SUPPORTING INFORMATION

Assessing the Flexibility of the Prochlorosin 2.8 Scaffold for Bioengineering Applications

Julian D. Hegemann, ${ }^{a, b}$ Silvia C. Bobeica, ${ }^{a, b}$ Mark C. Walker, ${ }^{a, b}$ Ian R. Bothwell, ${ }^{a, b}$ and Wilfred A. van der Donk ${ }^{a, b, \dagger}$
${ }^{a}$ Howard Hughes Medical Institute and ${ }^{b}$ Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, Illinois 61801, United States. +Corresponding author: vddonk@illinois.edu

Table S1. Overview of all ProcA2.8(G-1K) variants co-expressed with ProcM in this study. Core peptide sequences, observed dehydration states, numbers of NEM adducts, and ring topologies as determined by tandem MS experiments are shown.

name	core peptide sequence				dehydration state	NEM added	ring topology
WT	AA	CHNHAPS M	MPP S	SYWEGEC	-2 $\mathrm{H}_{2} \mathrm{O}$	0	Cys3-Ser9, Ser13-Cys19
H4A	AA	CANHAPS M	MPP S	SYWEGEC	-2 $\mathrm{H}_{2} \mathrm{O}$	0	Cys3-Ser9, Ser13-Cys19
N5A	AA	CHAHAPS M	MPP S	SYWEGEC	-2 $\mathrm{H}_{2} \mathrm{O}$	0	Cys3-Ser9, Ser13-Cys19
H6A	AA	CHNAAPS M	MPP S	SYWEGEC	-2 $\mathrm{H}_{2} \mathrm{O}$	0	Cys3-Ser9, Ser13-Cys19
P8A	AA	CHNHAAS M	MPP S	SYWEGEC	-2 $\mathrm{H}_{2} \mathrm{O}$	0	Cys3-Ser9, Ser13-Cys19
M10A/P11A/P12A	AA	CHNHAPS A	AAA S	SYWEGEC	-2 $\mathrm{H}_{2} \mathrm{O}$	0	Cys3-Ser9, Ser13-Cys19
$\Delta \mathrm{P} 11$	AA	CHNHAPS M	MP_S	SYWEGEC	-2 $\mathrm{H}_{2} \mathrm{O}$	0	Cys3-Ser9, Ser12-Cys18
$\Delta \mathrm{P} 11 \mathrm{P} 12$	AA	CHNHAPS M	M	SYWEGEC	-2 $\mathrm{H}_{2} \mathrm{O}$	0	Cys3-Ser9, Ser11-Cys17
linker +1 aa	AA	CHNHAPSAM	MPP S	SYWEGEC	$-2 \mathrm{H}_{2} \mathrm{O}$	0	Cys3-Ser9, Ser14-Cys20
linker +2 aa	AA	CHNHAPSAM	MPPAS	SYWEGEC	(unmodified/-1) ${ }^{\text {a }}$ $-2 \mathrm{H}_{2} \mathrm{O}$	0	Cys3-Ser9, Ser15-Cys21
Y14A	AA	CHNHAPS M	MPP S	SAWEGEC	-2 $\mathrm{H}_{2} \mathrm{O}$	0	Cys3-Ser9, Ser13-Cys19
W15A	AA	CHNHAPS M	MPP	SYAEGEC	$-2 \mathrm{H}_{2} \mathrm{O}$	0	Cys3-Ser9, Ser13-Cys19
E16A	AA	CHNHAPS M	MPP S	SYWAGEC	-2 $\mathrm{H}_{2} \mathrm{O}$	0	Cys3-Ser9, Ser13-Cys19
G17A	AA	CHNHAPS M	MPP S	SYWEAEC	-2 $\mathrm{H}_{2} \mathrm{O}$	0	Cys3-Ser9, Ser13-Cys19
E18A	AA	CHNHAPS M	MPP S	SYWEGAC	-2 $\mathrm{H}_{2} \mathrm{O}$	0	Cys3-Ser9, Ser13-Cys19
ring1-1 aa ($\triangle H 6$)	AA	CHN_APS M	MPP S	SYWEGEC	-2 $\mathrm{H}_{2} \mathrm{O}$	0	Cys3-Ser8, Ser12-Cys18
ring1-2 aa ($\triangle H 6 A 7$)	AA	CHN__PS M	MPP S	SYWEGEC	$-2 \mathrm{H}_{2} \mathrm{O}$	0	Cys3-Ser7, Ser11-Cys17
ring1 +1 aa	AA	CHANHAPS	MPP	SYWEGEC	$-2 \mathrm{H}_{2} \mathrm{O}$	0	Cys3-Ser10, Ser14-Cys20
ring1 +2 aa	AA	CHANAHAPS	S MPP	P SYWEGEC	-2 $\mathrm{H}_{2} \mathrm{O}$	0	Cys3-Ser11, Ser15-Cys21
ring1 +3 aa	AA	CHANAHAPA	AS MP	MPP SYWEGEC	$-2 \mathrm{H}_{2} \mathrm{O}$	0	Cys3-Ser12, Ser16-Cys22
ring2 -1 aa ($\Delta \mathrm{W} 15$)	AA	CHNHAPS M	MPP S	SY_EGEC	-2 $\mathrm{H}_{2} \mathrm{O}$	0	Cys3-Ser9, Ser13-Cys18
ring2 -2 aa (\triangle W15E16)	AA	CHNHAPS M	MPP S	SY__GEC	-2 $\mathrm{H}_{2} \mathrm{O}$	0	Cys3-Ser9, Ser13-Cys17
ring2 +1 aa	AA	CHNHAPS M	MPP S	SYAWEGEC	$-1 /-2 \mathrm{H}_{2} \mathrm{O}$	1/0	$\begin{aligned} & \text { Cys3-Ser13 / } \\ & \text { Cys3-Ser9, Ser13-Cys20 } \end{aligned}$
ring $2+2$ aa	AA	CHNHAPS M	MPP S	SYAWAEGEC	-1/-2 $\mathrm{H}_{2} \mathrm{O}$	1/0	Cys3-Ser13 / Cys3-Ser9, Ser13-Cys21
C3S S9C	AA	SHNHAPC M	MPP S	SYWEGEC	-2 $\mathrm{H}_{2} \mathrm{O}$	0	Ser3-Cys9, Ser13-Cys19
S13C/C19S	AA	CHNHAPS M	MPP C	CYWEGES	-1 $\mathrm{H}_{2} \mathrm{O}$	1	Cys3-Ser9
S13C/C19S-A	AA	CHNHAPS M	MPP C	CYWEGESA	unmodified	2	none
S13C/C19S-AA	AA	CHNHAPS M	MPP C	CYWEGESAA	unmodified/-1 $\mathrm{H}_{2} \mathrm{O}$	2/1	none / Cys3-Ser9
H4P	AA	CPNHAPS M	MPP S	SYWEGEC	$\left(-1 \mathrm{H}_{2} \mathrm{O}\right)^{\mathrm{a}} /-2 \mathrm{H}_{2} \mathrm{O}$	(1)/0	($\mathrm{n} . \mathrm{d} .{ }^{*}$)/Cys3-Ser9, Ser13-Cys19
H6P	AA	CHNPAPS M	MPP S	SYWEGEC	$\left(-1 \mathrm{H}_{2} \mathrm{O}\right)^{\mathrm{a}} /-2 \mathrm{H}_{2} \mathrm{O}$	(1)/0	(n.d. ${ }^{*}$)/Cys3-Ser9, Ser13-Cys19
H4P/H6P	AA	CPNPAPS M	MPP S	SYWEGEC	unmodified	2	none
Y14P/E16P	AA	CHNHAPS M	MPP S	SPWPGEC	unmodified	2	none
Y14P/E18P	AA	CHNHAPS M	MPP S	SPWEGPC	-1 $\mathrm{H}_{2} \mathrm{O}$	1	n. d. ${ }^{\text {b }}$
E16P/E18P	AA	CHNHAPS M	MPP S	SYWPGPC	-2 $\mathrm{H}_{2} \mathrm{O}$	0	n. d. ${ }^{\text {b }}$
Y14P/E16P/E18P	AA	CHNHAPS M	MPP S	SPWPGPC	-1 $\mathrm{H}_{2} \mathrm{O}$	1	n. d. ${ }^{\text {b }}$
5RGD	AA	CHRGDPS M	MPP S	SYWEGEC	-1/-2 $\mathrm{H}_{2} \mathrm{O}$	1/0	Ser13-Cys19 / Cys3-Ser9, Ser13-Cys19
15RGD	AA	CHNHAPS M	MPP	SYRGDEC	-2 $\mathrm{H}_{2} \mathrm{O}$	0	Cys3-Ser9, Ser13-Cys19
16RGD	AA	CHNHAPS M	MPP S	SYWRGDC	$-2 \mathrm{H}_{2} \mathrm{O}$	0	Cys3-Ser9, Ser13-Cys19

