{NO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 470.2326; Found: 470.2330.

dimethyl 2-(1-methyl-2-phenyl-5-(trifluoromethyl)-1H-indol-3-yl)malonate $3 f$

3f, white solid, $49 \mathrm{mg}, 40 \%$ yield; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 8.06$ (s, $1 \mathrm{H}), 7.55-7.40(\mathrm{~m}, 7 \mathrm{H}), 4.78(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 6 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR (376 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-60.2(\mathrm{~s}, 3 \mathrm{~F}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.8,142.0,138.4,130.7,129.8$, $129.2,128.8,125.6,125.3\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=270.0 \mathrm{~Hz}\right), 122.5\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=31.3 \mathrm{~Hz}\right), 118.8\left(\mathrm{q}, J_{\mathrm{C}}\right.$ $\mathrm{F}=3.0 \mathrm{~Hz}), 118.6\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=4.1 \mathrm{~Hz}\right), 109.9,105.7,52.7,49.6,31.2 ; \mathrm{IR} \mathrm{v/cm}{ }^{-1} 2949$, 1747, 1732, 1142, 1105, 846, 701; HRMS-ESI (m / z): calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 406.1261; Found: 406.1259.

dimethyl 2-(1-methyl-5-nitro-2-phenyl-1H-indol-3-yl)malonate

$3 g$

3g, yellow solid, $18 \mathrm{mg}, 15 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 8.74$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{dd}, J=9.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.43(\mathrm{~m}, 2 \mathrm{H})$, $7.38(\mathrm{~m}, 1 \mathrm{H}), 4.78(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $168.5,143.4,142.1,140.0,130.6,129.5,129.2,128.9,125.6,118.3,117.7,109.6,107.3$, $52.9,49.5,31.5 ;$ IR $v / \mathrm{cm}^{-1} 2853,1734,1319,1150,809,750 ; \operatorname{HRMS}-E S I(\mathrm{~m} / \mathrm{z})$: calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{6}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 383.1238; Found: 383.1234 .

dineopentyl 2-(5-chloro-1-methyl-2-phenyl-1 H -indol-3-yl)malonate
3h
3h, white solid, 88 mg , 61% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 7.79$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 2 \mathrm{H}), 4.74(\mathrm{~s}, 1 \mathrm{H})$, $3.85\left(\mathrm{ABd}, J_{A B}=10.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.82\left(\mathrm{ABd}, J_{B A}=10.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.57(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}$, $18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.6,141.4,135.7,130.7,130.1,129.0,128.6$, 127.1, 125.6, 122.3, 120.8, 110.4, 104.8, 74.9, 50.0, 31.3, 31.1, 26.3; IR v/ cm ${ }^{-1} 2954$, 2917, 1752, 1732, 1470, 1143, 706; HRMS-ESI (m / z): calcd for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{ClNO}_{4}{ }^{+}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 484.2249$; Found: 484.2245.

dineopentyl 2-(5-bromo-1-methyl-2-phenyl-1H-indol-3-yl)malonate

$3 i$

3i, white solid, $99 \mathrm{mg}, 62 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 7.95$ (s, $1 \mathrm{H}), 7.52-7.42(\mathrm{~m}, 5 \mathrm{H}), 7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 1 \mathrm{H})$, 3.87-3.81 (m, 4H), $3.55(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.5$, $141.3,135.9,130.7,130.0,129.0,128.6,127.7,124.9,123.8,113.2,110.8,104.7,74.9$, 50.1, 31.2, 31.1, 26.3; IR v cm $^{-1} 2959,1737,1466,1148,702 ; \operatorname{HRMS}-E S I(\mathrm{~m} / \mathrm{z})$: calcd for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{BrNO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 528.1744; Found: 528.1744

dineopentyl 2-(1,5-dimethyl-2-phenyl-1 H -indol-3-yl)malonate
3j
3j, white solid, $97 \mathrm{mg}, 70 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 7.59$ (s, $1 \mathrm{H}), 7.53-7.43(\mathrm{~m}, 5 \mathrm{H}), 7.22(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.76$
$(\mathrm{s}, 1 \mathrm{H}), 3.84\left(\mathrm{ABd}, J_{A B}=10.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.80\left(\mathrm{ABd}, J_{B A}=10.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.56(\mathrm{~s}, 3 \mathrm{H})$, $2.45(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.9,140.1,135.7, \quad 130.9$, $130.8,128.9,128.53,128.45,126.4,123.6,121.0,109.0,104.5,74.7,50.1,31.3,30.9$, 26.3, 21.5; IR $\mathrm{v} / \mathrm{cm}^{-1}$ 2957, 1732, 1367, 1147, 701; HRMS-ESI (m / z): calcd for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{NO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 464.2795$; Found: 464.2799.

