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Construction of the Device Hamiltonian Matrices from DFT

The method to construct the metal-(oxide)-semiconductor structures and the corresponding Hamil-

tonian matrices are described in great details in Appendix B of Ref.1 The most important steps are

summarized here for convenience. To accurately simulate electronic transport through contact het-

erojunctions, large atomic systems must be treated at the density functional theory (DFT) level,

which is not directly possible with plane-wave codes such as VASP.2 This is why we had to come

up with the method proposed below.

Here, we focus on the metal-semiconductor configuration, but the developed approach applies

to the case with oxide inbetween as well. The first step consists in identifying a common periodic

unit cell that contains both the metal, Mo, and S atoms. It has been demonstrated before that

a thickness of 6 atomic layers is sufficient to describe the electronic properties of a top metal
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Figure S1: (a) Side view of the atoms in the created primitive cell of the metal-MoS2 heterostruc-
ture. Cyan dots denote Mo atoms, yellow S, and gray metal. (b) The area in the center with the
white background represents the unit cell of MoS2 with a top metal contact. It is made of 576
atoms and is simulated at the DFT level. Shaded regions refer to periodic replicas.

electrode.3 Hence, 6 Ti layers were placed above MoS2. The unit cell of the compound system

is depicted in Fig. S1(a). The distance between the top S and bottom Ti atoms was determined

by relaxing all ions within the generated unit cell, except those belonging to the top four metallic

layers. A 10 Å vacuum region separates the periodic replicas from each other in the vertical y

direction. Van der Waals interactions were included through the DFT-D2 method of Grimme.4 A

11×1×11 Monkhorst-Pack k-point mesh and a convergence criteria of less than 10−3 eV/Å for the

forces acting on each atom were set. The vertical separation between the Ti and the semiconductor

layer was consistently found to be 1.54 Å, regardless of the initial assumptions. All calculations

were performed with VASP2 on a local cluster.

Using this optimized geometry a rectangular supercell was assembled that contains many repli-

cas of the primitive unit cell along the transport direction x and also a region where the metal

atoms were removed so that only the MoS2 semiconductor layer is present. This cell is displayed

in Fig. S1(b). For the considered Ti-MoS2 system, the central part is composed of 576 atoms. Its

electronic structure was computed with VASP, before converting the resulting plane-wave Hamil-

tonian matrix into a set of maximally localized Wannier functions (MLWFs) with the Wannier90

tool.5 For that purpose, the Brillouin zone was first sampled with 5 points in the kz direction at
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Figure S2: Extraction of the Hamiltonian blocks utilized to construct HMLWF, the Hamiltonian
matrix of a device with realistic dimensions. Blue rectangles identify the regions from which
interactions between cells containing only metal atoms are taken, red unit cells where the metal
and semiconductor parts overlap, and orange the semiconductor-only part. The green rectangle
contains the Hamiltonian block that is needed to connect the metal-semiconductor region and
the semiconductor-only extension together. Note that all Hamiltonian blocks corresponding to
a marked region and to the coupling with their neighbors have been carefully labeled.

kx=ky=0 to self-consistently determine the charge density. The number of kz points was then in-

creased to 9 and the number of bands (NBANDS) to 3600 to recompute the wavefunctions with the

charge fixed to its converged value. This step is necessary to facilitate the conversion to MLWFs,

in particular to obtain a smoother subspace of bands that can be disentangled from the Hilbert

space. As initial projections Mo:l=2, S:l=1, Ti:l=2, and Ti:sp3-1 were supplied to Wannier90. The

frozen energy window was selected in such a way that it covers a 2 eV range around the Fermi

level, giving rise to well localized Wannier functions.

The idea behind this procedure is that the MLWF Hamiltonian can be broken down in small

blocks that can be replicated and re-assembled together in a different way in order to produce

the Hamiltonian of a system where the metal and semiconductor parts extend to realistic scales.

