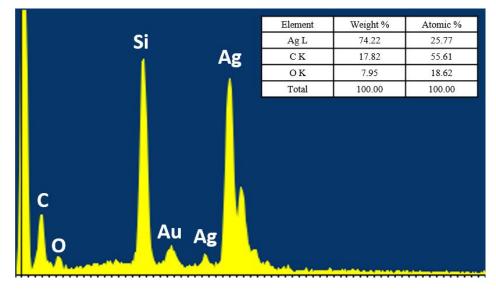
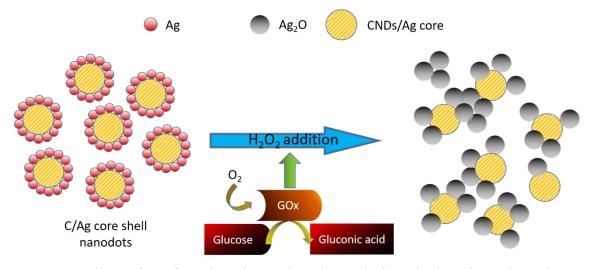
## **Supporting Information**


## Insights for realizing ultrasensitive colorimetric detection of glucose based on carbon/silver core/shell nanodots

Po-Hsuan Hsiao,<sup>1</sup> Chia-Yun Chen<sup>1,2\*</sup>

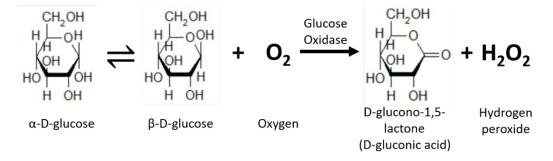
<sup>1</sup>Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan

<sup>2</sup> Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan

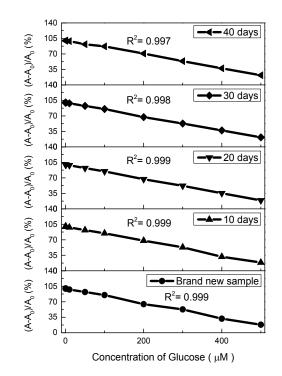

\*E-mail: timcychen@mail.ncku.edu.tw



S-1 Elemental composition analysis of core/shell nanodots

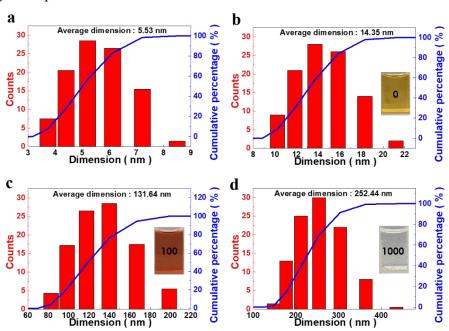

**Figure S1.** EDS analysis of C/Ag core/shell nanodots. The quantitative analysis was shown in the inserted figure.

S-2 Sensing process based on the designed core/shell nanostructures.




**Figure S2.** Illustration of sensing glucose based on colorimetric detection using C/Ag core/shell nanodots.

## S-3 Possible reaction of $H_2O_2$ generation with $GO_x$ mediation




**Figure S3**. Possible instant reaction of glucose catalyzed with the glucose oxidase. Accordingly,  $H_2O_2$  molecules were generated and initiated the color change of C/Ag core/shell indicators.



S-4 Reliability examination of glucose sensors based on core/shell nanodots

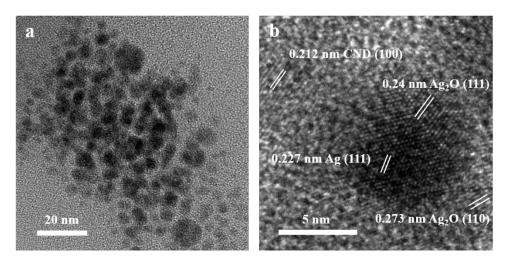
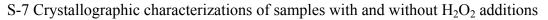
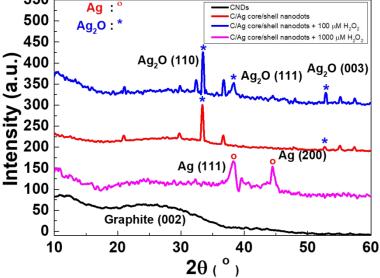
**Figure S4.** The duration test (0-40 days) of C/Ag core/shell nanodots under various concentrations of glucose.

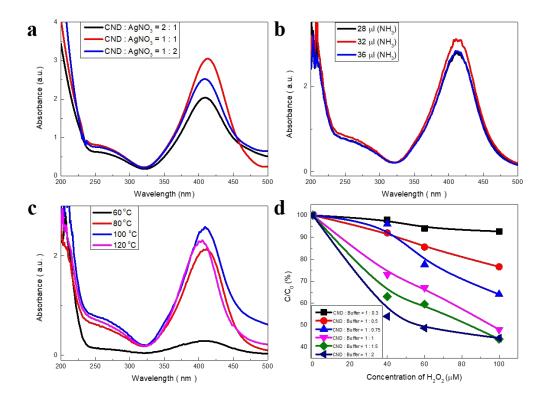


S-5 Analysis of particle size

**Figure S5.** DLS measured results of (a) CNDs, (b) C/Ag core/shell nanodots without and with (c)100  $\mu$ M and (d)1000  $\mu$ M of H<sub>2</sub>O<sub>2</sub> addition.

S-6 TEM investigations of C/Ag core/shell nanodots with H<sub>2</sub>O<sub>2</sub> addition



Figure S6. (a) Representative TEM and (b) HRTEM images of C/Ag core/shell nanodots with 1000  $\mu$ M of H<sub>2</sub>O<sub>2</sub> addition.







**Figure S7.** XRD patterns of CNDs, C/Ag core/shell nanodots without and with 100 and 1000  $\mu$ M of H<sub>2</sub>O<sub>2</sub> addition.



S-8 Examinations of optimal condition for preparing C/Ag core/shell nanostructures

**Figure S8.** Examinations of optimal condition for the preparation of C/Ag core/shell nanostructures. (a)The ratio of CND to AgNO<sub>3</sub> reagents, (b) the amount of the NH<sub>3</sub> used in preparation, (c) the temperature of thermal treatment and (d) the addition of BF buffer solutions. The results displayed that the optimal condition for preparing C/Ag core-shell nanodots were, CND:AgNO<sub>3</sub> = 1:1, 32  $\mu$ L of NH<sub>3</sub> and 100<sup>o</sup>C for thermal treatment. The ratio of C/Ag core-shell nanodots : BF buffer solution = 1:1 was found to be optimal due to the straight correlation line. (R<sub>2</sub> = 0.997).