Supporting Information for

Chemoselective Synthesis of α-Amino-α-cyanophosphonates by

Reductive Gem-Cyanation-Phosphonylation of Secondary Amides

Ting-Ting Chen, Ai-E Wang,*^{,a,b} and Pei-Qiang Huang*^{,a,b}

^a Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China

^b State Key Laboratory of Applied Organic Chemistry Lanzhou University, Lanzhou 730000,

China.

E-mail: <u>aiewang@xmu.edu.cn</u> E-mail: <u>pqhuang@xmu.edu.cn</u>

Contents

1. General Information				
2. Preparation of Amides				
3. Table S1. Reaction Optimization on Reductive Geminal Cyanation/Phosphonylation				
4. Table S2. Base Optimization in Amide Activation				
5. Transformation of Amides into α-Amino-α-cyanophosphonates				
6. Gram-scale Synthesis of 1z				
7. References				
8. ¹ H/ ¹³ C/ ³¹ P/ ¹⁹ F NMR Spectra of New Compounds				

1. General Information

Unless otherwise stated, reactions were performed in oven-dried glassware under a nitrogen atmosphere using standard Schlenk techniques. Commercially available reagents were purchased from Enery, TCI, Acros, Sigma-Aldrich, J&K, Aladdin, Sinoreagent and used as received unless otherwise noted. Dichloromethane was distilled over calcium hydride under a nitrogen atmosphere. Silica gel (300-400 mesh) was used for flash column chromatography, eluting with ethyl acetate (EtOAc)/hexane mixture. Trifluoromethanesulfonic anhydride (Tf₂O) was distilled over phosphorous pentoxide and stored for no more than one week before redistilling.

Melting points were determined on a Büchi M560 Automatic Melting Point apparatus. Infrared spectra were measured with a Nicolet Avatar 330 FT-IR spectrometer using film KBr pellet techniques.). NMR spectra were recorded in CDCl₃ on a Bruker Av 400 or 500 spectrometer (400 MHz or 500 MHz for ¹H NMR, 101 MHz or 125 MHz for ¹³C NMR and 202 MHz for ³¹P NMR). Chemical shifts (δ) are reported in ppm and referenced to internal standard (Me₄Si, 0 ppm for ¹H NMR), solvent signal (CDCl₃, 77.0 ppm for ¹³C NMR) and external standard (85% H₃PO₄, 0 ppm for ³¹P NMR), respectively. HRMS spectra were recorded on an ESI-TOF mass spectrometer.

2. Preparation of Amides

General Procedure^[1]

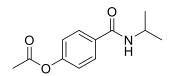
To a solution of the amine (5.00 mmol) and Et_3N (6.00 mmol) in DCM (0.10 M), was added the corresponding acyl chloride (5.00 mmol) dropwise at 0 °C. The resulting reaction mixture was allowed to warm to room temperature and stirred for 6 h. Saturated aqueous NaHCO₃ solution was then added and the biphasic system was separated. The aqueous phase was extracted with DCM (3 × 20 mL) and the organic phases were combined and dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (elution: hexane/EtOAc) to afford the desired amide.

N-Isopropylbenzamide (2a)^[2]

98% yield. All analytical data were in good accordance with reported data.

N-Isopropyl-4-methylbenzamide (2b)^[3]

95% yield. All analytical data were in good accordance with reported data.

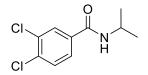

N-Isopropyl-2-methylbenzamide (2c)^[4]

92% yield. All analytical data were in good accordance with reported data.

N-Isopropyl-4-methoxybenzamide (2d)^[5]

92% yield. All analytical data were in good accordance with reported data.

4-(Isopropylcarbamoyl)phenyl acetate (2e)

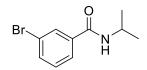

92% yield. White solid. MP: 141–142 °C. IR (film): 3314, 2976, 1760, 1632, 1538, 1191, 914, 749 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.87–7.69 (m, 2H), 7.20–7.01 (m, 2H), 6.37–6.09 (m, 1H), 4.33–4.16 (m, 1H), 2.34–2.27 (m, 3H), 1.28–1.18 (m, 6H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 169.0, 165.8, 152.8, 132.5, 128.2, 121.5, 41.9,

22.6, 21.0 ppm; HRMS (ESI) calcd for C₁₂H₁₅NO₃Na [M+Na⁺]: 244.0939, found: 244.0945.

4-Chloro-N-isopropylbenzamide (2f)^[6]

96% yield. All analytical data were in good accordance with reported data.

3,4-Dichloro-N-isopropylbenzamide (2g)



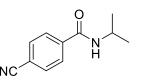
95% yield. White solid. MP: 128–129 °C. IR (film): 3283, 2975, 1630, 1544, 1453, 1365, 1131, 899, 705 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.88–7.80 (m, 1H), 7.62–7.54 (m, 1H), 7.49–7.43 (m, 1H), 6.30 (d, *J* = 7.6 Hz, 1H), 4.38–4.13 (m, 1H), 1.33–1.18 (m, 6H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 164.5, 135.5, 134.7, 132.8, 130.4, 129.1, 126.1, 42.2, 22.6 ppm; HRMS (ESI) calcd for C₁₀H₁₁Cl₂NONa [M+Na⁺]: 254.0104, found: 254.0101.

2-Chloro-N-isopropylbenzamide (2h)^[7]

97% yield. All analytical data were in good accordance with reported data.

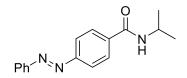
3-Bromo-N-isopropylbenzamide (2i)

97% yield. White solid. MP: 83–84 °C. IR (film): 3293, 2973, 1634, 1540, 1276, 1173, 748, 706 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.95–7.84 (m, 1H), 7.81–7.62 (m, 1H), 7.62–7.47 (m, 1H), 7.29–7.20 (m, 1H), 6.43 (s, 1H), 4.40–3.91 (m, 1H), 1.27–1.21 (m, 6H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 165.3, 136.9, 134.0, 130.0, 129.9, 125.4, 122.5, 42.0, 22.6 ppm; HRMS (ESI) calcd for C₁₀H₁₂BrNONa [M+Na⁺]: 263.9989, found: 263.9968.

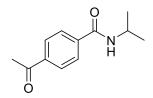

N-Isopropyl-4-(trifluoromethyl)benzamide (2j)^[8]

92% yield. All analytical data were in good accordance with reported data.

N-Isopropyl-4-nitrobenzamide (2k)^[9]


92% yield. All analytical data were in good accordance with reported data.

4-Cyano-N-isopropylbenzamide (2l)


91% yield. White solid. MP: 153–154 °C. IR (film): 3308, 2974, 1633, 1537, 1296, 1160, 856, 684, 569 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.89–7.81 (m, 2H), 7.75–7.69 (m, 2H), 6.06 (s, 1H), 4.38–4.18 (m, 1H), 1.33–1.21 (m, 6H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 164.8, 138.8, 132.1, 127.6, 117.9, 114.4, 42.2, 22.4 ppm; HRMS (ESI) calcd for C₁₁H₁₃N₂O [M+H⁺]: 189.1017, found: 189.1023.

(E)-N-Isopropyl-4-(phenyldiazenyl)benzamide (2m)

91% yield. White solid. MP: 193–194 °C. IR (film): 3300, 2972, 1629, 1534, 1290, 859, 691 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.99–7.86 (m, 6H), 7.58–7.43 (m, 3H), 6.17 (d, J = 7.5 Hz, 1H), 4.40–4.21 (m, 1H), 1.35–1.24 (m, 6H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 166.0, 154.0, 152.5, 136.7, 131.5, 129.1, 127.8, 123.0, 122.8, 42.1, 22.8 ppm; HRMS (ESI) calcd for C₁₆H₁₇N₃ONa [M+Na⁺]: 290.1264, found: 290.1261.