dimethyl 2-(1-benzyl-4,6-dimethoxy-2-phenyl-1 H -indol-3-yl)malonate
3k
3k, white solid, $81 \mathrm{mg}, 57 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 7.35-7.30$ $(\mathrm{m}, 5 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 3 \mathrm{H}), 6.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.23(\mathrm{~s}, 2 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{~s}$, 2H), $3.84(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.5$, $157.5,154.3,137.9,137.7,137.1,131.1,130.5,128.5,128.0,126.9,125.9,111.9,105.4$, $92.1,86.3,55.5,55.0,52.1,50.2,47.6$; IR $v / \mathrm{cm}^{-1} 2950,1734,1338,1151,729$; HRMSESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{NO}_{6}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 474.1911; Found: 474.1928.

dineopentyl 2-(4,6-dimethoxy-1-methyl-2-phenyl-1H-indol-3-yl)malonate

31

31, white solid, $107 \mathrm{mg}, 70 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 7.41$ (s, $5 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.77\left(\mathrm{ABd}, J_{A B}\right.$ $=10.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.55\left(\mathrm{ABd}, J_{B A}=10.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.46(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.2,157.4,154.3,138.3,137.0,131.1,131.0,128.2,128.1$, $111.6,105.2,91.8,85.2,74.3,55.6,54.9,50.4,31.1,31.0,26.3 ;$ IR $v / \mathrm{cm}^{-1} 2957,1731$, 1148, 1042, 704; HRMS-ESI (m / z): calcd for $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{NO}_{6}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 510.2850; Found: 510.2851.

dimethyl 2-(1-benzyl-4,5,6-trimethoxy-2-phenyl-1H-indol-3-yl)malonate

3m

3m, white solid, $111 \mathrm{mg}, 74 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 7.36-$ 7.19 (m, 8H), 6.97 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 4.00(\mathrm{~s}$, $3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.6$, $151.4,146.5,138.2,137.7,136.5,133.3,131.1,130.6,128.7,128.6,128.2,127.1,126.1$, 114.3, 105.3, 89.0, 61.0, 60.5, 56.3, 52.3, 50.0, 47.8; IR v/ cm ${ }^{-1} 2957,1741,1366,1125$, 734; HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{NO}_{7}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 504.2017; Found: 504.2019.

dineopentyl 2-(4,5,6-trimethoxy-1-methyl-2-phenyl-1 H -indol-3-yl)malonate 3n

3n, white solid, 131 mg , 81% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 7.46-$ $7.37(\mathrm{~m}, 5 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.80$ $\left(\mathrm{ABd}, J_{A B}=10.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.64\left(\mathrm{ABd}, J_{B A}=10.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.47(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 18 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.2,151.2,146.5,138.0,136.2,133.7,131.0,130.9$, $128.3,128.2,113.9,105.0,88.0,74.4,60.9,60.5,56.2,50.0,31.1,31.0,26.3$; IR $\mathrm{v} / \mathrm{cm}^{-}$ ${ }^{1}$ 2961, 1731, 1366, 1231, 766; HRMS-ESI (m / z): calcd for $\mathrm{C}_{31} \mathrm{H}_{42} \mathrm{NO}_{7}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 540.2956; Found: 540.2956.

dineopentyl 2-(1-benzyl-2-(4-chlorophenyl)-4,5,6-trimethoxy-1H-indol-3-yl)malonate

