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1 Supplementary Methods

Spectral Preprocessing. All computations were performed using custom software written in MATLAB
version R2017b (Mathworks, Natick, MA, U.S.A.). Raman images were first preprocessed to remove elec-
tronic bias and cosmic rays. Electronic bias was removed by subtracting the value of 520 counts as provided
by the manufacturer. Cosmic rays were treated with a recursive outlier detection scheme in which inten-
sities larger than the mean intensity of the image at a particular wavenumber plus 8 standard deviations
were replaced with the mean of the intensities in the cube surrounding the outlying pixel. Singular-value
decomposition (SVD) was then performed to reduce detection noise. It was found that ∼95% of the signal
information was contained within the 16 most significant singular values; SVD was reversed with these
16 singular values being retained. Baseline correction was performed with a recursive polynomial fitting
algorithm [1]. A 7th degree polynomial was used to fit each spectrum over the entire spectral range (200-
3130 cm–1), and the recursion continued until less than 5% of the spectrum was negative after baseline
subtraction. Intensities in the silent region (1800-2800 cm–1), and at extreme wavenumbers, i.e., those less
than 500 cm–1 or greater than 3030 cm–1, were set to zero before area normalization over the remaining
wavenumbers (500-1800 cm–1, 2800-3030 cm–1).

Superpixels. Prior to normalization, for the purposes of further increasing signal-to-noise ratio and
decreasing the number of spectra used in additional computations, adjacent pixels were averaged over
spatially-local regions within the images, producing spectra representing groups of pixels, or superpixels.
Rather than using a simple binning scheme on a rectangular grid of predetermined size and location, we
instead choose simple linear iterative clustering (SLIC) [2] to better preserve the spatial characteristics
of the cells in the Raman images. SLIC is a pixel clustering method based on spatial proximity and
similar characteristics. Given the total number of pixels of the image N , the i-th pixel, denoted by γi,
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is represented by [Ii(1), Ii(2), ..., Ii(W ), xi, yi], where Ii(w), xi, yi denote the Raman intensity prior to
normalization at wavenumber w and the x and y coordinates of the i-th pixel. So that superpixels contain
groups of proximate individual pixels having similar underlying intensity, the mean of the intensities over
the wavenumber dimension, denoted by Îi = 1

W

∑
w Ii(w), and the coordinates xi and yi were input to the

algorithm. Each superpixel, Γα, in the set of all superpixels Γ =
{

Γ1, ...,ΓNsp

}
, is then defined as the set

of pixels minimizing a distance to that considers both the average Raman intensities and positions.

d(γi,Γα) =

√(
ds(γi,Γα)

maxΓα∈Γ [maxγi∈Γα ds(γi,Γα)]

)2

+

(
dc(γi,Γα)

maxΓα∈Γ [maxγi∈Γα dc(γi,Γα)]

)2

(S1)

Here, the spatial distance ds(γi,Γα) is the Euclidean distance between the position (xi, yi) of pixel γi and
the center position (xα, yα) of superpixel Γα,

ds(γi,Γα) =

√
(xi − xα)2 + (yi − yα)2. (S2)

The center position of superpixel Γα, (xα, yα), is obtained as the mean location of the set containing the
Nα pixels assigned to Γα,

xα =
1

Nα

∑
γi∈Γα

xi.

yα =
1

Nα

∑
γi∈Γα

yi.

(S3)

Similarly, the intensity distance dc(γi,Γα) is the Euclidean distance between the average intensity Îi at
pixel γi and the average intensity Îα = 1

Nα

∑
γi∈Γα

Îi) of superpixel Γα,

dc(γi,Γα) =

√(
Îi − Îα

)2
. (S4)

The number of superpixels per image, Nsp, was chosen such that the superpixels contain an average of 16
individual pixels. For the 2-dimensional, average Raman intensity image containing N pixels, the SLIC
algorithm was initialized by placing the Nsp superpixel centers on a square grid with spacing

√
N/Nsp.

Each pixel was then assigned to the superpixel center nearest its spatial location. Each subsequent it-
eration assigned pixels to superpixels based on the minimum distance (Eq. S2) over superpixels having
centers that are within the square spacing interval 2

√
N/Nsp. The set of pixels {γi} belonging to each

superpixel Γα are treated as invariant entities defined by the previous iteration until the present iteration
is completed. The average superpixel positions typically converged within a 1% tolerance in 10 iterations
or fewer, so the algorithm was iterated 10 times or until the superpixel locations had converged, whichever
happened first. Isolated single pixels {γi} are merged to the closest superpixels {Γα} after convergence.
After the individual pixels have been assigned to superpixels, the average spectrum over the locations of
each superpixel are used for further analyses.