4-Acetyl-*N*-isopropylbenzamide (2n)

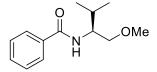
92% yield. White solid. MP: 163–164 °C. IR (film): 3317, 2977, 1682, 1537, 1362, 1141, 852, 667 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.07–7.94 (m, 2H), 7.87–7.79 (m, 2H), 6.04 (s, 1H), 4.38–4.21 (m, 1H), 2.63 (s, 3H), 1.32–1.26 (m, 6H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 197.4, 165.7, 139.0, 138.9, 128.5, 127.1, 42.2, 26.8, 22.8 ppm; HRMS (ESI) calcd for C₁₂H₁₅NO₂Na [M+Na⁺]: 228.0995, found: 228.0985.

Methyl 4-(isopropylcarbamoyl)benzoate (20)^[10]

93% yield. All analytical data were in good accordance with reported data.

N-Isopropyl-2-naphthamide (2p)^[6]

92% yield. All analytical data were in good accordance with reported data.


N-Cyclohexylbenzamide (2q)^[2]

90% yield. All analytical data were in good accordance with reported data.

N-Cyclopropylbenzamide (2r)^[11]

90% yield. All analytical data were in good accordance with reported data.

(S)-N-(1-Methoxy-3-methylbutan-2-yl)benzamide (2s)

Following the General Procedure, (S)-N-(1-hydroxy-3-methylbutan-2-yl)benzamide was prepared, which without purification was subjected to methylation:^[12] To the solution of the above amide (5.00 mmol) in THF (0.10 M) was added NaH (60% dispersion in mineral oil, 600 mg, 15.0 mmol) at 0 °C and stirred for 30 min. Then MeI (93.3 µL, 15.0 mmol) was added dropwise and the reaction mixture was allowed warm to room temperature and stirred for 10 h. Saturated aqueous NH₄Cl solution was then added and the aqueous phase was extracted with EtOAc (3×20 mL). The organic phases were combined and dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (elution: hexane/EtOAc = 1:2) to afford the desired amide. 85% yield for 2 steps. White solid. MP: 76–77 °C. IR (film): 3307, 2921, 1653, 1540, 1322, 1114, 694 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.82–7.75 (m, 2H), 7.52–7.38 (m, 3H), 6.46 (d, J = 9.3 Hz, 1H), 4.13–3.99 (m, 1H), 3.65–3.54 (m, 1H), 3.50–3.40 (m, 1H), 3.34 (s, 3H), 2.08–1.88 (m, 1H), 1.04–0.93 (m, 6H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 167.1, 134.8, 131.2, 128.4, 126.8, 72.5, 59.0, 54.4, 29.6, 19.5, 19.1 ppm; HRMS (ESI) calcd for C₁₃H₁₉NO₂Na [M+Na⁺]: 244.1308, found: 244.1311.

N-Ethylbenzamide (2t)^[13]

90% yield. All analytical data were in good accordance with reported data.

N-(3-Methoxypropyl)benzamide (2u)^[14]

Following the General Procedure, N-(3-hydroxypropyl)benzamide was prepared,

which without purification was subjected to a methylation:^[12] To the solution of the above amide (5.00 mmol) in THF (0.10 M) was added NaH (60% dispersion in mineral oil, 600 mg, 15.0 mmol) at 0 °C and stirred for 30 min. Then MeI (93.3 μ L, 15.0 mmol) was added dropwise and the reaction mixture was allowed warm to room temperature and stirred for 10 h. Saturated aqueous NH₄Cl solution was then added and the aqueous phase was extracted with EtOAc (3 × 20 mL). The organic phases were combined and dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (elution: hexane/EtOAc = 1:2) to afford the desired amide. 82% yield for 2 steps. All analytical data were in good accordance with reported data.

Methyl 3-benzamidopropanoate (2v)^[15]

90% yield. All analytical data were in good accordance with reported data.

N-(2-Chloroethyl)benzamide (2w)^[16]

89% yield. All analytical data were in good accordance with reported data.

N-(2-Bromoethyl)benzamide (2x)^[17]

93% yield. All analytical data were in good accordance with reported data.

N-(4-Bromobutyl)benzamide (2y)^[18]

Following the General Procedure, *N*-(4-hydroxybutyl)benzamide was prepared, which without purification was subjected to bromination:^[19] To the solution of the above amide (5.00 mmol) and carbon tetrabromide (1.99 g, 6.00 mmol) in DCM (0.20 M) was added triphenylphosphine (1.83 g, 6.00 mmol) over 30 minutes at 0 °C. The reaction was allowed to warm to room temperature and subsequently heated to 50 °C and stirred for 6 hours. The reaction was cooled to room temperature, diluted with ethyl acetate, and washed with saturated Na₂S₂O₃. The aqueous phase was extracted with EtOAc (3 × 20 mL). The organic phases were combined and dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (elution: hexane/EtOAc = 1:2) to afford the desired amide. 80% yield for 2 steps. All analytical data were in good accordance with reported data.

N-Benzylbenzamide (2z)^[14]

90% yield. All analytical data were in good accordance with reported data.

N-Allylbenzamide (2aa)^[20]

90% yield. All analytical data were in good accordance with reported data.

N-(Tert-butyl)benzamide (2ab)^[21]

90% yield. All analytical data were in good accordance with reported data.

N-Phenylbenzamide (2ac)^[22]

92% yield. All analytical data were in good accordance with reported data.

N-Isopropylpivalamide (2ad)^[23]

91% yield. All analytical data were in good accordance with reported data.


3. Table S1. Reaction Optimization on Reductive Geminal Cyanation/Phosphonylation^a

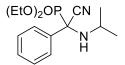
	1) Tf ₂ O,2-F-Pyr. DCM, 0 °C	(EtO) ₂ OP CN
N H	2) TMSCN, 0 °C to rt	H H
2a	3) HPO(OEt) ₂ , base	1a

Entry	TMSCN (equiv)	Phosphite (equiv)	Base	Temp (°C)	Yield $(\%)^b$
1	1.2	2.0	None	0 to rt	81 (73°)
2	1.0	2.0	None	rt	47
3	1.2	2.0	None	rt	81
4	1.5	2.0	None	rt	78
5	1.2	2.0	None	45	55
6	1.2	2.0	NEt ₃ (2.0 equiv)	rt	40
7	1.2	2.0	<i>i</i> Pr ₂ NEt (2.0 equiv)	rt	70
8	1.2	2.0	DABCO (2.0 equiv)	rt	81
9	1.2	2.0	DBU (2.0 equiv)	rt	90
10	1.2	2.0	NaOH (2.0 equiv)	rt	89
11	1.2	2.0	K ₃ PO ₄ (2.0 equiv)	rt	85
12	1.2	2.0	Li ₂ CO ₃ (2.0 equiv)	rt	84
13	1.2	2.0	Cs ₂ CO ₃ (2.0 equiv)	rt	89
14	1.2	2.0	K ₂ CO ₃ (2.0 equiv)	rt	96 (90°)
15	1.2	2.0	Na ₂ CO ₃ (2.0 equiv)	rt	96 (89 ^c)
16	1.2	1.5	K ₂ CO ₃ (2.0 equiv)	rt	96 (92 ^c)
17	1.2	1.3	K ₂ CO ₃ (2.0 equiv)	rt	95 (92 ^c)
18	1.2	1.3	Na ₂ CO ₃ (2.0 equiv)	rt	93(85 ^c)
19	1.2	1.1	K ₂ CO ₃ (2.0 equiv)	rt	94 (88 ^c)
20	1.2	1.3	K ₂ CO ₃ (1.8 equiv)	rt	95 (90°)
21	1.2	1.3	K ₂ CO ₃ (1.5 equiv)	rt	93 (88 ^c)

^{*a*} Reaction conditions: amide **2a** (0.500 mmol), Tf₂O (0.550 mmol), 2-F-Pyr. (0.600 mmol), CH₂Cl₂ (0.20 M), 0 °C, 10 min.; TMSCN (0.600 mmol), 0 °C to rt, 3 h; HPO(OEt)₂, base, 10 h. ^{*b*} Determined by ¹H NMR with 1,3,5-trimethoxybenzene as internal standard.