[^0]Table S2a. Oligonucleotide primers used for mutating residues in ring 1 of ProcA2.8. SLIM overhangs are underlined and mutated residues are highlighted in bold.

name	sequence
FP_ProcA2.8-Ring1	CCT CCA TCC TAT TGG GAG GGT GAG TGC TAA G
RP_ProcA2.8-Ring1	GGC CGC TTT CCC AGC CAC ACC TTC CAG
FPtail_ProcA2.8-H4A	TGT GCG AAC CAT GCT CCA TCT ATG CCT CCA TCC TAT TGG GAG GGT GAG TGC TAA G
RPtail_ProcA2.8-H4A	CAT AGA TGG AGC ATG GTT CGC ACA GGC CGC TTT CCC AGC CAC ACC TTC CAG
FPtail_ProcA2.8-N5A	TGT CAT GCG CAT GCT CCA TCT ATG CCT CCA TCC TAT TGG GAG GGT GAG TGC TAA G
RPtail_ProcA2.8-N5A	CAT AGA TGG AGC ATG CGC ATG ACA GGC CGC TTT CCC AGC CAC ACC TTC CAG
FPtail_ProcA2.8-H6A	TGT CAT AAC GCG GCT CCA TCT ATG CCT CCA TCC TAT TGG GAG GGT GAG TGC TAA G
RPtail_ProcA2.8-H6A	CAT AGA TGG AGC CGC GTT ATG ACA GGC CGC TTT CCC AGC CAC ACC TTC CAG
FPtail_ProcA2.8-P8A	TGT CAT AAC CAT GCT GCG TCT ATG CCT CCA TCC TAT TGG GAG GGT GAG TGC TAA G
RPtail_ProcA2.8-P8A	CAT AGA CGC AGC ATG GTT ATG ACA GGC CGC TTT CCC AGC CAC ACC TTC CAG
FPtail_ProcA2.8-R1-1aa	TGT CAT AAC GCT CCA TCT ATG CCT CCA TCC TAT TGG GAG GGT GAG TGC TAA G
RPtail_ProcA2.8-R1-1aa	CAT AGA TGG AGC GTT ATG ACA GGC CGC TTT CCC AGC CAC ACC TTC CAG
FPtail_ProcA2.8-R1-2aa	TGT CAT AAC CCA TCT ATG CCT CCA TCC TAT TGG GAG GGT GAG TGC TAA G
RPtail_ProcA2.8-R1-2aa	CAT AGA TGG GTT ATG ACA GGC CGC TTT CCC AGC CAC ACC TTC CAG
FPtail_ProcA2.8-R1+1aa	TGT CAT GCG AAC CAT GCT CCA TCT ATG CCT CCA TCC TAT TGG GAG GGT GAG TGC TAA G
RPtail_ProcA2.8-R1+1aa	CAT AGA TGG AGC ATG GTT CGC ATG ACA GGC CGC TTT CCC AGC CAC ACC TTC CAG
FPtail_ProcA2.8-R1+2aa	TGT CAT GCG AAC GCC CAT GCT CCA TCT ATG CCT CCA TCC TAT TGG GAG GGT GAG TGC TAA G
RPtail_ProcA2.8-R1+2aa	CAT AGA TGG AGC ATG GGC GTT CGC ATG ACA GGC CGC TTT CCC AGC CAC ACC TTC CAG
FPtail_ProcA2.8-R1+3aa	TGT CAT GCG AAC GCC CAT GCT CCA GCG TCT ATG CCT CCA TCC TAT TGG GAG GGT GAG TGC TAA G
RPtail_ProcA2.8-R1+3aa	CAT AGA CGC TGG AGC ATG GGC GTT CGC ATG ACA GGC CGC TTT CCC AGC CAC ACC TTC CAG
FPtail_ProcA2.8-C3S_S9C	AGC CAT AAC CAT GCT CCA TGC ATG CCT CCA TCC TAT TGG GAG GGT GAG TGC TAA G
RPtail_ProcA2.8- C3S_S9C	CAT GCA TGG AGC ATG GTT ATG GCT GGC CGC TTT CCC AGC CAC ACC TTC CAG
FPtail_Proc2.8-H4P	TGT CCG AAC CAT GCT CCA TCT ATG CCT CCA TCC TAT TGG GAG GGT GAG TGC TAA G
RPtail_Proc2.8-H4P	CAT AGA TGG AGC ATG GTT CGG ACA GGC CGC TTT CCC AGC CAC ACC TTC CAG
FPtail_Proc2.8-H6P	TGT CAT AAC CCG GCT CCA TCT ATG CCT CCA TCC TAT TGG GAG GGT GAG TGC TAA G
RPtail_Proc2.8-H6P	CAT AGA TGG AGC CGG GTT ATG ACA GGC CGC TTT CCC AGC CAC ACC TTC CAG
FPtail_Proc2.8-H4P-H6P	TGT CCG AAC CCG GCT CCA TCT ATG CCT CCA TCC TAT TGG GAG GGT GAG TGC TAA G
RPtail_Proc2.8-H4P-H6P	CAT AGA TGG AGC CGG GTT CGG ACA GGC CGC TTT CCC AGC CAC ACC TTC CAG
FPtail_ProcA2.8-R5G6D7	TGT CAT CGT GGC GAT CCA TCT ATG CCT CCA TCC TAT TGG GAG GGT GAG TGC TAA G
RPtail_ProcA2.8-R5G6D7	CAT AGA TGG ATC GCC ACG ATG ACA GGC CGC TTT CCC AGC CAC ACC TTC CAG

Table S2b. Oligonucleotide primers used for mutating residues in the linker region between rings 1 and 2 of
ProcA2.8. SLIM overhangs are underlined and mutated residues are highlighted in bold.