Cell Segmentation. Spectra in an image were first partitioned into 10 groups with the k -means clus-
tering algorithm using the L1 distance (Eq. 3) in the high wavenumber spectral region (2800-3030 cm–1).
The spectra belonging to the 6 most intense clusters were retained as pixels containing cellular regions, as
determined by visual comparison to the cell locations in the Raman images. After the regions associated
with cells were identified, areas associated with particular cells were localized through graph theoretical
methods [3]. A binary, 2-D image, containing ones at pixels associated with cells and zeros at pixels asso-
ciated with non-cell regions, was constructed and treated as a connected graph. From the binary image,
connected regions of ones, containing cells, were identified with a flood-fill algorithm. Isolated connected
regions containing less than 100 pixels (< 10µm2) are too small to be cells and were discarded. So that
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only complete, or nearly complete, cells were included in the analyses, connected regions having signif-
icant external distance (≥ 50% of the total external distance) along the boundaries of the images were
also excluded. Intensity maps of remaining regions were then examined in wavenumber regions associated
with DNA (780-800 cm–1, 1090-1100 cm–1, 1370-1380 cm–1), so as to identify regions containing 2 or more
obvious cell nuclei. In such regions, additional barriers were created along local minima of the intensity
gradient between the two nuclei. Remaining connections between nuclei were removed manually. 49 con-
nected regions remained, and were taken to represent cells in the Raman images.

Rate-Distortion Theory. As mentioned in the main text, the RDT algorithm solves directly for the
conditional probabilities p(ck|si), producing a classification for each spectrum si.

p(ck|si) =
p(ck)

z(si;β)
e−β D(ck ;si) (S5)

Here, Eq. 3 in the main text is evaluated for a particular class and spectrum, D(ck ; si) =
∑N

j=1 p(si|ck) dij ,
producing a mean distance of the spectrum si from the class ck, and z(si ;β) is a normalization function.
The joint probability p(ck, si) = p(ck|si) p(si) is marginalized to obtain the marginal probability of the
class ck.

p(ck) =
N∑
i=1

p(ck|si) p(si) (S6)

The algorithm [4, 5] is initialized through random assignment of p(ck|si) for all spectra and classes. After
normalization, Eqs. S5 and S6 are alternatively computed until self-consistency is reached and Eq. 1
converges within a specified tolerance. A class γi is then assigned to each spectrum si by taking the
maximum probability class given the spectrum, i.e., γi = argmaxk p(ck|si). The parameter β from Eq. 1
in the main text was chosen based on the maximum pairwise L1 distance over all spectra, i.e., β = 100×
maxi,j dij , which was sufficiently large to produce hard clustering assignments, i.e., 1

N

∑N
i=1 maxk p(ck|si) >

0.99.
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Figure S1: Cell labels and distances matrix among averaged cellular spectra. a) The pixels associated
with each cell are outlined with red for FTC-133 cells and blue for Nthy-ori 3-1 cells. An associated
index is placed in the center of each cell outline. b) The pairwise distance matrix among averaged cellular
spectra. Red markers along the vertical and horizontal axes indicate FTC-133 cells and Nthy-ori 3-1 cells,
respectively.
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Figure S2: Dendrograms for class density classification with 2-7 spectral classes.
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Figure S3: Accuracies and L1 distances between FTC-133 and Nthy-ori 3-1 class densities for 2 to 15
classes.
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Figure S4: Class densities with 8 spectral classes for all 49 cells.
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Figure S5: Mean distance spectra. Colors associated with each spectrum are the same as those used in
Fig. 4 in the main text. Axes have been rescaled from Fig. 6 so that details can be more easily observed.
Shaded regions indicate 95% confidence limits across all pairwise difference spectra.
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DNA-Specific Intensity Maps and Class Maps

Figure S6: Intensity maps of each cell have been summed over wavenumbers ranges of 780-800 cm–1, 1090-
1100 cm–1, 1240-1260 cm–1, 1370-1380 cm–1 and 1655-1675 cm–1 so that the cell nuclei can be more easily
identified. Cells above the thick red dividing line are FTC-133, while those below it are Nthy-ori 3-1.
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Figure S7: High wavenumber region intensity maps overlaid with class maps for all cells. Cells above the
thick red dividing line are FTC-133, while those below it are Nthy-ori 3-1.
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