4. Table S2. Base Optimization in Amide Activation^a

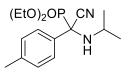
Entry	Base	Yield $(\%)^b$
1	Et ₃ N	59
2	Pyridine	76
3	2-Cl-Pyr. ^c	78
4	$DTBMP^d$	45
5	2-F-Pyr. ^e	95


^{*a*} Reaction conditions: amide **2a** (0.500 mmol), Tf₂O (0.550 mmol), base (0.600 mmol), CH₂Cl₂ (0.20 M), 0 °C, 10 min.; TMSCN (0.600 mmol), 0 °C to rt, 3 h; HPO(OEt)₂, K₂CO₃ (1.00 mmol), 10 h. ^{*b*} Determined by ¹H NMR with 1,3,5-trimethoxybenzene as internal standard. ^{*c*}Abbreviation for 2-chloropyridine. ^{*d*}Abbreviation for 2,6-di-*tert*-butyl-4-methyl pyridine. ^{*e*}Abbreviation for 2-fluoropyridine.

5. Transformation of Amides into α-Amino-α-cyanophosphonates

General Procedure

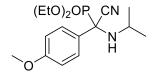
Trifluoromethanesulfonic anhydride (Tf₂O, 100 µL, 0.550 mmol) was added dropwise to a cooled solution of amides (0.500 mmol) and 2-fluoropyridine (50.0 µL, 0.600 mmol) in dichloromethane (0.20 M) at 0 °C. After the mixture was stirred for 10 min, TMSCN (75.0 µL, 0.600 mmol) was added dropwise at 0 °C. The resulting mixture was warmed to rt and stirred for 3 h. HPO(OR)₂ (0.650 mmol) and K₂CO₃ (138 mg, 1.00 mmol) were then added to the above mixture and stirred for 10 h. The reaction was quenched with saturated aqueous NaHCO₃ solution (1 mL) at room temperature. The organic layer was separated and the aqueous phase was extracted with dichloromethane (3 × 10 mL). The combined organic layers were washed with brine (3 × 3 mL), dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (elution: hexane/EtOAc) to afford the desired α-amino-α-cyanophosphonates.


Diethyl (cyano(isopropylamino)(phenyl)methyl)phosphonate (1a)

Following the general procedure , the reaction of amide **2a** (81.6 mg, 0.500 mmol) with TMSCN (75.0 μ L, 0.600 mmol) and HPO(OEt)₂ (83.0 μ L, 0.650 mmol) afforded the α -amino- α -cyanophosphonate **1a** (143 mg, yield: 92%) after flash column chromatography on silica gel (elution with EtOAc/hexane = 1:2) as a pale yellow oil. IR (film): 3295, 2978, 2373, 1253, 1021, 700, 581 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.76–7.73 (m, 2H), 7.46–7.34 (m, 3H), 4.31–4.13 (m, 2H), 4.05–3.92 (m, 1H), 3.90–3.79 (m, 1H), 3.01–2.92 (m, 1H), 2.10 (br s, 1H), 1.36 (t, *J* = 7.1 Hz, 3H), 1.22 (d, *J* = 6.4 Hz, 3H), 1.16 (t, *J* = 7.1 Hz, 3H), 0.93 (d, *J* = 6.5 Hz, 3H) ppm; ¹³C NMR

(125 MHz, CDCl₃) δ 132.6 (d, $J_{C-P} = 8.2$ Hz), 129.0 (d, $J_{C-P} = 3.2$ Hz), 128.3 (d, $J_{C-P} = 2.7$ Hz), 127.9 (d, $J_{C-P} = 4.7$ Hz), 118.1 (d, $J_{C-P} = 4.9$ Hz), 65.2 (d, $J_{C-P} = 7.4$ Hz), 62.7 (d, $J_{C-P} = 154.8$ Hz), 46.9 (d, $J_{C-P} = 13.2$ Hz), 24.7, 23.7, 16.2 (d, $J_{C-P} = 5.6$ Hz) 16.1 (d, $J_{C-P} = 5.7$ Hz) ppm; ³¹P NMR (202 MHz, CDCl₃) δ 14.5 ppm; HRMS (ESI) calcd for C₁₅H₂₃N₂O₃PNa [M+Na⁺]: 333.1339, found: 333.1340.

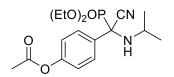
Diethyl (cyano(isopropylamino)(p-tolyl)methyl)phosphonate (1b)


Following the general procedure , the reaction of amide **2b** (88.5 mg, 0.500 mmol) with TMSCN (75.0 μL, 0.600 mmol) and HPO(OEt)₂ (83.0 μL, 0.650 mmol) afforded the α-amino-α-cyanophosphonate **1b** (146 mg, yield: 90%) after flash column chromatography on silica gel (elution with EtOAc/hexane = 1:2) as a pale yellow oil. IR (film): 3324, 2968, 2358, 1603, 1255, 1152, 1021, 816, 578 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.63–7.52 (m, 2H), 7.24–7.18 (m, 2H), 4.31–4.15 (m, 2H), 4.05–3.80 (m, 1H), 3.02–2.89 (m, 1H), 2.37 (s, 3H), 2.16–2.00 (m, 1H), 1.36 (t, *J* = 7.1 Hz, 3H), 1.21 (d, *J* = 6.3 Hz, 3H), 1.17 (t, *J* = 7.1 Hz, 3H), 0.93 (d, *J* = 6.4 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 139.0 (d, *J*_{C-P} = 3.2 Hz), 129.4 (d, *J*_{C-P} = 8.3 Hz), 129.1 (d, *J*_{C-P} = 2.8 Hz), 127.8 (d, *J*_{C-P} = 4.7 Hz), 118.3 (d, *J*_{C-P} = 4.6 Hz), 65.3 (d, *J*_{C-P} = 7.2 Hz), 65.2 (d, *J*_{C-P} = 5.7 Hz), 62.4 (d, *J*_{C-P} = 5.7 Hz) ppm; ³¹P NMR (202 MHz, CDCl₃) δ 14.7 ppm; HRMS (ESI) calcd for C₁₆H₂₅N₂O₃PNa [M+Na⁺]: 347.1495, found: 347.1497.