3o, white solid, 147 mg , 76% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 7.31-$ $7.21(\mathrm{~m}, 7 \mathrm{H}), 6.90-6.88(\mathrm{~m}, 2 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 5.06(\mathrm{~m}, 3 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$, $3.77-3.75(\mathrm{~m}, 5 \mathrm{H}), 3.65\left(\mathrm{ABd}, J_{B A}=10.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 0.84(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, CDCl_{3}) $\delta 168.9,151.5,146.6,137.6,136.6,136.3,134.7,133.4,132.3,129.2,128.6$, $128.5,127.1,125.8,114.3,106.4,88.5,74.5,60.9,60.5,56.1,50.0,47.5,31.1,26.3$; IR $\mathrm{v} / \mathrm{cm}^{-1}$ 2956, 1731, 1367, 1122, 723; HRMS-ESI (m / z): calcd for $\mathrm{C}_{37} \mathrm{H}_{45} \mathrm{ClNO}_{7}{ }^{+}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right):$650.2879; Found: 650.2878.

dineopentyl 2-(1-benzyl-2-(4-bromophenyl)-4,5,6-trimethoxy-1H-indol-3-yl)malonate 3p
3p, white solid, $154 \mathrm{mg}, 74 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 7.46(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.15(\mathrm{~m}, 5 \mathrm{H}), 6.90-6.88(\mathrm{~m}, 2 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 5.06$ $(\mathrm{s}, 2 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.77-3.75(\mathrm{~m}, 5 \mathrm{H}), 3.64\left(\mathrm{ABd}, J_{B A}=10.8 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $0.84(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.9,151.5,146.6,137.6,136.6,136.3$, $133.4,132.6,131.4,129.6,128.6,127.1,125.8,123.0,114.3,106.4,88.5,74.5,60.9$, $60.5,56.1,50.0,47.5,31.1,26.3$; IR v/ cm${ }^{-1} 2956,1730,1368,1122,721$; HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{37} \mathrm{H}_{45} \mathrm{BrNO}_{7}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 694.2374; Found: 694.2372.

dimethyl 2-(1-benzyl-2-(2-bromophenyl)-1 H -indol-3-yl)malonate

3q

3q, white solid, $103 \mathrm{mg}, 70 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 7.82-$ $7.80(\mathrm{~m}, 1 \mathrm{H}), 7.70-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.16(\mathrm{~m}, 9 \mathrm{H}), 6.91-6.88(\mathrm{~m}, 2 \mathrm{H}), 5.25\left(\mathrm{ABd}, J_{A B}\right.$ $=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.99\left(\mathrm{ABd}, J_{B A}=16.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.56(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.0,168.7,138.5,137.2,136.5,133.6,132.8,131.7$, $130.9,128.4,127.3,127.2,126.4,126.3,125.9,122.4,120.9,120.2,110.3,106.0,52.6$,
52.5, 49.7, 47.8; $\mathrm{IR}_{\mathrm{v} / \mathrm{cm}^{-1} 2948,1742,1455,1291,1134,741 ; \operatorname{HRMS}-E S I}(\mathrm{~m} / \mathrm{z})$: calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{BrNO}_{4}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 492.0805; Found: 492.0815.

dimethyl 2-(1-methyl-2-(4-(trifluoromethyl)phenyl)-1H-indol-3-yl)malonate 3 r

3r, white solid, $64 \mathrm{mg}, 52 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 7.79-7.77$ $(\mathrm{m}, 3 \mathrm{H}), 7.60-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 6 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.6 (s, 3F); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168,9,138.3,137.3,134.3,131.2,130.7$ $\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=31.6 \mathrm{~Hz}\right), 126.1,125.5\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.3 \mathrm{~Hz}\right), 123.9\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=270.3 \mathrm{~Hz}\right), 122.6$, $120.9,120.4,109.6,105.5,52.6,49.6,31.0 ;$ IR v/ cm${ }^{-1} 2955,1724,1322,1162,1107$, 755; HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 406.1261; Found: 406.1258.

dineopentyl 2-(1-methyl-2-phenyl-1 H -indol-3-yl)malonate
3s
3s, white solid, $2.59 \mathrm{~g}, 72 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 7.80(\mathrm{~d}, ~ J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.44(\mathrm{~m}, 5 \mathrm{H}), 7.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.17-$ $7.13(\mathrm{~m}, 1 \mathrm{H}), 4.78(\mathrm{~s}, 1 \mathrm{H}), 3.84\left(\mathrm{ABd}, J_{A B}=10.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.79\left(\mathrm{ABd}, J_{B A}=10.4 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.8,140.1,137.2$, $130.8,130.6,128.6,128.5,126.2,122.0,121.3,119.8,109.3,105.1,74.6,50.1,31.3$, 30.9, 26.3; IR $v / \mathrm{cm}^{-1} 2952,1750,1401,1296,1150,737$; HRMS-ESI (m / z): calcd for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{NO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 450.2639$; Found: 450.2629 .