name	sequence
FP_ProcA2.8-Linker	TGG GAG GGT GAG TGC TAA GCG GCC G
RP_ProcA2.8- Linker	ATG GTT ATG ACA GGC CGC TTC CCC AGC CAC
FPtail_ProcA2.8-MPPtoAAA	GCT CCA TCT GCC GCG GCA TCC TAT TGG GAG GGT GAG TGC TAA GCG GCC G
RPtail_ProcA2.8-MPPtoAAA	ATA GGA TGC CGC GGC AGA TGG AGC ATG GTT ATG ACA GGC CGC TTT CCC AGC CAC
FPtail_ProcA2.8-DeltaP11	GCT CCA TCT ATG CCA TCC TAT TGG GAG GGT GAG TGC TAA GCG GCC G
RPtail_ProcA2.8-DeltaP11	ATA GGA TGG CAT AGA TGG AGC ATG GTT ATG ACA GGC CGC TTT CCC AGC CAC
FPtail_ProcA2.8-DeltaP11P12	GCT CCA TCT ATG TCC TAT TGG GAG GGT GAG TGC TAA GCG GCC G
RPtail_ProcA2.8-DeltaP11P12	ATA GGA CAT AGA TGG AGC ATG GTT ATG ACA GGC CGC TTT CCC AGC CAC
FPtail_ProcA2.8-linker+1aa	GTCT TCT GCG ATG CCT CCA TCC TAT TGG GAG GGT GAG TGC TAA GCG GCC G
RPtail_ProcA2.8- linker+1aa	ATA GGA TGG AGG CAT CGC AGA TGG AGC ATG GTT ATG ACA GGC CGC TTT CCC AGC CAC
FPtail_ProcA2.8-linker+2aa	GCT CCA TCT GCG ATG CCT CCA GCA TCC TAT TGG GAG GGT GAG TGC TAA GCG GCC G
RPtail_ProcA2.8- linker+2aa	ATA GGA TGC TGG AGG CAT CGC AGA TGG AGC ATG GTT ATG ACA GGC CGC TTT CCC AGC CAC

Table S2c. Oligonucleotide primers used for mutating residues in ring 2 of ProcA2.8. SLIM overhangs are underlined and mutated residues are highlighted in bold.

name sequence	
FP_ProcA2.8-Ring2	GCG GCC GCA TAA TGC TTA AGT CGA ACA G
RP_ProcA2.8-Ring2	TGG AGG CAT AGA TGG AGC ATG GTT ATG ACA GG
FPtail_ProcA2.8-Y14A	TCC GCG TGG GAG GGT GAG TGC TAA GCG GCC GCA TAA TGC TTA AGT CGA ACA G
RPtail_ProcA2.8-Y14A	ITA GCA CTC ACC CTC CCA CGC GGA TGG AGG CAT AGA TGG AGC ATG GTT ATG ACA GG
FPtail_ProcA2.8-W15A	TCC TAT GCG GAG GGT GAG TGC TAA GCG GCC GCA TAA TGC TTA AGT CGA ACA G
RPtail_ProcA2.8-R2_W15A	ITA GCA CTC ACC CTC CGC ATA GGA TGG AGG CAT AGA TGG AGC ATG GTT ATG ACA GG
FPtail_ProcA2.8-E16A	TCC TAT TGG GCG GGT GAG TGC TAA GCG GCC GCA TAA TGC TTA AGT CGA ACA G
RPtail_ProcA2.8-E16A	ITA GCA CTC ACC CGC CCA ATA GGA TGG AGG CAT AGA TGG AGC ATG GTT ATG ACA GG
FPtail_ProcA2.8-G17A	TCC TAT TGG GAG GCG GAG TGC TAA GCG GCC GCA TAA TGC TTA AGT CGA ACA G
RPtail_ProcA2.8- G17A	ITA GCA CTC CGC CTC CCA ATA GGA TGG AGG CAT AGA TGG AGC ATG GTT ATG ACA GG
FPtail_ProcA2.8-E18A	TCC TAT TGG GAG GGT GCG TGC TAA GCG GCC GCA TAA TGC TTA AGT CGA ACA G
RPtail_ProcA2.8-E18A	TTA CGC CTC ACC CTC CCA ATA GGA TGG AGG CAT AGA TGG AGC ATG GTT ATG ACA GG
FPtail_ProcA2.8-R2-1aa	TCC TAT GAG GGT GAG TGC TAA GCG GCC GCA TAA TGC TTA AGT CGA ACA G
RPtail_ProcA2.8-R2-1aa	TTA GCA CTC ACC CTC ATA GGA TGG AGG CAT AGA TGG AGC ATG GTT ATG ACA GG
FPtail_ProcA2.8-R2-2aa	TCC TAT GGT GAG TGC TAA GCG GCC GCA TAA TGC TTA AGT CGA ACA G
RPtail_ProcA2.8-R2-2aa	ITA GCA CTC ACC ATA GGA TGG AGG CAT AGA TGG AGC ATG GTT ATG ACA GG
FPtail_ProcA2.8-R2+1aa	TCC TAT GCG TGG GAG GGT GAG TGC TAA GCG GCC GCA TAA TGC TTA AGT CGA ACA G
RPtail_ProcA2.8-R2+1aa	ITA GCA CTC ACC CTC CCA CGC ATA GGA TGG AGG CAT AGA TGG AGC ATG GTT ATG ACA GG
FPtail_ProcA2.8-R2+2aa	TCC TAT GCG TGG GCC GAG GGT GAG TGC TAA GCG GCC GCA TAA TGC TTA AGT CGA ACA G
RPtail_ProcA2.8-R2+2aa	TTA GCA CTC ACC CTC GGC CCA CGC ATA GGA TGG AGG CAT AGA TGG AGC ATG GTT ATG ACA GG
FPtail_ProcA2.8-S13C_C19S	TGC TAT TGG GAG GGT GAG AGC TAA GCG GCC GCA TAA TGC TTA AGT CGA ACA G
RPtail_ProcA2.8- S13C_C19S	ITA GCT CTC ACC CTC CCA ATA GCA TGG AGG CAT AGA TGG AGC ATG GTT ATG ACA GG
FPtail_ProcA2.8-S13C-C19S-A	TGC TAT TGG GAG GGT GAG AGC GCG TAA GCG GCC GCA TAA TGC TTA AGT CGA ACA G
RPtail_ProcA2.8-S13C-C19S-A	ITA CGC GCT CTC ACC CTC CCA ATA GCA TGG AGG CAT AGA TGG AGC ATG GTT ATG ACA GG
FPtail_ProcA2.8-S13C-C19S-AA	TGC TAT TGG GAG GGT GAG AGC GCG GCC TAA GCG GCC GCA TAA TGC TTA AGT CGA ACA G
RPtail_ProcA2.8-S13C-C19S-AA	TTA GGC CGC GCT CTC ACC CTC CCA ATA GCA TGG AGG CAT AGA TGG AGC ATG GTT ATG ACA GG
FPtail_Proc2.8-Y14P-E16P	TCC CCG TGG CCA GGT GAG TGC TAA GCG GCC GCA TAA TGC TTA AGT CGA ACA G
RPtail_Proc2.8-Y14P-E16P	TTA GCA CTC ACC TGG CCA CGG GGA TGG AGG CAT AGA TGG AGC ATG GTT ATG ACA GG
FPtail_Proc2.8-E16P-E18P	TCC TAT TGG CCG GGT CCA TGC TAA GCG GCC GCA TAA TGC TTA AGT CGA ACA G
RPtail_Proc2.8-E16P-E18P	TTA GCA TGG ACC CGG CCA ATA GGA TGG AGG CAT AGA TGG AGC ATG GTT ATG ACA GG
FPtail_Proc2.8-Y14P-E18P	TCC CCG TGG GAG GGT CCA TGC TAA GCG GCC GCA TAA TGC TTA AGT CGA ACA G
RPtail_Proc2.8-Y14P-E18P	TTA GCA TGG ACC CTC CCA CGG GGA TGG AGG CAT AGA TGG AGC ATG GTT ATG ACA GG
FPtail_Proc2.8-Y14E16E18PPP	TCC CCG TGG CCA GGT CCG TGC TAA GCG GCC GCA TAA TGC TTA AGT CGA ACA G
RPtail_Proc2.8-Y14E16E18PPP	ITA GCA CGG ACC TGG CCA CGG GGA TGG AGG CAT AGA TGG AGC ATG GTT ATG ACA GG
FPtail_ProcA2.8-R15G16D17	TCC TAT CGT GGC GAt Gag tGC taA GcG Gcc gca tai tgc TTA AGT CGA ACA G
RPtail_ProcA2.8- R15G16D17	ITA GCA CTC ATC GCC ACG ATA GGA TGG AGG CAT AGA TGG AGC ATG GTT ATG ACA GG
FPtail_ProcA2.8-R16G17D18	ICC TAT TGG CGT GGT GAT TGC TAA GCG GCC GCA TAA TGC TTA AGT CGA ACA G
RPtail_ProcA2.8- R16G17D18	ITA GCA ATC ACC ACG CCA ATA GGA TGG AGG CAT AGA TGG AGC ATG GTT ATG ACA GG

