Electronic supplementary information

A subset of new platinum antitumor agents kills cells by a multimodal mechanism of action also involving changes in the organization of the microtubule cytoskeleton

Hana. Kostrhunova, † Juraj. Zajac, † Vojtech Novohradsky, † Jana. Kasparkova, † Jaroslav Malina, † Janice. R. Aldrich-Wright, ‡ Emanuele. Petruzzella, § Roman Sirota, § Dan Gibson, § and Viktor Brabec*, †

[†]Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic

[‡]School of Science and Health, Western Sydney University, Penrith South DC 1797, NSW, Australia

§Institute for Drug Research, School of Pharmacy, The Hebrew University, Jerusalem, 91120, Israel

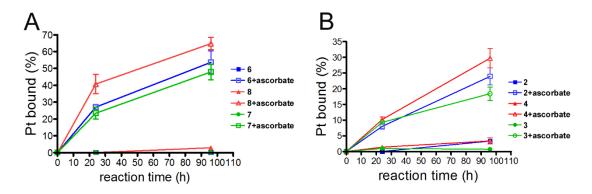
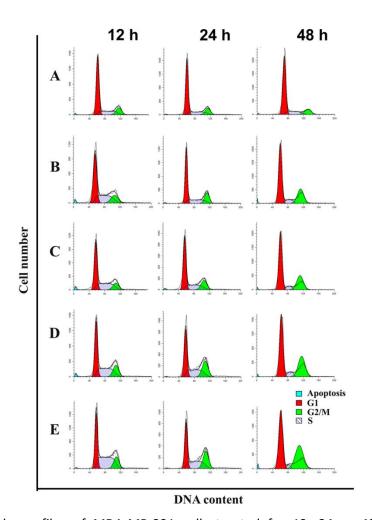
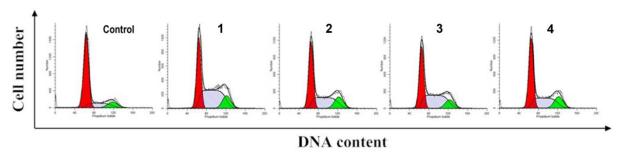
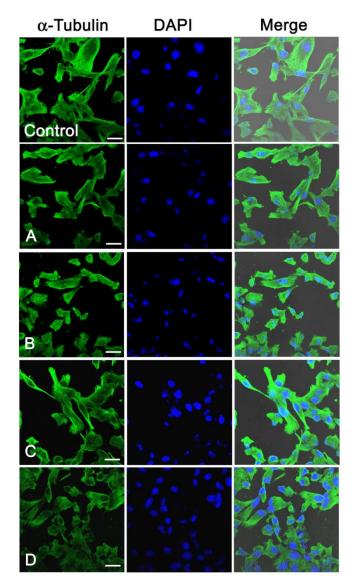

Table of Contents

Table S1. DNA platination in MDA-MB-231 cells treated with the investigated platinum complexes	S2
Figure S1. DNA binding of Pt(IV) complexes derived from 5 and 1 in the presence or absence of sodium ascorbate	S2
Figure S2. Cell-cycle profiles of MDA-MB-231 cells treated with 5 and its investigated Pt(IV) derivatives	S3
Figure S3. Cell-cycle profiles of MDA-MB-231 cells treated h with 1 and its investigated Pt(IV) derivatives	S3
Figure S4. Effects of 5 and its investigated Pt(IV) derivatives on the organization of the structural network (cytoskeleton) within the cell's cytoplasm	S 4
Figure S5. Mitochondrial membrane hypopolarization, HDAC activity and DNA methylation in MDA-MB-231 cells	SE


Table S1. DNA platination in MDA-MB-231 cells treated for 6 h at 2.0 μ M concentrations

pg Pt/μg DNA ^a	
1	1.97 ± 0.08
2	4.5 ± 0.5
3	5.9 ± 0.5
4	25 ± 4
5	0.24 ± 0.09
6	1.2 ± 0.1
7	1.67 ± 0.03
8	7 ± 1


^aAll results are expressed as the mean ± SD from three independent experiments.


Figure S1. DNA binding of Pt(IV) complexes derived from **5** and **1** in the presence (open symbols) or absence (full symbols) of sodium ascorbate. Calf thymus DNA (64 μ gmL⁻¹) was incubated with 2x10⁻⁵ M Pt(IV) derivatives of 56-MeSS (A) or OX (B) in 10 mM NaClO₄ at 37 °C in the presence or absence of 2x10⁻⁵ M sodium ascorbate.

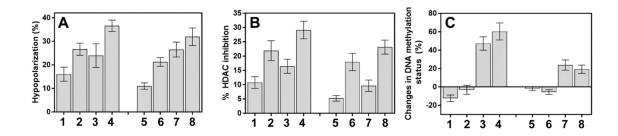

Figure S2. Cell-cycle profiles of MDA-MB-231 cells treated for 12, 24 or 48 h with 5 and its investigated Pt(IV) derivatives at the concentrations corresponding to IC_{30} values (found for these compounds in MDA-MB-231 cells treated for 72 h). The cells were stained with propidium iodide and assessed for cell-cycle distribution by FACS analysis. The colors represent the G1 phase (red), S phase (blue dashed) and G_2/M phase (green) of modeled cell cycle. Cells with the lowest DNA content were considered apoptotic (turquoise). A, control; B, **5**; C, **6**; D, **7**, and E, **8**.

Figure S3. Cell-cycle profiles of MDA-MB-231 cells treated for 24 h with $\bf 1$ and its investigated Pt(IV) derivatives at the concentrations corresponding to IC₃₀ values (found for these compounds in MDA-MB-231 cells treated for 72 h). The other conditions were the same as specified in the legend to Figure S1. The colors represent the G1 phase (red), S phase (blue dashed) and G₂/M phase (green) of modeled cell cycle. Cells with the lowest DNA content were considered apoptotic (turquoise).

Figure S4. Effects of **5** and its investigated Pt(IV) derivatives on the organization of the structural network (cytoskeleton) within the cell's cytoplasm. MDA-MB-231 cells were incubated with the investigated **5** and its investigated Pt(IV) derivatives at the concentrations corresponding to IC₅₀ (72 h; MTT) for 16 h. Images were obtained by confocal microscopy of anti-α-tubulin immunofluorescence (green) preparations; nuclei (DNA) were stained with DAPI (blue). Control cells (top row); cells treated with (A) **5**, (B) **6**, (C) **7**, and (D) **8**. Samples were scanned on confocal laser scanning microscope, and the scale bars are 25 μm.

Figure S5. A. Mitochondrial membrane hypopolarization (TMRE fluorescence control – TMRE fluorescence sample) of MDA-MB-231 cells treated for 5 h with the investigated platinum complexes at concentrations corresponding to 3-fold IC_{50} values (determined with MTT; 72 h). After TMRE staining (1 nM; 20 min), the fluorescence (excitation/emission = 560 nm/595 nm) was read on Varian Cary Eclipse. The values are mean \pm SD from three independent experiments.

B. HDAC activity (% inhibition) in MDA-MB-231 cells treated for 24 h with the investigated platinum compounds at concentrations corresponding to IC_{30} (determined with MTT assay after 72 h treatment).

C. DNA methylation in MDA-MB-231 cells treated for 24 h with the investigated platinum compounds at concentrations corresponding to IC_{30} (determined with MTT assay after 72 h treatment).