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EXPERIMENTAL 

Materials

Potassium hydroxide (KOH) and concentrated hydrochloric acid (HCl) were obtained 

from Sinopharm Chemical Reagent Co., Ltd. Sodium hydroxide (NaOH), sodium 

salicylate (C7H5NaO3, AR, ≥99.5%), sodium nitroferricyanide dehydrate, sodium 

hypochlorite solution (5.0%) and dopamine hydrochloride were purchased from 

Aladdin. All chemicals without any further treatment were analytical. Commercial CC 

(carbon cloths, HCCP330) was purchased from Shanghai Hesen Electric Co. Ltd., 

China.

Electrochemical Measurements 

Determination of ammonia

Spectrophotometry measurement with salicylic method1: 6.404 g sodium 

salicylate and 1.28 g sodium hydroxide dissolved in 1000 mL deionized water which 

was used as coloring solution; A mixture of 8 mL sodium hypochlorite (5 wt %), 3 g 

sodium hydroxide and 100 mL deionized water was used as a oxidation reagent; 0.1g 

Na2[Fe(CN)5NO]•2H2O diluted to 10 ml with deionized water was used as catalyst 

reagent. Standard ammonium solution in the alkaline solution as follow: 4 mL of sample 

was taken. Then 50 μL of oxidizing solution, 4 mL H2O, 500 μL of colouring solution 

and 50 μL of catalyst solution were added respectively to the sample solution. Standard 

ammonium solution in the acid solution as follow: 4 mL of sample was taken. Then 4 mL 

H2O, 1 mL KOH (1 M), 50 μL of oxidizing solution, 500 μL of colouring solution, 50 

μL of catalyst solution were added respectively to the sample solution. Absorbance 
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measurements were performed after 1 hour at λ=670 nm. The calibration curve below 

was used to calculate the ammonia concentration. 

Spectrophotometry measurement with Nessler reagent in the alkaline solution2: 

NH4Cl solutions with various concentrations were placed in the test tubes. Then KOH 

solution (0.1 M) were added to each test tube until the volume reached 10 mL. 1 mL 

sodium potassium tartrate (0.2 M) and 1 mL of Nessler reagent were added to each test 

tube one after another. Absorbance measurements were performed after 20 min at λ= 

425 nm. The calibration curve below was used to calculate the ammonia concentration 

(Figure S13). 

Determination of hydrazine

The hydrazine present in the electrolyte was estimated by the method of Di Bao and Qi 

Zhang.3 A mixture of 5.99 g para-(dimethylamino) benzaldehyde, 300 mL ethanol and 30 

mL HCI (concentrated) was used as a color reagent. Calibration curve in the alkaline 

solution was plotted as follow: First, preparing a series of reference solutions and 3 mL of 

sample was taken; Second, adding 2 mL H2O and 5 mL above prepared color reagent were 

added respectively to the sample solution, and then stirring 10 min at room temperature. 

Last, the absorbance of the resulting solution was measured at 456 nm. Calibration curve 

in the acid solution was plotted as follow: 2 mL of sample was taken. Then 2 mL H2O, 1 

mL KOH (1 M) and 5 mL color reagent were added respectively to the sample solution, 

and then stirring 10 min at room temperature. Last, the absorbance of the resulting solution 

was measured at 456 nm.
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Faradaic efficiency

The Faradaic efficiency for NRR was defined as the quantity of electric charge used 

for synthesizing ammonia divided by the total charge passed through the electrodes 

during the electrolysis. The total amount of NH3 produced was measured using 

colorimetric methods. Assuming three electrons were needed to produce one NH3 

molecule. The Faradaic efficiency could be calculated as follows: FE= 3F × [NH3] / (17 

× Q), where F is the Faraday constant, [NH3] is the concentration and Q is total charge 

passed through the electrodes during the reaction duration according to the total current 

density. The rate of ammonia formation was calculated using the following equation: 

RNH3= [NH3] / t × m, where t is the reduction reaction time (h) and m is the loading 

mass of catalysts (mg cm-1).

Computational Methods

All the theoretical calculations were performed using a plane-wave technique 

implemented in Vienna ab initio simulation package (VASP)4, 5 and the revised PBEsol 

functional.6 PBEsol functional was used as exchange-correlation functional 

approximation. The electron-ion interactions were expounded by the projector 

augmented wave (PAW) approach presented by Blöchl7 and carried out by Kresse8 and 

a plane-wave cutoff energy of 400 eV was used. A Monkhorst−Pack k-point mesh of 

4×4×1 and 2×2×1 were used for the Brillouin zone sampling during electronic structure 

calculation and the structure optimization, respectively. The vacuum space along the z 

direction was set to be 15 Å and the periodic condition was employed along the x and 
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y directions. All atoms in the supercell are allowed to relax during the structure 

optimization except the bottom layer atoms of graphene. The relaxation was stopped 

when the force residue on the atom was smaller than 0.02 eV/Å. The adsorption energy 

for metal nanoparticles is defined as 

Eads = Etot - Eslab - Emetal

where Etot is the total energy of support and metal nanoparticle, Eslab is the energy 

of the clean support alone, and Emetal is the energy of metal nanoparticle.
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Figure S1 In-situ HRTEM images of the reduction of MoO2/CC@CN in hydrogen 

staring 400 oC to 500 oC and then occurring at 500 oC for 5 min. (a) 400 oC, (b) 435 oC, 