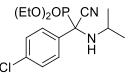
Diethyl (cyano(isopropylamino)(o-tolyl)methyl)phosphonate (1c)

(EtO)₂OP, CN

Following the general procedure, the reaction of amide **2c** (88.5 mg, 0.500 mmol) with TMSCN (75.0 µL, 0.600 mmol) and HPO(OEt)₂ (83.0 µL, 0.650 mmol) afforded the α -amino- α -cyanophosphonate **1c** (115 mg, yield: 71%) after flash column chromatography on silica gel (elution with EtOAc/hexane = 1:2) as a pale yellow oil. IR (film): 3310, 2967, 2257, 1647, 1429, 1279, 1023, 738, 582 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.85–7.80 (m, 1H), 7.28–7.16 (m, 3H), 4.24–4.09 (m, 2H), 4.04–3.94 (m, 1H), 3.91–3.80 (m, 1H), 3.14–3.03 (m, 1H), 2.75 (d, *J*_{P-H} = 1.8 Hz, 3H), 2.06 (s, 1H), 1.35 (t, *J* = 7.1 Hz, 3H), 1.24 (d, *J* = 6.3 Hz, 3H), 1.18 (t, *J* = 7.1 Hz, 3H), 0.96 (d, *J* = 6.4 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 138.3 (d, *J*_{C-P} = 4.5 Hz), 133.0 (d, *J*_{C-P} = 3.1 Hz), 129.6 (d, *J*_{C-P} = 4.6 Hz), 128.8 (d, *J*_{C-P} = 3.2 Hz), 125.7 (d, *J*_{C-P} = 3.0 Hz), 118.5 (d, *J*_{C-P} = 5.2 Hz), 65.1 (d, *J*_{C-P} = 5.6 Hz), 65.1 (d, *J*_{C-P} = 5.6 Hz), 16.1 (d, *J*_{C-P} = 5.5 Hz) ppm; ³¹P NMR (202 MHz, CDCl₃) δ 15.3 ppm; HRMS (ESI) calcd for C₁₆H₂₄NO₃P [M-HCN+H⁺]: 298.1567, found: 298.1566.

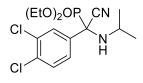

Diethyl (cyano(isopropylamino)(4-methoxyphenyl)methyl)phosphonate (1d)

Following the general procedure, the reaction of amide **2d** (96.6 mg, 0.500 mmol) with TMSCN (75.0 µL, 0.600 mmol) and HPO(OEt)₂ (83.0 µL, 0.650 mmol) afforded the α -amino- α -cyanophosphonate **1d** (153 mg, yield: 90%) after flash column chromatography on silica gel (elution with EtOAc/hexane = 1:2) as a pale yellow soild. MP: 72–73 °C; IR (film): 3311, 2977, 2222, 1607, 1509, 1253, 1023, 838, 579 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.72–7.59 (m, 2H), 6.98–6.87 (m, 2H), 4.29–4.13 (m, 2H), 4.05–3.94 (m, 1H), 3.91–3.78 (m, 4H), 3.05–2.88 (m, 1H), 2.12–1.99 (m, 1H), 1.36 (t, *J* = 7.1 Hz, 3H), 1.21 (d, *J* = 6.3 Hz, 3H), 1.18 (t, *J* = 7.1 Hz, 3H), 0.92 (d, *J* = 6.4 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 160.1 (d, *J*_{C-P} = 2.7 Hz), 129.3 (d, *J*_{C-P} = 4.7 Hz), 124.1 (d, *J*_{C-P} = 8.5 Hz), 118.3 (d, *J*_{C-P} = 4.1 Hz), 113.7 (d, *J*_{C-P} = 2.7 Hz), 65.2 (d, *J*_{C-P} = 7.2 Hz), 65.1 (d, *J*_{C-P} = 7.7 Hz), 62.0 (d, *J*_{C-P} = 157.5

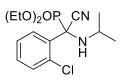

Hz), 55.3, 46.7 (d, $J_{C-P} = 13.5$ Hz), 24.8, 23.6, 16.3 (d, $J_{C-P} = 5.7$ Hz), 16.2 (d, $J_{C-P} = 5.5$ Hz) ppm; ³¹P NMR (202 MHz, CDCl₃) δ 14.7 ppm; HRMS (ESI) calcd for C₁₆H₂₅N₂O₄PNa [M+Na⁺]: 363.1444, found: 363.1450.

4-(Cyano(diethoxyphosphoryl)(isopropylamino)methyl)phenyl acetate (1e)

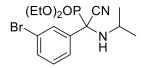
Following the general procedure, the reaction of amide **2e** (111 mg, 0.500 mmol) with TMSCN (75.0 μL, 0.600 mmol) and HPO(OEt)₂ (83.0 μL, 0.650 mmol) afforded the α-amino-α-cyanophosphonate **1e** (180 mg, yield: 98%) after flash column chromatography on silica gel (elution with EtOAc/hexane = 1:2) as a pale yellow soild. MP: 74–76 °C; IR (film): 3355, 2978, 2361, 1762, 1200, 1018, 850, 583 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.90–7.68 (m, 2H), 7.26–7.08 (m, 2H), 4.28–4.15 (m, 2H), 4.06–3.96 (m, 1H), 3.95–3.82 (m, 1H), 3.05–2.90 (m, 1H), 2.31 (s, 3H), 2.14 – 2.05 (m, 1H), 1.36 (t, *J* = 7.1 Hz, 3H), 1.23 (d, *J* = 6.3 Hz, 3H), 1.18 (t, *J* = 7.1 Hz, 3H), 0.93 (d, *J* = 6.4 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 169.0, 151.2 (d, *J*_{C-P} = 3.4 Hz), 130.1 (d, *J*_{C-P} = 8.5 Hz), 129.1 (d, *J*_{C-P} = 4.6 Hz), 121.5 (d, *J*_{C-P} = 2.8 Hz), 118.0 (d, *J*_{C-P} = 4.7 Hz), 65.4 (d, *J*_{C-P} = 3.7 Hz), 65.3 (d, *J*_{C-P} = 4.0 Hz), 62.2 (d, *J*_{C-P} = 155.6 Hz), 46.9 (d, *J*_{C-P} = 13.1 Hz), 24.8, 23.5, 21.1, 16.3 (d, *J*_{C-P} = 5.6 Hz), 16.1 (d, *J*_{C-P} = 5.6 Hz) ppm; ³¹P NMR (202 MHz, CDCl₃) δ 14.3 ppm; HRMS (ESI) calcd for C₁₇H₂₅N₂O₅PNa [M+Na⁺]: 391.1393, found: 391.1398.


Diethyl ((4-chlorophenyl)(cyano)(isopropylamino)methyl)phosphonate (1f)

Following the general procedure, the reaction of amide **2f** (98.5 mg, 0.500 mmol) with TMSCN (75.0 μ L, 0.600 mmol) and HPO(OEt)₂ (83.0 μ L, 0.650 mmol) afforded the α -amino- α -cyanophosphonate **1f** (155 mg, yield: 90%) after flash column

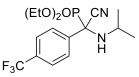

chromatography on silica gel (elution with EtOAc/hexane = 1:2) as a pale yellow soild. MP: 80–81 °C; IR (film): 3262, 2976, 2363, 1487, 1252, 1022, 838, 581 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.72–7.65 (m, 2H), 7.41–7.36 (m, 2H), 4.30–4.16 (m, 2H), 4.10–4.00 (m, 1H), 3.98–3.89 (m, 1H), 3.01–2.91 (m, 1H), 2.14–2.03 (m, 1H), 1.36 (t, *J* = 7.0 Hz, 3H), 1.26–1.16 (m, 6H), 0.91 (d, *J* = 6.4 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 135.1 (d, *J*_{C-P} = 3.8 Hz), 131.5 (d, *J*_{C-P} = 8.6 Hz), 129.3 (d, *J*_{C-P} = 4.6 Hz), 128.5 (d, *J*_{C-P} = 2.8 Hz), 117.6 (d, *J*_{C-P} = 4.9 Hz), 65.3 (d, *J*_{C-P} = 7.4 Hz), 62.1 (d, *J*_{C-P} = 154.9 Hz), 47.0 (d, *J*_{C-P} = 13.1 Hz), 24.6, 23.5, 16.2 (d, *J*_{C-P} = 5.6 Hz), 16.1 (d, *J*_{C-P} = 5.5 Hz) ppm; ³¹P NMR (202 MHz, CDCl₃) δ 14.1 ppm; HRMS (ESI) calcd for C₁₅H₂₂ClN₂O₃PNa [M+Na⁺]: 367.0949, found: 367.0954.