The method is illustrated in Fig. S2. First, in the region where the metal and the semiconductor

overlap, three identical cells are identified, each of them is delimited by a red rectangle. It is

important that all atomic interactions that start from the central cell do not extend beyond its left

and right neighboring cells. If this condition is satisfied, three Hamiltonian blocks can be extracted

for the central cell, one that includes its interactions with its left neighbor, one with itself, and a

last one with its right neighbor. They are denoted as HO,1, HO,2, and HO,3, respectively. The same

S3



x

y

L
M

L
O

L
S

Figure S3: Schematic view of a top metal contact deposited on a MoS2 monolayer with ex-
tended lateral dimensions. In this work, the lengths LM (pure metal), LO (overlap region), and
LS (semiconductor-only) measure 10 nm, 6 to 133 nm, and 50 nm, respectively.

procedure can be repeated in the semiconductor-only region, where the cells are colored in orange

and the Hamiltonian blocks are denoted as HS,1, HS,2, and HS,3.

The metal-semiconductor overlapping part on the left and the semiconductor-only extension on

the right are connected through a Hamiltonian block labeled HC that corresponds to the region de-

limited by a green rectangle in Fig. S2. The off-diagonal block that connects this L-shaped structure

to the metal-semiconductor region is HO,1, while the one that couples it to the semiconductor-only

region is HS,3. Additionally, another set of three cells must be identified within the overlapping

region, namely the metal-only parts, shown in blue. The corresponding Hamiltonian blocks are de-

noted as HM,1, HM,2, and HM,3. These Hamiltonian components are required to build a pure metal

extension on the left side from which electrons can be injected into the simulation domain, as illus-

trated in Fig. S3. It remains to determine the connection between the rightmost metal-only block

and the start of the overlapping region, which is labeled HMO and is a subset of HO,3. We may

ask ourselves whether it is justified to extract the Hamiltonian matrix of a pure Ti layer from that

of a Ti-Mo2 heterojunction. In fact, the electronic states of the metallic layer are only marginally

influenced by the presence of a 2-D material underneath so that their properties are not affected.

The same cannot be said about the semiconductor layer because the high electron concentration

present in the metallic electrode situated above it drastically modifies its bandstructure. This is the

reason why the unit cell used in DFT must have a MoS2-only region.

Taking all the above points into consideration, the Hamiltonian HMLWF of the system depicted

in Fig. S3 can be put together. It is sketched in Fig. S4 with the help of the quantities introduced in

Fig. S2. The Hamiltonian blocks containing the interactions between the metal-only parts (blue)
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Figure S4: Schematic view of the HMLWF Hamiltonian matrix corresponding to the device in
Fig. S3. The colors and the notations refer to the quantities introduced in Fig. S2.

are repeatedly placed in a tridiagonal fashion first. They are then connected through the HMO

block (black) to the region where the metal and the semiconductor layer overlap (red). The latter

part is connected to the semiconductor-only volume (orange) through the central green block.
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NEGF Simulation Approach

Once that the MLWF Hamiltonian HMLWF that corresponds to the desired simulation domain has

been assembled, the current that flows through the contact geometry, from the pure metallic region

to the MoS2-only extension can be computed. In this paper, this was done with the well-established

Non-equilibrium Green’s Function (NEGF) formalism, a powerful quantum transport technique

compatible with a MLWF basis set. A computational approach very similar to the one described

in Ref.6 was used. The equations to be solved have the following form

(

E −HMLWF(kz)−ΣRB(kz,E)−ΣRS(kz,E)
)

·GR(kz,E) = I (1)

G≷(kz,E) = GR(kz,E) ·
(

Σ≷B(kz,E)+Σ≷S(kz,E)
)

·GA(kz,E), (2)

In Eqs. (1) and (2), the unknowns are the retarded/advanced GR/A(k,E) and greater/lesser G≷(k,E)

Green’s functions at energy E and momentum kz. They are full matrices of size NA ×NWF where