dimethyl 2-(8-chloro-2-phenyl-5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinolin-1-yl)malonate 5a

5a, white solid, $98 \mathrm{mg}, 82 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 7.55-7.44$ $(\mathrm{m}, 6 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 6 \mathrm{H}), 2.97(\mathrm{t}, J=$ $6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.20-2.14(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.0,139.5,132.6$, $130.3,129.8,128.75,128.68,125.7,125.0,123.1,119.6,117.7,103.7,52.6,49.5,43.0$,
 $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{ClNO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 398.1154$; Found: 398.1159.

dimethyl 2-(2-phenyl-5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinolin-1-yl)malonate 5b
$\mathbf{5 b}$, white solid, $83 \mathrm{mg}, 76 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 7.57-7.43$ $(\mathrm{m}, 6 \mathrm{H}), 7.07(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 3.98(\mathrm{t}, J=5.6$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.71 ($\mathrm{s}, 6 \mathrm{H}$), $3.00(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.21-2.15(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 169.3,138.4,134.2,130.4,130.3,128.6,128.5,124.4,121.8,120.1,119.1$, $118.3,103.9,52.5,49.7,43.1,25.0,22.8 ;$ IR $v / \mathrm{cm}^{-1} 2948,1734,1345,1145,748 ;$ HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 364.1543; Found: 364.1549.

dimethyl 2-(8-methyl-2-phenyl-5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinolin-1-yl)malonate 5c

5c, white solid, $98 \mathrm{mg}, 86 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 7.52-7.42$ $(\mathrm{m}, 5 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 6 \mathrm{H})$, $2.96(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.19-2.13(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\delta 169.4,138.4,132.6,130.5,130.4,129.5,128.5,128.4,124.5,121.4,120.9,117.6$, $103.4,52.5,49.7,43.1,24.9,22.9,21.9$; IR $v / \mathrm{cm}^{-1} 2949,1732,1362,1145,735$; HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 378.1700; Found: 378.1705.

dineopentyl 2-(8-fluoro-2-phenyl-5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinolin-1-yl)malonate 5d
5d, white solid, $95 \mathrm{mg}, 64 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 7.52-7.43$ $(\mathrm{m}, 5 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 6.73-6.70(\mathrm{~m}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H})$, $3.87\left(\mathrm{ABd}, J_{A B}=10.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.82\left(\mathrm{ABd}, J_{B A}=10.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.96(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$, 2.18-2.12 (m, 2H), $0.89(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-123.8(\mathrm{t}, J=10.0 \mathrm{~Hz}$, $1 \mathrm{~F}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.7,158.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=233.0 \mathrm{~Hz}\right.$), 139.6, 130.8, $130.4,130.1,128.6,124.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=11.3 \mathrm{~Hz}\right), 122.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=9.6 \mathrm{~Hz}\right), 108.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $26.2 \mathrm{~Hz}), 104.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=5.3 \mathrm{~Hz}\right), 103.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=24.9 \mathrm{~Hz}\right), 74.8,49.9,43.0,31.3,26.3$, 25.0, 22.7; IR $v / \mathrm{cm}^{-1} 2957,1735,1369,1152,704$; HRMS-ESI (m / z): calcd for $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{FNO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 494.2701$; Found: 494.2702.

dineopentyl 2-(8-chloro-2-phenyl-5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinolin-1-yl)malonate