Diethyl (cyano(3,4-dichlorophenyl)(isopropylamino)methyl)phosphonate (1g)

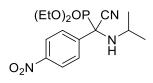

Following the general procedure, the reaction of amide **2g** (116 mg, 0.500 mmol) with TMSCN (75.0 μL, 0.600 mmol) and HPO(OEt)₂ (83.0 μL, 0.650 mmol) afforded the α-amino-α-cyanophosphonate **1g** (151 mg, yield: 80%) after flash column chromatography on silica gel (elution with EtOAc/hexane = 1:2) as a pale yellow soild. MP: 95–96 °C; IR (film): 3437, 2976, 2930, 2225, 1590, 1466, 1384, 1256, 1141, 1021, 972, 592 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.84–7.77 (m, 1H), 7.60–7.52 (m, 1H), 7.51–7.43 (m, 1H), 4.31–4.14 (m, 2H), 4.13–3.95 (m, 2H), 3.02–2.87 (m, 1H), 2.18–2.01 (m, 1H), 1.34 (t, *J* = 7.1 Hz, 3H), 1.28–1.16 (m, 6H), 0.90 (d, *J* = 6.4 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 133.6 (d, *J*_{C-P} = 8.7 Hz), 133.3 (d, *J*_{C-P} = 3.8 Hz), 132.7 (d, *J*_{C-P} = 3.2 Hz), 130.2 (d, *J*_{C-P} = 2.8 Hz), 129.9 (d, *J*_{C-P} = 4.6 Hz), 127.2 (d, *J*_{C-P} = 4.5 Hz), 117.1 (d, *J*_{C-P} = 4.8 Hz), 65.6 (d, *J*_{C-P} = 6.4 Hz), 65.5 (d, *J*_{C-P} = 5.8 Hz), 16.1 (d, *J*_{C-P} = 5.8 Hz) ppm; ³¹P NMR (202 MHz, CDCl₃) δ 13.6 ppm; HRMS (ESI) calcd for C₁₅H₂₁N₂Cl₂O₃PNa [M+Na⁺]: 401.0559, found: 401.0559.

Diethyl ((2-chlorophenyl)(cyano)(isopropylamino)methyl)phosphonate (1h)

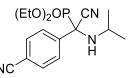
Following the general procedure, the reaction of amide **2h** (98.5 mg, 0.500 mmol) with TMSCN (75.0 μL, 0.600 mmol) and HPO(OEt)₂ (83.0 μL, 0.650 mmol) afforded the α-amino-α-cyanophosphonate **1h** (138 mg, yield: 80%) after flash column chromatography on silica gel (elution with EtOAc/hexane = 1:2) as a pale yellow oil. IR (film): 3100, 2972, 2929, 1616, 1467, 1254, 1027, 970, 763, 564 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.99–7.92 (m, 1H), 7.43–7.38 (m, 1H), 7.35–7.27 (m, 2H), 4.42–4.28 (m, 2H), 4.09–3.99 (m, 1H), 3.98–3.88 (m, 1H), 3.18–3.01 (m, 1H), 2.63–2.52 (m, 1H), 1.40 (t, *J* = 7.1 Hz, 3H), 1.25 (d, *J* = 6.3 Hz, 3H), 1.16 (t, *J* = 7.1 Hz, 3H), 0.98 (d, *J* = 6.4 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 133.2 (d, *J*_{C-P} = 5.0 Hz), 132.0 (d, *J*_{C-P} = 2.7 Hz), 131.6 (d, *J*_{C-P} = 4.6 Hz), 130.0 (d, *J*_{C-P} = 2.9 Hz), 129.9 (d, *J*_{C-P} = 7.0 Hz), 117.1 (d, *J*_{C-P} = 8.3 Hz), 65.7 (d, *J*_{C-P} = 7.2 Hz), 65.1 (d, *J*_{C-P} = 7.4 Hz), 62.3 (d, *J*_{C-P} = 5.7 Hz) ppm; ³¹P NMR (202 MHz, CDCl₃) δ 13.6 ppm; HRMS (ESI) calcd for C₁₄H₂₁CINO₃PNa [M-HCN+Na⁺]: 340.0840, found: 340.0789.


Diethyl ((3-bromophenyl)(cyano)(isopropylamino)methyl)phosphonate (1i)

Following the general procedure, the reaction of amide **2i** (121 mg, 0.500 mmol) with TMSCN (75.0 μ L, 0.600 mmol) and HPO(OEt)₂ (83.0 μ L, 0.650 mmol) afforded the α -amino- α -cyanophosphonate **1i** (159 mg, yield: 82%) after flash column chromatography on silica gel (elution with EtOAc/hexane = 1:2) as a pale yellow soild. MP: 93–94 °C; IR (film): 3292, 2977, 2222, 1470, 1255, 1021, 789, 584 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.91–7.87 (m, 1H), 7.71–7.65 (m, 1H), 7.54–7.49 (m, 1H), 7.32–7.26 (m, 1H), 4.31–4.15 (m, 2H), 4.11–3.93 (m, 2H), 3.03–2.91 (m, 1H), 2.18–2.06 (m, 1H), 1.36 (t, *J* = 7.0 Hz, 3H), 1.25–1.19 (m, 6H), 0.93 (d, *J* = 6.3 Hz,


3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 135.4 (d, $J_{C-P} = 8.6$ Hz), 132.2 (d, $J_{C-P} = 3.0$ Hz), 130.9 (d, $J_{C-P} = 4.5$ Hz), 129.8 (d, $J_{C-P} = 2.8$ Hz), 126.6 (d, $J_{C-P} = 4.6$ Hz), 122.4 (d, $J_{C-P} = 3.4$ Hz), 117.4 (d, $J_{C-P} = 4.9$ Hz), 65.5 (d, $J_{C-P} = 5.5$ Hz), 65.4 (d, $J_{C-P} = 5.3$ Hz), 62.2 (d, $J_{C-P} = 153.7$ Hz), 47.2 (d, $J_{C-P} = 13.0$ Hz), 24.7, 23.5, 16.2 (d, $J_{C-P} = 5.7$ Hz), 16.1 (d, $J_{C-P} = 5.8$ Hz) ppm; ³¹P NMR (202 MHz, CDCl₃) δ 13.9 ppm; HRMS (ESI) calcd for C₁₅H₂₂BrN₂O₃PNa [M+Na⁺]: 411.0444, found: 411.0451.