Table S2d. Oligonucleotide primers used for deleting the procM gene from the procA2.8:procM pRSF Duet coexpression plasmids, allowing expression of linear Pcn2.8(WT) and Pcn2.8(16RGD). SLIM overhangs are underlined.

name	sequence
FP_DeltaProcM	TCT GGT AAA GAA ACC GCT GCT GCG AAA TTT G
RP_DeltaProcM	CTC CCA ATA GGA TGG AGG CAT AGA TGG AGC ATG
FPTail_DeltaProcM	$\underline{\text { GGTGAGTGCTAAGGTACCCTCGAG TCT GGT AAA GAA ACC GCT GCT GCG AAA TTT G }}$RPTail_DeltaProcM TCTAGGGTACCTTAGCACTCACC CTC CCA ATA GGA TGG AGG CAT AGA TGG AGC ATG
JDH_FP_DeltaProcM16RGD	ACG CCA ATA GAA ACC GCT GCT GCG AAA TTT G AGG CAT AGA TGG AGC ATG
JDH_RP_DeltaProcM16RGD	JDH_FPTail_DeltaProcM16RGD
GGTGATTGCTAAGGTACCCTCGAG TCT GGT AAA GAA ACC GCT GCT GCG AAA TTT G	
JDH_RPTail_DeltaProcM16RGD	CTCGAGGGTACCTTAGCAATCACC ACG CCA ATA GGA TGG AGG CAT AGA TGG AGC ATG

Table S3a. Data of the fluorescence polarization competition assays with Pcn2.8(15RGD).

conc. (Pcn2.8(15RGD)) / μ M	replicate 1	replicate 2	replicate 3	mean	standard deviation
1000	112.02	107.63	113.52	111.06	3.06
500	112.05	106.32	110.59	109.65	2.98
250	106.41	107.15	110.15	107.90	1.98
125	105.09	104.87	108.12	106.03	1.81
62.5	108.93	106.85	110.89	108.89	2.02
31.25	117.19	109.26	115.46	113.97	4.17
15.625	118.34	118.77	120.15	119.08	0.95
7.8125	130.26	120.75	130.31	127.11	5.50
3.9063	131.15	135.35	137.26	134.59	3.13
1.9531	146.17	141.80	144.23	144.06	2.19
0.9766	153.78	148.55	154.62	152.31	3.29
0.4883	157.49	150.76	157.91	155.38	4.01
0.2441	163.92	156.72	161.68	160.77	3.68
0.1221	161.36	157.53	162.19	160.36	2.49
0.0610	166.53	157.02	164.80	162.79	5.06
0.0305	164.11	156.24	166.76	162.37	5.47

Table S3b. Data of the fluorescence polarization competition assays with Pcn2.8(16RGD).

conc. (Pcn2.8(16RGD)) / $\mu \mathrm{M}$	replicate 1	replicate 2	replicate 3	mean	standard deviation
5	101.28	96.92	99.51	99.24	2.19
2.5	105.69	100.40	104.65	103.58	2.81
1.25	106.41	103.01	108.21	105.88	2.64
0.625	107.27	104.18	107.94	106.46	2.01
0.3125	109.43	108.46	107.22	108.37	1.11
0.1563	110.09	108.31	114.28	110.89	3.06
0.0781	117.08	112.54	116.79	115.47	2.54
0.0391	124.69	118.57	124.44	122.57	3.46
0.0195	130.26	127.53	130.42	129.40	1.63
0.0098	138.58	142.75	138.80	140.04	2.35
0.0049	150.59	149.95	146.64	149.06	2.12
0.0024	153.71	150.10	152.09	151.96	1.81
0.0012	156.68	157.83	155.55	156.69	1.14
0.0006	161.00	160.59	156.96	159.52	2.23
0.0003	159.91	160.96	158.42	159.76	1.28
0.0002	160.92	159.30	157.60	159.27	1.66

Table S3c. Data of the fluorescence polarization competition assays with Pcn2.8(5RGD).

conc. (Pcn2.8(5RGD)) / $\mu \mathrm{M}$	data
100	123.90
50	133.58
25	141.46
12.5	149.40
6.25	159.54
3.125	155.33
1.5625	152.49
0.7813	154.38
0.3906	157.56
0.1953	163.72
0.0977	160.08
0.0488	162.09
0.0244	156.88
0.0122	158.63
0.0061	158.19

Table S3d. Data of the fluorescence polarization competition assays with linear Pcn2.8(16RGD) core peptide.

conc. (linear Pcn2.8(16RGD)) / μ M	replicate $\mathbf{1}$	replicate 2	replicate 3	mean	standard deviation
36.2	103.19	106.03	109.71	106.31	3.27
18.1	102.34	108.39	109.32	106.68	3.79
9.04	107.41	109.15	110.33	108.96	1.47
4.52	109.86	110.34	112.21	110.80	1.24
2.26	112.27	114.27	116.16	114.23	1.95
1.13	121.09	119.86	120.57	120.51	0.62
0.5648	131.21	131.72	130.61	131.18	0.56
0.2824	144.13	144.65	144.02	144.27	0.33
0.1412	157.65	159.81	157.58	158.35	1.27
0.0706	174.14	174.16	171.98	173.42	1.25
0.0353	181.37	189.18	184.29	184.95	3.95
0.0177	191.16	192.94	191.50	191.87	0.94
0.0088	191.50	195.58	194.79	193.96	2.16
0.0044	194.62	195.57	194.59	194.93	0.56
0.0022	193.52	190.78	194.44	192.91	1.90
0.0011	194.23	195.15	196.25	195.21	1.01

Figure S1. a.) MALDI-TOF-MS analysis of LysC treated ProcA2.8(WT) (co-expressed with ProcM) before (blue) and after NEM treatment (red). Every mass region that corresponds to core peptide or NEM adducts thereof is highlighted in a gray box. b.) MALDI-TOF-MS analysis of a LysC treated ProcA2.8(WT) control (not co-expressed with ProcM) before (blue) and after NEM treatment (red). Every mass region that corresponds to core peptide or NEM adducts thereof is highlighted in a gray box.

Figure S2. MALDI-TOF-MS analysis of LysC treated ProcA2.8(H4A) before (blue) and after NEM treatment (red). Every mass region that corresponds to core peptide or NEM adducts thereof is highlighted in a gray box.