(c) 474 oC, (d) 500 oC, (e) 500 oC for 10 s, (f) 500 oC for 30 s, (g) 500 oC for 1 min, (h) 

500 oC for 2 min
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Figure S2 HRTEM images of (a) MoO2/CC@CN, (b) MoO2-400 oC-1h/CC@CN, (c) 

MoO2-450 oC-1h/CC@CN, (d) Mo-500 oC-5min/CC@CN, (e) Mo-500 oC-

1h/CC@CN and (f) Mo-500 oC -8h/CC@CN.
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Figure S3 (a) and (b) The Mo 3d and N 1s XPS fine scan spectrum of Mo-500 oC-

8h/CC@CN (N1: pyrrolic N, N2: pyridinic N), respectively.
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Figure S4 STEM-EELS line scan crossing a Mo-500 oC-10h/ACC-600.

Figure S5 Mo nanoparticle size distribution of Mo-500 oC-10h/ACC-600. 

Mo-500 oC -10h/ACC-600
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Figure S6 The top and side images of Mo-cluster on (a) graphene and (b) doped-N 

graphene (Mo: green; C: gray; N: blue)

Figure S7 (a) and (b) H2-TPR-MS patterns of MoO2/CC@CN and MoO2/ACC-600, 

respectively: mass spectra for CH4.
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Figure S8 (a) HRTEM images of 500 oC-H2-1h-Ar-7h/CC@CN. (b) XRD patterns of 

500 oC-H2-1h-Ar-7h/CC@CN.

Figure S9 (a) and (b) Calibration curve used for estimation of NH3 in base and acid, 

respectively.
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Figure S10 The amount of NH3 with CC@CN, MoO2/CC@CN and Mo-500 oC-

8h/CC@CN electrode after 3h electrolysis at 0 V under ambient conditions, 

respectively.

Figure S11 (a) and (b) UV-vis absorption spectra after potentiostatic tests in N2 and Ar 

at 0 V versus RHE in base and acid, respectively.
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Figure S12 (a) and (b) Comparison of absorbance spectra at different potential in N2 in 

base and acid, respectively.

Figure S13 Calibration curve used for estimation of NH3 in base using Nessler reagent.
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Figure S14 (a) Absorbance spectra of cycling test of Mo-500 oC-8h/CC@CN in base 

using Nessler reagent. (b) The amount of NH3 with Mo-500 oC-8h/ CC@CN electrode 

after 3h electrolysis at 0 V under ambient conditions in base by Nessler reagent and 

Salicylic method, respectively.
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Figure S15 Yield of NH3 with cycling test of Mo-500 oC-8h/CC@CN used by Nessler 

reagent and Salicylic method, respectively .
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Table S1. The contents of Mo and N for Mo-500 oC-8h/CC@CN

Mo-500 oC-8h/CC@CN Mo % N %

Before calcination 1.35 0.27

After reduction 1.34 0.19

Table S2 Summary of the representative reports on N2 fixation.

Process System/Catalyst Conditions Yield Testing 
Method

Referen
ce

Ru (7.8 wt%)-
loaded
Y5Si3

400 oC
1.9 mmol

g-1h-1

Ion
chromatog

raphy
Ref. 9 

Fe2O3/AC
(Molten hydroxide)

250 oC, 
atmospheric

pressure

8.27 × 
10-9 mol 

s-1

cm-2

Salicylic 
method

Ref. 10 
Harsh 

condition

Fe/Ru-based 
catalysts

350~550 

oC,200~300 atm

~20% 
(N2 

conversio
n rate)

---- Ref. 11 

Pt plate/0.1 M 

KOH/ N2, Mo-500 

oC -8h/CC@CN

room temperature 
and atmospheric

pressure

7.03 ug 
h-1 mg-1 

and 
22.3% 

FE

Salicylic 
method

This 
work

Pt plate/0.1 M 

HCl/ N2, Au-TiO2 
sub-nanocluster

room temperature 
and atmospheric

pressure 

8.11% 
(current 
efficienc

y)

Indophenol 
blue 

method
Ref. 12 

Electrocatalysis

graphite plate/0.1 
M KOH/ N2, Au

room temperature 
and atmospheric

pressure 

1.648 ug 
h-1 cm-2 

(NH3) 
0.102 ug 
h-1 cm-2 

Nessler’s 
reagent 

and 
Ammonia 
colorimetri
c assaykit

Ref. 3
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(N2H4 
H2O)

Fe2O3
250 oC, 25 bar, 

1.0 V

35% (N2 

conversio
n rate)

Salicylic 
method

Ref. 13 

Pt plate/ionic 

liquids, THF, 
ethanol/ N2, Ni 

plate

room temperature

1.7% 
(current 
efficienc

y)

Berthelot 
method

Ref. 14

Pt plate/0.1 M 

HCl/ N2, 
amorphous-

Au/CeOx-RGO

room temperature 
and atmospheric

pressure

8.3 ug h-1 

mg-1 and 
10.10% 
Faradaic 
efficienc
y (FE)

Indophenol 
blue 

method
Ref. 15

BiOBr, H2O 
(sacrificial agent)

λ > 420 nm
1.08 ppm 

(1 h)
Nessler’s 
reagent

Ref. 16

Photocatalysis
Diamond, KI 

(sacrificial agent)
λ > 190 nm

0.8 ppm 
(24 h)

Indophenol 
blue 

method
Ref. 17
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