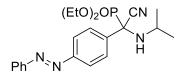
Diethyl (cyano(isopropylamino)(4-(trifluoromethyl)phenyl)methyl)phosphonate (1j)


Following the general procedure, the reaction of amide **2j** (116 mg, 0.500 mmol) with TMSCN (75.0 μL, 0.600 mmol) and HPO(OEt)₂ (83.0 μL, 0.650 mmol) afforded the α-amino-α-cyanophosphonate **1j** (170 mg, yield: 90%) after flash column chromatography on silica gel (elution with EtOAc/hexane = 1:2) as a pale yellow soild. MP: 62–63 °C; IR (film): 3297, 2980, 2230, 1618, 1327, 1256, 1128, 1018, 846, 806, 577 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.92–7.86 (m, 2H), 7.70–7.66 (m, 2H), 4.32–4.18 (m, 2H), 4.13–3.92 (m, 2H), 3.04–2.88 (m, 1H), 2.22–2.11 (m, 1H), 1.37 (t, *J* = 7.1 Hz, 3H), 1.24 (d, *J* = 6.3 Hz, 3H), 1.21 (t, *J* = 7.1 Hz, 3H), 0.91 (d, *J* = 6.5 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 137.5 (d, *J*_{C-P} = 8.7 Hz), 131.4 (qd, *J*_{C-F} = 32.8, *J*_{C-P} = 3.3 Hz), 128.6 (d, *J*_{C-P} = 4.3 Hz), 125.7–125.3 (m), 123.9 (q, *J*_{C-F} = 272.2 Hz), 117.6 (d, *J*_{C-P} = 5.2 Hz), 65.7 (d, *J*_{C-P} = 7.6 Hz), 65.6 (d, *J*_{C-P} = 5.6 Hz), 16.3 (d, *J*_{C-P} = 5.5 Hz); ³¹P NMR (202 MHz, CDCl₃) δ 13.8 ppm; ¹⁹F NMR (471 MHz, CDCl₃) δ -62.7 ppm; HRMS (ESI) calcd for C₁₆H₂₂F₃N₂O₃PNa [M+Na⁺]: 401.1212, found: 401.1218.

Diethyl (cyano(isopropylamino)(4-nitrophenyl)methyl)phosphonate (1k)

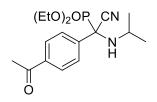
Following the general procedure, the reaction of amide **2k** (104 mg, 0.500 mmol) with TMSCN (75.0 µL, 0.600 mmol) and HPO(OEt)₂ (83.0 µL, 0.650 mmol) afforded the α -amino- α -cyanophosphonate **1k** (163 mg, yield: 92%) after flash column chromatography on silica gel (elution with EtOAc/hexane = 1:2) as a pale yellow soild. MP: 95–96 °C; IR (film): 3266, 2973, 2227, 1525, 1347, 1252, 1022, 855, 582 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.32–8.21 (m, 2H), 7.99–7.91 (m, 2H), 4.33–4.19 (m, 2H), 4.16–3.97 (m, 2H), 3.06–2.92 (m, 1H), 2.27–2.15 (m, 1H), 1.37 (t, *J* = 7.0 Hz, 3H), 1.27–1.21 (m, 6H), 0.90 (d, *J* = 6.6 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 148.3 (d, *J*_{C-P} = 3.5 Hz), 140.7 (d, *J*_{C-P} = 8.7 Hz), 129.0 (d, *J*_{C-P} = 4.4 Hz), 123.3 (d, *J*_{C-P} = 2.9 Hz), 116.9 (d, *J*_{C-P} = 5.7 Hz), 65.7 (d, *J*_{C-P} = 7.7 Hz), 65.6 (d, *J*_{C-P} = 7.3 Hz), 62.6 (d, *J*_{C-P} = 5.8 Hz) ppm; ³¹P NMR (202 MHz, CDCl₃) δ 13.4 ppm; HRMS (ESI) calcd for C₁₅H₂₂N₃O₅PNa [M+Na⁺]: 378.1189, found: 378.1194.

Diethyl (cyano(4-cyanophenyl)(isopropylamino)methyl)phosphonate (11)

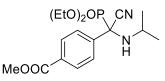


Following the general procedure, the reaction of amide **2l** (94.0 mg, 0.500 mmol) with TMSCN (75.0 μ L, 0.600 mmol) and HPO(OEt)₂ (83.0 μ L, 0.650 mmol) afforded the α -amino- α -cyanophosphonate **1l** (149 mg, yield: 89%) after flash column chromatography on silica gel (elution with EtOAc/hexane = 1:2) as a pale yellow soild. MP: 69–70 °C; IR (film): 3318, 2978, 2230, 1500, 1258, 1019, 844, 584 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.94–7.85 (m, 2H), 7.77–7.68 (m, 2H), 4.33–4.17 (m, 2H), 4.14–3.95 (m, 2H), 3.03–2.91 (m, 1H), 2.23–2.14 (m, 1H), 1.36 (t, *J* = 7.1 Hz, 3H), 1.26–1.19 (m, 6H), 0.89 (d, *J* = 6.7 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ

138.7 (d, $J_{C-P} = 8.8$ Hz), 131.9 (d, $J_{C-P} = 3.0$ Hz), 128.7 (d, $J_{C-P} = 4.5$ Hz), 118.0 (d, $J_{C-P} = 1.9$ Hz), 116.9 (d, $J_{C-P} = 5.5$ Hz), 113.0 (d, $J_{C-P} = 3.3$ Hz), 65.6 (d, $J_{C-P} = 7.6$ Hz), 65.5 (d, $J_{C-P} = 7.4$ Hz), 62.6 (d, $J_{C-P} = 151.8$ Hz), 47.4 (d, $J_{C-P} = 12.8$ Hz), 24.5, 23.5, 16.2 (d, $J_{C-P} = 5.8$ Hz), 16.1 (d, $J_{C-P} = 5.7$ Hz) ppm; ³¹P NMR (202 MHz, CDCl₃) δ 13.5 ppm; HRMS (ESI) calcd for C₁₆H₂₂N₃O₃PNa [M+Na⁺]: 358.1291, found: 358.1295.

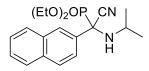

Diethyl (E)-(cyano(isopropylamino)(4-(phenyldiazenyl)phenyl)methyl)phosphora

te (1m)

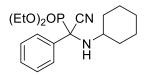

Following the general procedure, the reaction of amide **2m** (134 mg, 0.500 mmol) with TMSCN (75.0 µL, 0.600 mmol) and HPO(OEt)₂ (83.0 µL, 0.650 mmol) afforded the α -amino- α -cyanophosphonate **1m** (174 mg, yield: 84%) after flash column chromatography on silica gel (elution with EtOAc/hexane = 1:2) as a pale yellow soild. MP: 91–92 °C; IR (film): 3410, 2975, 1609, 1439, 1255, 1141, 635, 585 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.02–7.87 (m, 6H), 7.58–7.44 (m, 3H), 4.33–4.17 (m, 2H), 4.12–3.89 (m, 2H), 3.08–2.97 (m, 1H), 2.21–2.16 (m, 1H), 1.38 (t, *J* = 7.1 Hz, 3H), 1.25 (d, *J* = 6.2 Hz, 3H), 1.20 (t, *J* = 7.1 Hz, 3H), 0.95 (d, *J* = 6.4, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 152.8 (d, *J*_{C-P} = 3.7 Hz), 152.5, 135.5 (d, *J*_{C-P} = 8.8 Hz), 131.3, 129.1, 128.8 (d, *J*_{C-P} = 4.8 Hz), 122.9, 122.6 (d, *J*_{C-P} = 3.0 Hz), 117.8 (d, *J*_{C-P} = 5.1 Hz), 65.5 (d, *J*_{C-P} = 5.7 Hz), 16.2 (d, *J*_{C-P} = 5.6 Hz) ppm; ³¹P NMR (202 MHz, CDCl₃) δ 14.1 ppm; HRMS (ESI) calcd for C₂₁H₂₇N₄O₃PNa [M+Na⁺]: 437.1713, found: 437.1713.