Figure S3. MALDI-TOF-MS analysis of LysC treated ProcA2.8(N5A) before (blue) and after NEM treatment (red). Every mass region that corresponds to core peptide or NEM adducts thereof is highlighted in a gray box.

Figure S4. MALDI-TOF-MS analysis of LysC treated ProcA2.8(H6A) before (blue) and after NEM treatment (red). Every mass region that corresponds to core peptide or NEM adducts thereof is highlighted in a gray box.

Figure S5. MALDI-TOF-MS analysis of LysC treated ProcA2.8(P8A) before (blue) and after NEM treatment (red). Every mass region that corresponds to core peptide or NEM adducts thereof is highlighted in a gray box.

Figure S6. MALDI-TOF-MS analysis of LysC treated ProcA2.8(M10A/P11A/P12A) before (blue) and after NEM treatment (red). Every mass region that corresponds to core peptide or NEM adducts thereof is highlighted in a gray box.

Figure S7. MALDI-TOF-MS analysis of LysC treated ProcA2.8($\Delta \mathrm{P} 11$) before (blue) and after NEM treatment (red). Every mass region that corresponds to core peptide or NEM adducts thereof is highlighted in a gray box.

Figure S8. MALDI-TOF-MS analysis of LysC treated ProcA2.8(\triangle P11P12) before (blue) and after NEM treatment (red). Every mass region that corresponds to core peptide or NEM adducts thereof is highlighted in a gray box.

Figure S9. MALDI-TOF-MS analysis of LysC treated ProcA2.8(linker +1 aa) before (blue) and after NEM treatment (red). Every mass region that corresponds to core peptide or NEM adducts thereof is highlighted in a gray box.

Figure S10. MALDI-TOF-MS analysis of LysC treated ProcA2.8(linker +2 aa) before (blue) and after NEM treatment (red). Every mass region that corresponds to core peptide or NEM adducts thereof is highlighted in a gray box.

Figure S11. MALDI-TOF-MS analysis of LysC treated ProcA2.8(Y14A) before (blue) and after NEM treatment (red). Every mass region that corresponds to core peptide or NEM adducts thereof is highlighted in a gray box.

Figure S12. MALDI-TOF-MS analysis of LysC treated ProcA2.8(W15A) before (blue) and after NEM treatment (red). Every mass region that corresponds to core peptide or NEM adducts thereof is highlighted in a gray box.

Figure S13. MALDI-TOF-MS analysis of LysC treated ProcA2.8(E16A) before (blue) and after NEM treatment (red). Every mass region that corresponds to core peptide or NEM adducts thereof is highlighted in a gray box.

Figure S14. MALDI-TOF-MS analysis of LysC treated ProcA2.8(G17A) before (blue) and after NEM treatment (red). Every mass region that corresponds to core peptide or NEM adducts thereof is highlighted in a gray box.

Figure S15. MALDI-TOF-MS analysis of LysC treated ProcA2.8(E18A) before (blue) and after NEM treatment (red). Every mass region that corresponds to core peptide or NEM adducts thereof is highlighted in a gray box.

Figure S16. MALDI-TOF-MS analysis of LysC treated ProcA2.8(Ring1-1aa) before (blue) and after NEM treatment (red). Every mass region that corresponds to core peptide or NEM adducts thereof is highlighted in a gray box.

Figure S17. MALDI-TOF-MS analysis of LysC treated ProcA2.8(Ring1-2aa) before (blue) and after NEM treatment (red). Every mass region that corresponds to core peptide or NEM adducts thereof is highlighted in a gray box.

Figure S18. MALDI-TOF-MS analysis of LysC treated ProcA2.8(Ring1+1aa) before (blue) and after NEM treatment (red). Every mass region that corresponds to core peptide or NEM adducts thereof is highlighted in a gray box.

Figure S19. MALDI-TOF-MS analysis of LysC treated ProcA2.8(Ring1+2aa) before (blue) and after NEM treatment (red). Every mass region that corresponds to core peptide or NEM adducts thereof is highlighted in a gray box.

Figure S20. MALDI-TOF-MS analysis of LysC treated ProcA2.8(Ring1+3aa) before (blue) and after NEM treatment (red). Every mass region that corresponds to core peptide or NEM adducts thereof is highlighted in a gray box.

Figure S21. MALDI-TOF-MS analysis of LysC treated ProcA2.8(Ring2-1aa) before (blue) and after NEM treatment (red). Every mass region that corresponds to core peptide or NEM adducts thereof is highlighted in a gray box.

Figure S22. MALDI-TOF-MS analysis of LysC treated ProcA2.8(Ring2-2aa) before (blue) and after NEM treatment (red). Every mass region that corresponds to core peptide or NEM adducts thereof is highlighted in a gray box.

Figure S23. MALDI-TOF-MS analysis of LysC treated ProcA2.8(Ring2+1aa) before (blue) and after NEM treatment (red). Every mass region that corresponds to core peptide or NEM adducts thereof is highlighted in a gray box.

Figure S24. MALDI-TOF-MS analysis of LysC treated ProcA2.8(Ring2+2aa) before (blue) and after NEM treatment (red). Every mass region that corresponds to core peptide or NEM adducts thereof is highlighted in a gray box.

Figure S25. MALDI-TOF-MS analysis of LysC treated ProcA2.8(C3S/S9C) before (blue) and after NEM treatment (red). Every mass region that corresponds to core peptide or NEM adducts thereof is highlighted in a gray box.

Figure S26. MALDI-TOF-MS analysis of LysC treated ProcA2.8(S13C/C19S) before (blue) and after NEM treatment (red). Every mass region that corresponds to core peptide or NEM adducts thereof is highlighted in a gray box.

Figure S27. MALDI-TOF-MS analysis of LysC treated ProcA2.8(S13C/C19S-A) before (blue) and after NEM treatment (red). Every mass region that corresponds to core peptide or NEM adducts thereof is highlighted in a gray box.

Figure S28. MALDI-TOF-MS analysis of LysC treated ProcA2.8(S13C/C19S-AA) before (blue) and after NEM treatment (red). Every mass region that corresponds to core peptide or NEM adducts thereof is highlighted in a gray box.

Figure S29. MALDI-TOF-MS analysis of LysC treated ProcA2.8(H4P) before (blue) and after NEM treatment (red). Every mass region that corresponds to core peptide or NEM adducts thereof is highlighted in a gray box.

Figure S30. MALDI-TOF-MS analysis of LysC treated ProcA2.8(H6P) before (blue) and after NEM treatment (red). Every mass region that corresponds to core peptide or NEM adducts thereof is highlighted in a gray box.

Figure S31. MALDI-TOF-MS analysis of LysC treated ProcA2.8(H4P/H6P) before (blue) and after NEM treatment (red). Every mass region that corresponds to core peptide or NEM adducts thereof is highlighted in a gray box.

Figure S32. MALDI-TOF-MS analysis of LysC treated ProcA2.8(Y14P/E16P) before (blue) and after NEM treatment (red). Every mass region that corresponds to core peptide or NEM adducts thereof is highlighted in a gray box.

Figure S33. MALDI-TOF-MS analysis of LysC treated ProcA2.8(Y14P/E18P) before (blue) and after NEM treatment (red). Every mass region that corresponds to core peptide or NEM adducts thereof is highlighted in a gray box.

Figure S34. MALDI-TOF-MS analysis of LysC treated ProcA2.8(E16P/E18P) before (blue) and after NEM treatment (red). Every mass region that corresponds to core peptide or NEM adducts thereof is highlighted in a gray box.