$5 \mathbf{5}$

5e, white solid, $96 \mathrm{mg}, 63 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 7.60(\mathrm{~d}, ~ J$ $=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.44(\mathrm{~m}, 5 \mathrm{H}), 6.91(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{t}, J=5.6$ $\mathrm{Hz}, 2 \mathrm{H}), 3.87\left(\mathrm{ABd}, J_{A B}=10.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.83\left(\mathrm{ABd}, J_{B A}=10.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.95(\mathrm{t}, J=6.0$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.17-2.11 (m, 2H), $0.90(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.7,139.5$, 132.7, 130.4, 129.9, 128.7, 128.6, 125.5, 125.0, 122.9, 119.5, 118.4, 104.1, 74.9, 49.9, $43.0,31.3,26.3,24.8,22.6$; IR $v / \mathrm{cm}^{-1} 2958,1726,1366,1006,727 ; \operatorname{HRMS}-E S I(\mathrm{~m} / \mathrm{z})$: calcd for $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{ClNO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 510.2406; Found: 510.2398.

dineopentyl 2-(8-methoxy-2-phenyl-5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinolin-1-yl)malonate $5 f$

5f, white solid, $101 \mathrm{mg}, 67 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 7.51-$ $7.41(\mathrm{~m}, 5 \mathrm{H}), 7.08(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{t}, J=5.6 \mathrm{~Hz}$, $2 \mathrm{H}), 3.89\left(\mathrm{ABd}, J_{A B}=10.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.81\left(\mathrm{ABd}, J_{B A}=10.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.94$ $(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.16-2.11(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $168.8,154.5,138.5,130.5,130.4,129.7,128.5,128.3,124.3,122.5,110.1,104.0,100.2$, $74.5,55.8,49.9,43.0,31.3,26.3,24.9,22.9 ;$ IR $v / \mathrm{cm}^{-1} 2956,1739,1366,1137,731$; HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{NO}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 506.2901$; Found: 506.2902 .

dineopentyl 2-(8-methyl-2-phenyl-5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinolin-1-yl)malonate
5g
$\mathbf{5 g}$, white solid, 101 mg , 69% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 7.49-$ $7.40(\mathrm{~m}, 6 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 4.83(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.86\left(\mathrm{ABd}, J_{A B}=10.4\right.$ $\mathrm{Hz}, 2 \mathrm{H}), 3.80\left(\mathrm{ABd}, J_{B A}=10.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.95(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.18-$ $2.12(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.9,138.3,132.8,130.7$, $130.5,129.0,128.5,128.2,124.5,121.2,120.8,118.4,103.8,74.7,50.0,43.1,31.3$, 26.4, 24.9, 23.0, 21.8; IR $v / \mathrm{cm}^{-1} 2959,1724,1365,1145,703 ;$ HRMS-ESI (m / z): calcd for $\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{NO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 490.2952$; Found: 490.2954 .

dimethyl 2-(5-phenyl-2,3-dihydro-[1,4]oxazino[2,3,4-hi]indol-6-yl)malonate

5h

5h, white solid, $51 \mathrm{mg}, 47 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 7.54-7.45$ $(\mathrm{m}, 5 \mathrm{H}), 7.32(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.87(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.1,143.0,137.8,130.1,129.5,128.8,128.7,126.3,125.4$, 121.0, 113.7, 105.7, 105.3, 65.4, 52.6, 49.6, 42.9; IR v/ cm ${ }^{-1} 2920,1727,1445,1299$, 1212, 1141, 732; HRMS-ESI (m / z): calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NO}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 366.1336; Found: 366.1345 .

dineopentyl 2-(2-phenyl-5,6,7,8-tetrahydro-4H-azocino[3,2,1-hi]indol-1-yl)malonate

$5 i$

5i, white solid, $48 \mathrm{mg}, 32 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 7.64$ (d, J $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.39(\mathrm{~m}, 5 \mathrm{H}), 7.01(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.68(\mathrm{~s}, 1 \mathrm{H}), 4.27(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 4 \mathrm{H}), 3.27(\mathrm{~s}, 2 \mathrm{H}), 1.92-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.80(\mathrm{~m}$, $2 \mathrm{H}), 1.49-1.48(\mathrm{~m}, 2 \mathrm{H}), 0.82(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.9,140.0$, $137.3,131.2,130.9,128.7,128.4,126.1,124.3,124.0,119.9,119.2,105.0,74.5,50.2$, $44.2,32.5,31.3,30.9,29.7,26.3,21.3$; $\mathrm{IR} \mathrm{v/} \mathrm{~cm}{ }^{-1} 2960,1752,17381366,1140,742$; HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{NO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 504.3108; Found: 504.3104.