Diethyl ((4-acetylphenyl)(cyano)(isopropylamino)methyl)phosphonate (1n)

Following the general procedure, the reaction of amide **2n** (103 mg, 0.500 mmol) with TMSCN (75.0 μL, 0.600 mmol) and HPO(OEt)₂ (83.0 μL, 0.650 mmol) afforded the α-amino-α-cyanophosphonate **1n** (162 mg, yield: 92%) after flash column chromatography on silica gel (elution with EtOAc/hexane = 1:2) as a pale yellow soild. MP: 82–83 °C; IR (film): 3300, 2978, 2351, 1687, 1261, 1048, 841, 599 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.04–7.96 (m, 2H), 7.89–7.81 (m, 2H), 4.32–4.18 (m, 2H), 4.11–4.01 (m, 1H), 4.01–3.91 (m, 1H), 3.02–2.92 (m, 1H), 2.63 (s, 3H), 2.22–2.11 (m, 1H), 1.37 (t, *J* = 7.1 Hz, 3H), 1.24 (d, *J* = 6.3 Hz, 3H), 1.20 (t, *J* = 7.1 Hz, 3H), 0.91 (d, *J* = 6.4 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 197.3, 138.1 (d, *J*_{C-P} = 8.6 Hz), 137.5 (d, *J*_{C-P} = 3.0 Hz), 128.2 (d, *J*_{C-P} = 4.5 Hz), 128.2 (d, *J*_{C-P} = 2.8 Hz), 117. 5 (d, *J*_{C-P} = 5.4 Hz), 65.5 (d, *J*_{C-P} = 7.4 Hz), 65.5 (d, *J*_{C-P} = 5.6 Hz), 16.1 (d, *J*_{C-P} = 5.6 Hz) ppm; ³¹P NMR (202 MHz, CDCl₃) δ 13.8 ppm; HRMS (ESI) calcd for C₁₇H₂₅N₂O₄PNa [M+Na⁺]: 375.1444, found: 375.1451.


Methyl 4-(cyano(diethoxyphosphoryl)(isopropylamino)methyl)benzoate (10)

Following the general procedure, the reaction of amide **2o** (111 mg, 0.500 mmol) with TMSCN (75.0 μ L, 0.600 mmol) and HPO(OEt)₂ (83.0 μ L, 0.650 mmol) afforded the α -amino- α -cyanophosphonate **1o** (161 mg, yield: 87%) after flash column chromatography on silica gel (elution with EtOAc/hexane = 1:2) as a pale yellow soild. MP: 78–79 °C; IR (film): 3325, 2978, 2216, 1726, 1437, 1280, 1019, 767, 581 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.10–8.02 (m, 2H), 7.83–7.78 (m, 2H), 4.27–4.12 (m, 2H), 4.05–3.95 (m, 1H), 3.95–3.85 (m, 4H), 2.99–2.88 (m, 1H), 2.17–2.10 (m, 1H), 1.33 (t, *J* = 7.1 Hz, 3H), 1.20 (d, *J* = 6.3 Hz, 3H), 1.16 (t, *J* = 7.0 Hz, 3H), 0.87


(d, J = 6.4, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 166.3, 138.0 (d, $J_{C-P} = 8.5$ Hz), 130.8 (d, $J_{C-P} = 3.0$ Hz), 129.4 (d, $J_{C-P} = 2.8$ Hz), 128.0 (d, $J_{C-P} = 4.5$ Hz), 117.5 (d, $J_{C-P} = 5.3$ Hz), 65.5 (d, $J_{C-P} = 7.6$ Hz), 65.5 (d, $J_{C-P} = 7.2$ Hz), 62.7 (d, $J_{C-P} = 152.7$ Hz), 52.2, 47.2 (d, $J_{C-P} = 13.1$ Hz), 24.6, 23.5, 16.2 (d, $J_{C-P} = 5.7$ Hz), 16.1 (d, $J_{C-P} = 5.6$ Hz) ppm; ³¹P NMR (202 MHz, CDCl₃) δ 13.9 ppm; HRMS (ESI) calcd for C₁₇H₂₅N₂O₅PNa [M+Na⁺]: 391.1393, found: 391.1399.

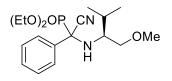
Diethyl (cyano(isopropylamino)(naphthalen-2-yl)methyl)phosphonate (1p)


Following the general procedure, the reaction of amide **2p** (107 mg, 0.500 mmol) with TMSCN (75.0 μL, 0.600 mmol) and HPO(OEt)₂ (83.0 μL, 0.650 mmol) afforded the α-amino-α-cyanophosphonate **1p** (159 mg, yield: 88%) after flash column chromatography on silica gel (elution with EtOAc/hexane = 1:2) as a pale yellow soild. MP: 71–72 °C; IR (film): 3295, 2977, 2219, 1367, 1255, 1022, 750, 571 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.25–8.20 (m, 1H), 7.94–7.82 (m, 4H), 7.55–7.51 (m, 2H), 4.34–4.16 (m, 2H), 4.06–3.94 (m, 1H), 3.90–3.81 (m, 1H), 3.06–2.94 (m, 1H), 2.24–2.16 (m, 1H), 1.36 (t, *J* = 7.0 Hz, 3H), 1.24 (d, *J* = 6.3 Hz, 3H), 1.13 (t, *J* = 7.0 Hz, 3H), 0.93 (d, *J* = 6.4 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 133.4 (d, *J*_{C-P} = 2.3 Hz), 132.7 (d, *J*_{C-P} = 2.7 Hz), 130.1 (d, *J*_{C-P} = 8.6 Hz), 128.3, 128.0 (d, *J*_{C-P} = 2.4 Hz), 127.8 (d, *J*_{C-P} = 7.5 Hz), 62.9 (d, *J*_{C-P} = 155.0 Hz), 47.0 (d, *J*_{C-P} = 13.4 Hz), 24.7, 23.6, 16.3 (d, *J*_{C-P} = 5.6 Hz), 16.1 (d, *J*_{C-P} = 5.7 Hz) ppm; ³¹P NMR (202 MHz, CDCl₃) δ 14.5 ppm; HRMS (ESI) calcd for C₁₉H₂₅N₂O₃PNa [M+Na⁺]: 383.1495, found: 383.1502.

Diethyl (cyano(cyclohexylamino)(phenyl)methyl)phosphonate (1q)

Following the general procedure, the reaction of amide **2q** (102 mg, 0.500 mmol) with TMSCN (75.0 μL, 0.600 mmol) and HPO(OEt)₂ (83.0 μL, 0.650 mmol) afforded the α-amino-α-cyanophosphonate **1q** (149 mg, yield: 85%) after flash column chromatography on silica gel (elution with EtOAc/hexane = 1:2) as a pale yellow soild. MP: 55–56 °C; IR (film): 3853, 3362, 2927, 2215, 1448, 1254, 1021, 800, 699, 583 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.79–7.71 (m, 2H), 7.47–7.34 (m, 3H), 4.31–4.14 (m, 2H), 4.02–3.92 (m, 1H), 3.90–3.79 (m, 1H), 2.67–2.54 (m, 1H), 2.18–2.10 (m, 2H), 1.73–1.64 (m, 1H), 1.63–1.44 (m, 3H), 1.35 (t, *J* = 7.1 Hz, 3H), 1.31–0.99 (m, 8H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 132.8 (d, *J*_{C-P} = 8.3 Hz), 129.1 (d, *J*_{C-P} = 3.2 Hz), 128.3 (d, *J*_{C-P} = 2.8 Hz), 128.0 (d, *J*_{C-P} = 4.6 Hz), 118.2 (d, *J*_{C-P} = 4.8 Hz), 65.3 (d, *J*_{C-P} = 7.4 Hz), 62.5 (d, *J*_{C-P} = 154.7 Hz), 54.4 (d, *J*_{C-P} = 12.6 Hz), 35.2, 34.1, 25.6, 25.1 (d, *J*_{C-P} = 9.5 Hz), 16.3 (d, *J*_{C-P} = 5.8 Hz), 16.2 (d, *J*_{C-P} = 5.7 Hz) ppm; ³¹P NMR (202 MHz, CDCl₃) δ 14.5 ppm; HRMS (ESI) calcd for C₁₈H₂₇N₂O₃PNa [M+Na⁺]: 373.1652, found: 373.1655.