Figure S35. MALDI-TOF-MS analysis of LysC treated ProcA2.8(Y14P/E16P/E18P) before (blue) and after NEM treatment (red). Every mass region that corresponds to core peptide or NEM adducts thereof is highlighted in a gray box.

Figure S36. MALDI-TOF-MS analysis of LysC treated ProcA2.8(5RGD) before (blue) and after NEM treatment (red). Every mass region that corresponds to core peptide or NEM adducts thereof is highlighted in a gray box.

Figure S37. MALDI-TOF-MS analysis of LysC treated ProcA2.8(15RGD) before (blue) and after NEM treatment (red). Every mass region that corresponds to core peptide or NEM adducts thereof is highlighted in a gray box.

Figure S38. MALDI-TOF-MS analysis of LysC treated ProcA2.8(16RGD) before (blue) and after NEM treatment (red). Every mass region that corresponds to core peptide or NEM adducts thereof is highlighted in a gray box.

ooodeodeoo

Figure S39a. MS^{2} spectra of $\operatorname{Pcn} 2.8(\mathrm{WT})-2 \mathrm{H}_{2} \mathrm{O}$. The red insert is a magnification of the indicated part of the spectrum shown at the bottom. Identified fragment ions are highlighted: Fragment ions resulting from fragmentation outside of lanthionine rings are colored in blue. Minor fragment ions that likely arise from the presence of trace amounts of non- or partially cyclized peptides are highlighted in red.

(M+H)+
2086.8206

Figure S39b. MS ${ }^{2}$ spectra of an unmodified Pcn2.8(WT) control. The red insert is a magnification of the indicated part of the spectrum shown at the bottom. Identified fragment ions are highlighted in blue.

Figure S40. MS^{2} spectra of $\operatorname{Pcn} 2.8(\mathrm{H} 4 \mathrm{~A})-2 \mathrm{H}_{2} \mathrm{O}$. The red insert is a magnification of the indicated part of the spectrum shown at the bottom. Identified fragment ions are highlighted: Fragment ions resulting from fragmentation outside of lanthionine rings are colored in blue. Minor fragment ions that likely arise from the presence of trace amounts of non- or partially cyclized peptides are highlighted in red.

Figure S41. MS^{2} spectra of $\operatorname{Pcn} 2.8(\mathrm{~N} 5 \mathrm{~A})-2 \mathrm{H}_{2} \mathrm{O}$. The red insert is a magnification of the indicated part of the spectrum shown at the bottom. Identified fragment ions are highlighted: Fragment ions resulting from fragmentation outside of lanthionine rings are colored in blue. Minor fragment ions that likely arise from the presence of trace amounts of non- or partially cyclized peptides are highlighted in red.

Figure S42. MS^{2} spectra of $\operatorname{Pcn} 2.8(\mathrm{H} 6 \mathrm{~A})-2 \mathrm{H}_{2} \mathrm{O}$. The red insert is a magnification of the indicated part of the spectrum shown at the bottom. Identified fragment ions are highlighted: Fragment ions resulting from fragmentation outside of lanthionine rings are colored in blue. Minor fragment ions that likely arise from the presence of trace amounts of non- or partially cyclized peptides are highlighted in red.

Figure S43. MS^{2} spectra of $\mathrm{Pcn} 2.8(\mathrm{P} 8 \mathrm{~A})-2 \mathrm{H}_{2} \mathrm{O}$. The red insert is a magnification of the indicated part of the spectrum shown at the bottom. Identified fragment ions are highlighted: Fragment ions resulting from fragmentation outside of lanthionine rings are colored in blue. Minor fragment ions that likely arise from the presence of trace amounts of non- or partially cyclized peptides are highlighted in red.

Figure S44. MS^{2} spectra of $\mathrm{Pcn} 2.8(\mathrm{M} 10 \mathrm{~A} / \mathrm{P} 11 \mathrm{~A} / \mathrm{P} 12 \mathrm{~A})-2 \mathrm{H}_{2} \mathrm{O}$. The red insert is a magnification of the indicated part of the spectrum shown at the bottom. Identified fragment ions are highlighted: Fragment ions resulting from fragmentation outside of lanthionine rings are colored in blue. Minor fragment ions that likely arise from the presence of trace amounts of non- or partially cyclized peptides are highlighted in red.

Figure S45. MS^{2} spectra of $\operatorname{Pcn} 2.8(\Delta \mathrm{P} 11)-2 \mathrm{H}_{2} \mathrm{O}$. The red insert is a magnification of the indicated part of the spectrum shown at the bottom. Identified fragment ions are highlighted: Fragment ions resulting from
fragmentation outside of lanthionine rings are colored in blue. Minor fragment ions that likely arise from the presence of trace amounts of non- or partially cyclized peptides are highlighted in red.

Figure S46. MS^{2} spectra of $\operatorname{Pcn} 2.8(\Delta \mathrm{P} 11 \mathrm{P} 12)-2 \mathrm{H}_{2} \mathrm{O}$. The red insert is a magnification of the indicated part of the spectrum shown at the bottom. Identified fragment ions are highlighted: Fragment ions resulting from fragmentation outside of lanthionine rings are colored in blue. Minor fragment ions that likely arise from the presence of trace amounts of non- or partially cyclized peptides are highlighted in red.

Figure S47. MS^{2} spectra of Pcn2.8(linker +1 aa) $-2 \mathrm{H}_{2} \mathrm{O}$. The red insert is a magnification of the indicated part of the spectrum shown at the bottom. Identified fragment ions are highlighted: Fragment ions resulting from fragmentation outside of lanthionine rings are colored in blue. Minor fragment ions that likely arise from the presence of trace amounts of non- or partially cyclized peptides are highlighted in red.

Figure S48. MS^{2} spectra of Pcn2.8(linker +2 aa) $-2 \mathrm{H}_{2} \mathrm{O}$. The red insert is a magnification of the indicated part of the spectrum shown at the bottom. Identified fragment ions are highlighted: Fragment ions resulting from fragmentation outside of lanthionine rings are colored in blue. Minor fragment ions that likely arise from the presence of trace amounts of non- or partially cyclized peptides are highlighted in red.

Figure S49. MS^{2} spectra of $\mathrm{Pcn} 2.8(\mathrm{Y} 14 \mathrm{~A})-2 \mathrm{H}_{2} \mathrm{O}$. The red insert is a magnification of the indicated part of the spectrum shown at the bottom. Identified fragment ions are highlighted: Fragment ions resulting from fragmentation outside of lanthionine rings are colored in blue. Minor fragment ions that likely arise from the presence of trace amounts of non- or partially cyclized peptides are highlighted in red.

Figure S50. MS^{2} spectra of $\operatorname{Pcn} 2.8(\mathrm{~W} 15 \mathrm{~A})-2 \mathrm{H}_{2} \mathrm{O}$. The red insert is a magnification of the indicated part of the spectrum shown at the bottom. Identified fragment ions are highlighted: Fragment ions resulting from fragmentation outside of lanthionine rings are colored in blue. Minor fragment ions that likely arise from the presence of trace amounts of non- or partially cyclized peptides are highlighted in red.

Figure S51. MS ${ }^{2}$ spectra of $\operatorname{Pcn} 2.8(E 16 A)-2 \mathrm{H}_{2} \mathrm{O}$. The red insert is a magnification of the indicated part of the spectrum shown at the bottom. Identified fragment ions are highlighted: Fragment ions resulting from fragmentation outside of lanthionine rings are colored in blue. Minor fragment ions that likely arise from the presence of trace amounts of non- or partially cyclized peptides are highlighted in red.