4. Proposed Mechanism

5. Chemical Transformation of the Products

$3 \mathbf{q}(257.3 \mathrm{mg}, 0.52 \mathrm{mmol})$ was dissolved in DMSO $(2.0 \mathrm{~mL})$ and water (10.0 uL , $0.56 \mathrm{mmol})$, and then $\mathrm{LiCl}(45.0 \mathrm{mg}, 1.04 \mathrm{mmol})$ was added under Ar. The reaction mixture was stirred for 13 h at $130^{\circ} \mathrm{C}$, cooled to rt , quenched by the addition of 2.5 N NaOH , and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration in vacuo, the residue was purified by column chromatography on silica gel to provide the $\mathbf{6}$ ($188.4 \mathrm{mg}, 84 \%$ yield) as white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 7.70-7.67$ (m, 2H), 7.30-7.15 (m, 9H), 6.89$6.86(\mathrm{~m}, 2 \mathrm{H}), 5.25\left(\mathrm{AB}, J_{A B}=16.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.02\left(\mathrm{AB}, J_{B A}=16.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.68(\mathrm{AB}$, $\left.J_{A B}=15.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.53\left(\mathrm{AB}, J_{B A}=16.0 \mathrm{~Hz}, 1 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, CDCl_{3}) $\delta 172.1,137.6$ (2C), 136.3, 133.6, 132.8, 132.4, 130.5, 128.4, 127.5, 127.2, 127.1, 126.4, 125.8, 122.3, 119.9, 119.3, 110.3, 106.9, 51.8, 47.7, 30.8; IR v/ cm ${ }^{-1} 2920$, 1732, 1453, 1186, 1026, 739; HRMS-ESI (m / z): calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{BrN}_{2} \mathrm{O}_{2}{ }^{+}\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$: 451.1016; Found: 451.1025.

$6(120.0 \mathrm{mg}, 0.28 \mathrm{mmol})$ was dissolved in $\mathrm{MeOH}(2.0 \mathrm{~mL})$ and water $(1.0 \mathrm{~mL})$, and then $\mathrm{KOH}(157.0 \mathrm{mg}, 2.8 \mathrm{mmol})$ was added under Ar. The reaction mixture was stirred for 2 h at $80^{\circ} \mathrm{C}$, cooled to rt , quenched by the addition of 2.5 N HCl , and extracted with EA. The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration in vacuo, the residue was purified by column chromatography on silica gel to provide the $7(107.9 \mathrm{mg}, 92 \%$ yield $)$ as white solid. ${ }^{1} \mathrm{H}$

NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 7.70-7.65$ (m, 2H), 7.30-7.16 (m, 9H), 6.89-6.87 (m, $2 \mathrm{H}), 5.25\left(\mathrm{AB}, J_{A B}=16.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.02\left(\mathrm{AB}, J_{B A}=16.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.70\left(\mathrm{AB}, J_{A B}=16.0\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 3.53\left(\mathrm{AB}, J_{B A}=16.0 \mathrm{~Hz}, 1 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.7,137.9$, 137.5, 136.3, 133.6, 132.8, 132.1, 130.6, 128.4, 127.34, 127.29, 127.1, 126.4, 125.7, 122.4, 120.0, 119.3, 110.4, 106.3, 47.8, 30.7; IR v/ cm ${ }^{-1} 3029,1704,1495,1345,1184$, 1027, 740; HRMS-ESI (m / z) : calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{BrNO}_{2}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 420.0594; Found: 420.0599 .