NA is the number of atoms in the simulation domain (from 4500 till 40500 in this study) and NWF

the number of Wannier functions describing the properties of each atom (NWF=3 for the S atoms,

5 for the Mo, and 6 for the Ti). The momentum (kz) dependence arises from the modeling of the

out-of-plane direction z in Fig. S3, which is assumed periodic. The diagonal matrix E contains the

electron energy. The block tri-diagonal matrix HMLWF(kz) is the kz-dependent device Hamiltonian

expressed in a MLWF basis. Finally, open boundary conditions that allow for electron injection are

calculated as proposed in Ref.7 and cast into the ΣR,≷B(k,E) self-energies, while the considered

scattering mechanisms, if any, are taken into account in the ΣR,≷S(k,E) matrices.

As shown in Ref.,6 the ballistic limit of transport does not capture well the physics of most

2-D materials as it neglects important conduction channels. To address this issue, it was found

that introducing an energy relaxing mechanism could be really beneficial, for example, by adding

(pseudo) electron-phonon interactions via the ΣR,≷S(k,E) self-energies. The following expression
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was considered in this work:

Σ≶S(kz,E) = ∑
ωi

∫

dqz

2π
M2

e−ph,i

(

nωi
G≶(kz −qz,E + h̄ωi)+

(nωi
+1)G≶(kz −qz,E − h̄ωi)

)

. (3)

In Eq. (3), instead of a very accurate model, we opted for a phenomenological one where two

parameters can be freely chosen, the phonon frequencies ωi and the interaction strengths Me−ph,i.

Here, we used a single phonon energy with h̄ω=40 meV and Me−ph=55 meV, which ensures a

proper transfer of electrons from the Ti electrode into the MoS2 layer. Since the scattering self-

energy in Eq. (3) depends on the Green’s Functions in Eqs (1)-(2) and vice-versa, these quantities

must be iteratively computed within the so-called self-consistent Born approximation till conver-

gence is reached. To obtain a conserved current, as shown in Figs. 4(b) and (e) of the main article,

more than 100 Born iterations were typically required, generating a high computational burden,

even on supercomputers such as the GPU-equipped Cray-XC50 Piz Daint used in this paper 1.

Finally, note that Eqs (1), (2), and (3) must be solved for all possible energy-momentum (E,kz)

pairs, i.e. for all energies where electrons are occupied and for −π/Lz ≤ kz ≤ π/Lz, where Lz

is the width of the periodic unit cell along the z direction. Due to the size of the largest investi-

gated structures (40500 atoms) and the number of required Born iterations for current convergence

(>100), it was not possible to account for more than one kz point per simulation. We therefore

chose a momentum with a representative current flow (based on ballistic simulations), kz=0.7π/Lz,

and restricted our calculations to it. For its part, the energy vector was discretized with a constant

separation dE=0.2 meV between two adjacent points, resulting into close to 10000 energy values.

Contour Plot of the Spectral Current

To plot the spectral currents in Figs. 4(c) and (f) of the main article, the “contourf.m” function of

matlab was used. As the computed data was not smooth enough to produce a clean figure with

1https://www.cscs.ch/computers/piz-daint/
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Figure S5: (a) Energy-resolved electrical current in the Ti-only region of the Ti-MoS2 contact
structure. The computed data (solid red line) and the same data after a convolution with a Gaussian
function of width σ=20 meV (dashed blue cure) are plotted. The smoothed blue curve corresponds
to the cut line x=0 in Fig. 4(c) of the main article. (b) Same as (a), but for the Ti-TiO2-MoS2
structure. The smoothed blue curve is identical to the cut line x=0 in Fig. 4(f).

all current features clearly visible, it was first convoluted with a Gaussian function to eliminate

the peaks it exhibits. Figure S5 shows how the convolution modifies the data and makes it more

suitable for the “contourf.m” function (no abrupt variations, while keeping the same shape).
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