Figure S52. MS^{2} spectra of $\operatorname{Pcn} 2.8(\mathrm{G} 17 \mathrm{~A})-2 \mathrm{H}_{2} \mathrm{O}$. The red insert is a magnification of the indicated part of the spectrum shown at the bottom. Identified fragment ions are highlighted: Fragment ions resulting from fragmentation outside of lanthionine rings are colored in blue. Minor fragment ions that likely arise from the presence of trace amounts of non- or partially cyclized peptides are highlighted in red.

Figure S53. MS^{2} spectra of $\operatorname{Pcn} 2.8(E 18 \mathrm{~A})-2 \mathrm{H}_{2} \mathrm{O}$. The red insert is a magnification of the indicated part of the spectrum shown at the bottom. Identified fragment ions are highlighted: Fragment ions resulting from fragmentation outside of lanthionine rings are colored in blue. Minor fragment ions that likely arise from the presence of trace amounts of non- or partially cyclized peptides are highlighted in red.

Pcn2.8(Ring1-1aa) -2 $\mathrm{H}_{2} \mathrm{O}$

(M+H)+

 1913.7404

Figure S54. MS^{2} spectra of Pcn2.8(Ring1-1aa) $-2 \mathrm{H}_{2} \mathrm{O}$. The red insert is a magnification of the indicated part of the spectrum shown at the bottom. Identified fragment ions are highlighted: Fragment ions resulting from fragmentation outside of lanthionine rings are colored in blue. Minor fragment ions that likely arise from the presence of trace amounts of non- or partially cyclized peptides are highlighted in red.

Figure S55. MS^{2} spectra of Pcn2.8(Ring1-2aa) - $2 \mathrm{H}_{2} \mathrm{O}$. The red insert is a magnification of the indicated part of the spectrum shown at the bottom. Identified fragment ions are highlighted: Fragment ions resulting from fragmentation outside of lanthionine rings are colored in blue. Minor fragment ions that likely arise from the presence of trace amounts of non- or partially cyclized peptides are highlighted in red.

Figure S56. MS^{2} spectra of Pcn2.8(Ring1+1aa) - $2 \mathrm{H}_{2} \mathrm{O}$. The red insert is a magnification of the indicated part of the spectrum shown at the bottom. Identified fragment ions are highlighted: Fragment ions resulting from fragmentation outside of lanthionine rings are colored in blue. Minor fragment ions that likely arise from the presence of trace amounts of non- or partially cyclized peptides are highlighted in red.

Figure S57. MS^{2} spectra of $\operatorname{Pcn} 2.8($ Ring1 $+2 \mathrm{aa})-2 \mathrm{H}_{2} \mathrm{O}$. The red insert is a magnification of the indicated part of the spectrum shown at the bottom. Identified fragment ions are highlighted: Fragment ions resulting from fragmentation outside of lanthionine rings are colored in blue. Minor fragment ions that likely arise from the presence of trace amounts of non- or partially cyclized peptides are highlighted in red.

Figure S58. MS^{2} spectra of Pcn2.8(Ring1+3aa) $-2 \mathrm{H}_{2} \mathrm{O}$. The red insert is a magnification of the indicated part of the spectrum shown at the bottom. Identified fragment ions are highlighted: Fragment ions resulting from fragmentation outside of lanthionine rings are colored in blue. Minor fragment ions that likely arise from the presence of trace amounts of non- or partially cyclized peptides are highlighted in red.

Figure S59. MS^{2} spectra of $\operatorname{Pcn} 2.8\left(\right.$ Ring2-1aa) $-2 \mathrm{H}_{2} \mathrm{O}$. The red insert is a magnification of the indicated part of the spectrum shown at the bottom. Identified fragment ions are highlighted: Fragment ions resulting from
fragmentation outside of lanthionine rings are colored in blue. Minor fragment ions that likely arise from the presence of trace amounts of non- or partially cyclized peptides are highlighted in red.

Figure S60. MS^{2} spectra of Pcn 2.8 (Ring2-2aa) $-2 \mathrm{H}_{2} \mathrm{O}$. The red insert is a magnification of the indicated part of the spectrum shown at the bottom. Identified fragment ions are highlighted: Fragment ions resulting from fragmentation outside of lanthionine rings are colored in blue. Minor fragment ions that likely arise from the presence of trace amounts of non- or partially cyclized peptides are highlighted in red.

Figure S61. MS^{2} spectra of $\operatorname{Pcn} 2.8($ Ring2 $+1 \mathrm{aa})-2 \mathrm{H}_{2} \mathrm{O}$. The red insert is a magnification of the indicated part of the spectrum shown at the bottom. Identified fragment ions are highlighted: Fragment ions resulting from
fragmentation outside of lanthionine rings are colored in blue. Minor fragment ions that likely arise from the presence of trace amounts of non- or partially cyclized peptides are highlighted in red.

Figure S62. MS ${ }^{2}$ spectra of Pcn2.8(Ring2+1aa) $-1 \mathrm{H}_{2} \mathrm{O}$. The red insert is a magnification of the indicated part of the spectrum shown at the bottom. Identified fragment ions are highlighted: Fragment ions resulting from fragmentation outside of lanthionine rings are colored in blue. Minor fragment ions that likely arise from the presence of trace amounts of non- or partially cyclized peptides are highlighted in red.

Figure S63. MS^{2} spectra of Pcn2.8(Ring2+2aa) $-2 \mathrm{H}_{2} \mathrm{O}$. The red insert is a magnification of the indicated part of the spectrum shown at the bottom. Identified fragment ions are highlighted: Fragment ions resulting from fragmentation outside of lanthionine rings are colored in blue. Minor fragment ions that likely arise from the presence of trace amounts of non- or partially cyclized peptides are highlighted in red.

Figure S64. MS^{2} spectra of $\operatorname{Pcn} 2.8\left(\right.$ Ring2 2 aa) $-1 \mathrm{H}_{2} \mathrm{O}$. The red insert is a magnification of the indicated part of the spectrum shown at the bottom. Identified fragment ions are highlighted: Fragment ions resulting from fragmentation outside of lanthionine rings are colored in blue. Minor fragment ions that likely arise from the presence of trace amounts of non- or partially cyclized peptides are highlighted in red.

Figure S65. MS^{2} spectra of $\operatorname{Pcn} 2.8(\mathrm{C} 3 \mathrm{~S} / \mathrm{S9C})-2 \mathrm{H}_{2} \mathrm{O}$. The red insert is a magnification of the indicated part of the spectrum shown at the bottom. Identified fragment ions are highlighted: Fragment ions resulting from fragmentation outside of lanthionine rings are colored in blue. Minor fragment ions that likely arise from the presence of trace amounts of non- or partially cyclized peptides are highlighted in red.

Figure S66. MS^{2} spectra of $\mathrm{Pcn} 2.8(\mathrm{~S} 13 \mathrm{C} / \mathrm{C} 19 \mathrm{~S})-1 \mathrm{H}_{2} \mathrm{O}$. The red insert is a magnification of the indicated part of the spectrum shown at the bottom. Identified fragment ions are highlighted: Fragment ions resulting from fragmentation outside of lanthionine rings are colored in blue. Minor fragment ions that likely arise from the presence of trace amounts of non- or partially cyclized peptides are highlighted in red.

Figure S67. MS^{2} spectra of $\operatorname{Pcn} 2.8(\mathrm{~S} 13 \mathrm{C} / \mathrm{C} 19 \mathrm{~S})$-A (unmodified). The red insert is a magnification of the indicated part of the spectrum shown at the bottom. Identified fragment ions are highlighted in blue.