7 ($95.0 \mathrm{mg}, 0.23 \mathrm{mmol}$) was dissolved in THF (1.0 mL), and then oxalyl chloride $(45.0 \mathrm{mg}, 0.35 \mathrm{mmol}$) was added under Ar. The reaction mixture was stirred for 2 h at $50{ }^{\circ} \mathrm{C}$, cooled to rt, and pure $\mathrm{NH}_{3}(\mathrm{~g})$ was bubbled into the mixture for 20 min , and water was added and the mixture was extracted with DCM, and the organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration in vacuo, the residue was purified by column chromatography on silica gel to provide the $\mathbf{8}$ ($80.7 \mathrm{mg}, 84 \%$ yield) as white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 7.72-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.16$ $(\mathrm{m}, 9 \mathrm{H}), 6.87-6.85(\mathrm{~m}, 2 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}), 5.30\left(\mathrm{AB}, J_{A B}=16.4 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $5.02\left(\mathrm{AB}, J_{B A}=16.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.60\left(\mathrm{AB}, J_{A B}=17.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.54\left(\mathrm{AB}, J_{B A}=17.6 \mathrm{~Hz}\right.$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.9,138.0,137.3,136.5,133.2,132.9,131.9$, $130.9,128.4,127.6,127.3,127.0,126.4,125.6,122.8,120.2,119.1,110.5,107.4,47.8$, 32.4; $\operatorname{IR~} v / \mathrm{cm}^{-1} 3458,1668,1457,1343,1186,1026,741 ; \operatorname{HRMS}-E S I(\mathrm{~m} / \mathrm{z})$: calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{BrN}_{2} \mathrm{O}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 419.0754$; Found: 419.0759.

8 ($46.5 \mathrm{mg}, 0.11 \mathrm{mmol}), \mathrm{CuI}(11.4 \mathrm{mg}, 0.06 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(91.3 \mathrm{mg}, 0.28 \mathrm{mmol})$ was added in a Schlenk tube. The tube was evacuated and backfilled with argon before 0.5 mL DMF was added. The reaction mixture was stirred at $110{ }^{\circ} \mathrm{C}$ for 48 h . After the reaction mixture was cooled to rt , and water was added and the mixture was extracted with EtOAc, and the organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration in vacuo, the residue was purified by column chromatography on silica gel to yield the corresponding product. Then to the solution of sodium ($3.5 \mathrm{mg}, 0.15$ $\mathrm{mmol})$ in liquid ammonia (1.0 mL) was add the corresponding product in THF $(0.5 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. The reaction was quenched by adding $\mathrm{NH}_{4} \mathrm{Cl}$ after 20 min . Water was added and the mixture was extracted with EtOAc, and the organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration in vacuo, the residue was purified by column chromatography on silica gel to provide the Paullone (28% yield for two steps) as pale yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $6, ~ T M S$) $\delta 11.64$ (s, 1H), 10.15 (s, $1 \mathrm{H}), 7.79-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.09(\mathrm{~m}, 6 \mathrm{H}), 3.54(\mathrm{~s}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO$\left.\mathrm{d}_{6}\right) \delta 172.1,137.9,135.9,133.0,128.5,127.4,127.0,124.2,123.4,122.8,122.6,119.6$, 118.5, 112.0, 108.1, 32.1; HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}^{-}\left([\mathrm{M}-\mathrm{H}]^{-}\right): ~ 247.0877$; Found: 247.0878. All the analytical data are consistent with the reported values ${ }^{5}$.

6. X-ray Crystallographic Data

Crystal data and structure refinement for 3a
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.242^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole

C26 H22 Cl N O4
447.89

296(2) K
0.71073 Å

Monoclinic
P 21/n
$a=11.1236(3) \AA \quad \alpha=90^{\circ}$.
$b=13.5248(4) \AA \quad \beta=98.4720(10)^{\circ}$.
$\mathrm{c}=15.1885(5) \AA \quad \gamma=90^{\circ}$.
2260.09(12) \AA^{3}

4
$1.316 \mathrm{Mg} / \mathrm{m}^{3}$
$0.202 \mathrm{~mm}^{-1}$
936
$0.200 \times 0.170 \times 0.120 \mathrm{~mm}^{3}$
2.606 to 24.998°.
$-12<=\mathrm{h}<=13,-15<=\mathrm{k}<=16,-18<=1<=18$
23223
$3944[\mathrm{R}(\mathrm{int})=0.0774]$
96.5 \%

Semi-empirical from equivalents
0.7456 and 0.4823

Full-matrix least-squares on F^{2}
3944 / 0 / 292
1.038
$\mathrm{R} 1=0.0689, \mathrm{wR} 2=0.1951$
$\mathrm{R} 1=0.0875, \mathrm{wR} 2=0.2203$
0.039(7)
0.689 and -0.323 e. \AA^{-3}

Crystal data and structure refinement for $\mathbf{3 t}{ }^{\prime}$

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.242^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole

C20 H19 N O4

337.36

293(2) K
0.71073 £

Monoclinic
P 21/n
$a=11.0608(10) \AA \quad \alpha=90^{\circ}$.
$b=16.1061(16) \AA \quad \beta=101.078(2)^{\circ}$.
$\mathrm{c}=19.4870(19) \AA \quad \gamma=90^{\circ}$.
3406.9(6) \AA^{3}

8
$1.315 \mathrm{Mg} / \mathrm{m}^{3}$
$0.092 \mathrm{~mm}^{-1}$
1424
$0.189 \times 0.176 \times 0.123 \mathrm{~mm}^{3}$
1.971 to 25.496°.
$-13<=\mathrm{h}<=13,-19<=\mathrm{k}<=19,-23<=\mathrm{l}<=18$
19593
$6358[\mathrm{R}(\mathrm{int})=0.0421]$
100.0 \%

Semi-empirical from equivalents
0.7456 and 0.6495

Full-matrix least-squares on F^{2}
6358 / 0/457
1.038
$\mathrm{R} 1=0.0593, \mathrm{wR} 2=0.1554$
$R 1=0.0804, w R 2=0.1721$
n/a
0.355 and -0.195 e. \AA^{-3}

7. References

(1) Li, D.; Yang, T.; Su, H.; Yu, W. Adv. Synth. Catal. 2015, 357, 2529 - 2539.
(2) Mazik, M.; Buthe, A. C. Org. Biomol. Chem., 2008, 6, 1558-1568.
(3) Cho, H.; Iwama, Y.; Sugimoto, K.; Mori, S.; Tokuyama, H. J. Org. Chem. 2010, 75, 627-636.
(4) Boitsov, V. M.; Kostikov, R. R.; Molchanov, A. P.; Stepakov, A. V.; Baird, M. S. Russ. J. Org. Chem. 2004, Vol. 40, 1760-1763.
(5) Tobisu, M.; Fujihara, H.; Koh, K.; Chatani, N. J. Org. Chem., 2010, 75, 48414847.

8. Copies of NMR Spectra of Products

S2

S6

\circ
$\stackrel{0}{0}$
$\stackrel{0}{\circ}$
$\stackrel{1}{\circ}$
-136.605
-130.640
-129.305
-121.667
-111.954
(N:
-39.433
-31.368
26.249

S6
$\begin{array}{lllllllllllllllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \underset{\substack{100 \\ f 1}}{(\mathrm{ppm})} & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

S8

$\begin{array}{lllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \begin{array}{c}100 \\ f 1(\mathrm{ppm})\end{array}\end{array}$

3a

-

$\begin{array}{llllllllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \begin{array}{c}100 \\ \text { f1 }\end{array} \text { (ppm) } & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

3b


```
No%O% O
```


3c

$\varepsilon 8 L \bullet \bullet-$

$3 g$

$\bar{\sim}$		$\bigcirc{ }^{\circ} \mathrm{O}$	～～
$\stackrel{\infty}{\infty}$		$\stackrel{\text { Nod }}{ }$	ぶ¢
1	いく	\downarrow	11

$3 g$

$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{0} \\ & \stackrel{0}{\circ} \end{aligned}$	 		\%	

$\begin{array}{llllllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \begin{array}{l}100 \\ f 1(\mathrm{ppm})\end{array} & \mathbf{9 0} & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$
N
0
∞
0
0
1
i

III is

IIII 11

$\begin{array}{lllllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

	∞	NOM
	$\stackrel{\infty}{\sim}$	$\bigcirc \infty$
べNNNNNイNNNN」	－	м ¢ м м ¢

3s

$\stackrel{\text { ® }}{ }$		울	\%	8
¢		$\stackrel{\text { Nos }}{ }$	-	$\stackrel{\text { com }}{ }$
-	----y5-5	人	¢	

3s

5 e
$\begin{array}{lllllllllllllllllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -11\end{array}$

$5 g$

$5 g$
$\begin{array}{lllllllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

	$\frac{N}{\infty}$
人N゚	¢'
\downarrow	1 ।

6

7

Paullone