Figure S68. MS^{2} spectra of $\operatorname{Pcn} 2.8(\mathrm{~S} 13 \mathrm{C} / \mathrm{C} 19 \mathrm{~S})$-AA (unmodified). The red insert is a magnification of the indicated part of the spectrum shown at the bottom. Identified fragment ions are highlighted in blue.

Figure S69. MS ${ }^{2}$ spectra of $\operatorname{Pcn} 2.8(S 13 C / C 19 S-A A)-1 \mathrm{H}_{2} \mathrm{O}$. The red insert is a magnification of the indicated part of the spectrum shown at the bottom. Identified fragment ions are highlighted: Fragment ions resulting from
fragmentation outside of lanthionine rings are colored in blue. Minor fragment ions that likely arise from the presence of trace amounts of non- or partially cyclized peptides are highlighted in red.

Figure S70. MS^{2} spectra of $\mathrm{Pcn} 2.8(\mathrm{H} 4 \mathrm{P})-2 \mathrm{H}_{2} \mathrm{O}$. The red insert is a magnification of the indicated part of the spectrum shown at the bottom. Identified fragment ions are highlighted: Fragment ions resulting from fragmentation outside of lanthionine rings are colored in blue. Minor fragment ions that likely arise from the presence of trace amounts of non- or partially cyclized peptides are highlighted in red.

Figure S71. MS^{2} spectra of $\mathrm{Pcn} 2.8(\mathrm{H} 6 \mathrm{P})-2 \mathrm{H}_{2} \mathrm{O}$. The red insert is a magnification of the indicated part of the spectrum shown at the bottom. Identified fragment ions are highlighted: Fragment ions resulting from fragmentation outside of lanthionine rings are colored in blue. Minor fragment ions that likely arise from the presence of trace amounts of non- or partially cyclized peptides are highlighted in red.

Pcn2.8(H4P H6P) unmodified

Figure S72. MS ${ }^{2}$ spectra of $\operatorname{Pcn} 2.8(H 4 P$ H6P) (unmodified). Identified fragment ions are highlighted in blue.

Figure S73. MS^{2} spectra of $\operatorname{Pcn} 2.8(5 R G D)-2 \mathrm{H}_{2} \mathrm{O}$. The red insert is a magnification of the indicated part of the spectrum shown at the bottom. Identified fragment ions are highlighted: Fragment ions resulting from fragmentation outside of lanthionine rings are colored in blue. Minor fragment ions that likely arise from the presence of trace amounts of non- or partially cyclized peptides are highlighted in red.

$\left(A_{1}\right)\left(A_{2}\right)$

Figure S74. MS ${ }^{2}$ spectra of $\operatorname{Pcn} 2.8(5 R G D)-1 \mathrm{H}_{2} \mathrm{O}$. The red insert is a magnification of the indicated part of the spectrum shown at the bottom. Identified fragment ions are highlighted: Fragment ions resulting from fragmentation outside of lanthionine rings are colored in blue. Minor fragment ions that likely arise from the presence of trace amounts of non- or partially cyclized peptides are highlighted in red.

Figure S75. MS^{2} spectra of $\operatorname{Pcn} 2.8(15 R G D)-2 \mathrm{H}_{2} \mathrm{O}$. The red insert is a magnification of the indicated part of the spectrum shown at the bottom. Identified fragment ions are highlighted: Fragment ions resulting from
fragmentation outside of lanthionine rings are colored in blue. Minor fragment ions that likely arise from the presence of trace amounts of non- or partially cyclized peptides are highlighted in red.

Figure S76. MS ${ }^{2}$ spectra of $\operatorname{Pcn} 2.8(16 R G D)-2 \mathrm{H}_{2} \mathrm{O}$. The red insert is a magnification of the indicated part of the spectrum shown at the bottom. Identified fragment ions are highlighted: Fragment ions resulting from fragmentation outside of lanthionine rings are colored in blue. Minor fragment ions that likely arise from the presence of trace amounts of non- or partially cyclized peptides are highlighted in red.

Figure S77. a) ProcA2.8(WT) that was twice cyclized ($-2 \mathrm{H}_{2} \mathrm{O}$) or unmodified was treated overnight with elastase, chymotrypsin, GluC, and proteinase K. The cyclized peptide was resistant against elastase, chymotrypsin, and GluC, but was cleaved inside a ring once by proteinase K (causing the gain of a water molecule). The linear peptide is readily degraded by every of the tested proteases. The inset shows the observed GluC fragment of linear Pcn2.8(WT). Other protease fragments of the linear peptide were too small to detect. b) Result of overnight trypsin treatment of the Pcn2.8(5RGD) and Pcn2.8(15RGD) core peptides that were obtained from LysC treatment of NiNTA elution fractions. The twice cyclized $-2 \mathrm{H}_{2} \mathrm{O}$ species are resistant to trypsin. The once cyclized $-1 \mathrm{H}_{2} \mathrm{O}$ species of Pcn2.8(5RGD) that only formed ring 2 is readily degraded (the mass signal of the resulting fragment lacking the first five residues is shown). c) Overnight trypsin treatment of twice cyclized ($-2 \mathrm{H}_{2} \mathrm{O}$) and unmodified Pcn2.8(16RGD) core peptide. The linear peptide is readily degraded (causing the loss of the last three amino acids following Arg16). The cyclized peptide shows some resistance against trypsin cleavage, although generation of hydrolyzed peptide is detected as well.

Figure S78. a) FP competition experiments with Pcn2.8(5RGD) showing the incomplete binding curve. By comparison with the curves of Pcn2.8(15RGD) and Pcn2.8(16RGD), the values for the IC_{50} and K_{i} of Pcn2.8(5RGD) are estimated to $\mathrm{IC}_{50}>25 \mu \mathrm{M}$ and $\mathrm{K}_{\mathrm{i}}>2 \mu \mathrm{M}$. b) FP competition experiments with linear Pcn2.8(16RGD) core peptide show a ~ 10-fold higher $K_{i}(18 \pm 3 \mathrm{nM})$ compared to the cyclized Pcn2.8(16RGD) lanthipeptide ($\mathrm{Ki}=1.6 \pm 0.3 \mathrm{nM}$).

Figure S79. Comparison of tandem MS spectra of $\mathrm{Pcn} 2.8(\mathrm{WT})-2 \mathrm{H}_{2} \mathrm{O}$ generated via a) collision-induceddissociation (CID) fragmentation after electron-spray-ionization (ESI) and b) LIFT fragmentation after matrix-assisted laser desorption/ionization (MALDI). A direct comparison shows that both fragmentation techniques yield most peaks needed for identification of the ring topology (b9-b11, y8, y9, y17) as well as some low intensity signals potentially relating to fragmentation of minor peptide species with incomplete cyclization (b6, b7). In general, CID yields more fragment ion peaks and especially low intensity fragment ions are more abundant in the CID than in the LIFT spectra. Thus, CID allows detection of additional fragment ions resulting from fragmentation outside of rings (b12, y10) and potentially fragment ions resulting from fragmentation of non-cyclized side products (b8, b13, b14, y5). These findings are in agreement with the observation that previously reported (Yang, X.; et al. Nat. Chem. Biol. 2018, 14, 375380.) tandem MS spectra of Pcn2.8 variants generated by LIFT fragmentation only identified the major peaks, but not the lower intensity fragments reported here.

[^0]: parentheses emphasize that only trace amounts of this species were observed
 ${ }^{\mathrm{b}}$ n.d. $=$ not determined because of low yields