Diethyl (cyano(cyclopropylamino)(phenyl)methyl)phosphonate (1r)



Following the general procedure, the reaction of amide **2r** (80.5 mg, 0.500 mmol) with TMSCN (75.0 μ L, 0.600 mmol) and HPO(OEt)₂ (83.0 μ L, 0.650 mmol) afforded the α-amino-α-cyanophosphonate **1r** (125 mg, yield: 81%) after flash column chromatography on silica gel (elution with EtOAc/hexane = 1:2) as a pale yellow oil. IR (film): 3280, 2982, 1599, 1449, 1391, 1252, 1195, 1019, 972, 699, 580 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.78–7.68 (m, 2H), 7.47–7.35 (m, 3H), 4.30–4.18 (m, 2H), 3.98–3.87 (m, 1H), 3.81–3.67 (m, 1H), 2.91–2.80 (m, 1H), 2.18–2.07 (m, 1H), 1.36 (t, *J* = 7.1 Hz, 3H), 1.10 (t, *J* = 7.0 Hz, 3H), 0.72–0.63 (m, 1H), 0.55–0.43 (m, 1H),

0.38–0.27 (m, 2H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 132.2 (d, $J_{C-P} = 6.6$ Hz), 129.1 (d, $J_{C-P} = 2.9$ Hz), 128.5 (d, $J_{C-P} = 2.5$ Hz), 127.9 (d, $J_{C-P} = 4.6$ Hz), 117.2 (d, $J_{C-P} = 6.3$ Hz), 65.3 (d, $J_{C-P} = 7.5$ Hz), 65.1 (d, $J_{C-P} = 7.3$ Hz), 63.6 (d, $J_{C-P} = 153.5$ Hz), 27.1 (d, $J_{C-P} = 16.0$ Hz), 16.3 (d, $J_{C-P} = 5.7$ Hz), 16.0 (d, $J_{C-P} = 5.6$ Hz), 6.3, 6.1 ppm; ³¹P NMR (202 MHz, CDCl₃) δ 14.2 ppm; HRMS (ESI) calcd for C₁₅H₂₁N₂O₃PNa [M+Na⁺]: 331.1182, found: 331.1182.

Diethyl (cyano(((S)-1-methoxy-3-methylbutan-2-yl)amino)(phenyl)methyl)phosp

hornate (1s)

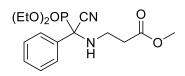
Following the general procedure, the reaction of amide 2s (111 mg, 0.500 mmol) with TMSCN (75.0 µL, 0.600 mmol) and HPO(OEt)₂ (83.0 µL, 0.650 mmol) afforded the α -amino- α -cyanophosphonate **1s** (149 mg, yield: 81%, dr = 1:1.5) after flash column chromatography on silica gel (elution with EtOAc/hexane = 1:2) as a pale yellow oil. IR (film): 3331, 2962, 2222, 1448, 1257, 1049, 1022, 700, 581 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.84–7.71 (m, 2H), 7.45–7.33 (m, 3H), 4.42–4.27 (m, 1H), 4.26–4.17 (m, 1H), 4.09–3.99 (m, 0.6H), 3.97–3.85 (m, 1H), 3.76–3.66 (m, 0.4H), 3.65–3.56 (m, 0.6H), 3.44-3.32 (m, 2.2H), 3.12-3.02 (m, 1.8H), 2.97-2.90 (m, 0.4H), 2.79-2.69 (m, 1.4H), 2.64–2.56 (m, 0.6H), 2.10–2.00 (m, 0.4H), 1.69–1.58 (m, 0.6 H), 1.40 (t, J =7.1 Hz, 1.2H), 1.35 (t, J = 7.1 Hz, 1.8H), 1.18 (t, J = 7.1 Hz, 1.8H), 1.08 (t, J = 7.1 Hz, 1.2H), 0.97 (d, J = 6.9 Hz, 1.2H), 0.94 (d, J = 6.9 Hz, 1.2H), 0.88 (d, J = 7.0 Hz, 1.8H), 0.81 (d, J = 6.9 Hz, 1.8H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 133.5 (d, $J_{C-P} =$ 5.6 Hz), 131.8 (d, $J_{C-P} = 8.7$ Hz), 129.2 (d, $J_{C-P} = 3.0$ Hz), 129.0 (d, $J_{C-P} = 2.7$ Hz), 128.4 (d, $J_{C-P} = 4.9$ Hz), 128.3 (d, $J_{C-P} = 2.4$ Hz), 128.3 (d, $J_{C-P} = 2.8$ Hz), 127.8 (d, $J_{C-P} = 4.9$ Hz), 118.5 (d, $J_{C-P} = 3.3$ Hz), 117.5 (d, $J_{C-P} = 8.8$ Hz), 71.5, 70.2, 65.5 (d, $J_{C-P} = 7.3 \text{ Hz}$, 65.3 (d, $J_{C-P} = 7.2 \text{ Hz}$), 65.0 (d, $J_{C-P} = 7.8 \text{ Hz}$), 65.0 (d, $J_{C-P} = 7.3 \text{ Hz}$), 63.0 (d, $J_{C-P} = 153.0$ Hz), 62.4 (d, $J_{C-P} = 157.2$ Hz), 59.8 (d, $J_{C-P} = 12.4$ Hz), 58.9 (d,

 $J_{\text{C-P}} = 12.6 \text{ Hz}$), 58.6, 58.5, 30.4, 29.7, 18.8 (d, $J_{\text{C-P}} = 106.4 \text{ Hz}$), 18.6 (d, $J_{\text{C-P}} = 119.6 \text{ Hz}$), 16.4 (d, $J_{\text{C-P}} = 6.0 \text{ Hz}$), 16.3 (d, $J_{\text{C-P}} = 5.7 \text{ Hz}$), 16.2 (d, $J_{\text{C-P}} = 5.6 \text{ Hz}$), 16.0 (d, $J_{\text{C-P}} = 5.6 \text{ Hz}$) ppm; ³¹P NMR (202 MHz, CDCl₃) δ 14.7, 14.5 ppm; HRMS (ESI) calcd for C₁₈H₂₉N₂O₄PNa [M+Na⁺]: 391.1757, found: 391.1762.

Diethyl (cyano(ethylamino)(phenyl)methyl)phosphonate (1t)

(EtO)₂OP_CN N H

Following the general procedure, the reaction of amide **2t** (74.5 mg, 0.500 mmol) with TMSCN (75.0 µL, 0.600 mmol) and HPO(OEt)₂ (83.0 µL, 0.650 mmol) afforded the α -amino- α -cyanophosphonate **1t** (136 mg, yield: 92%) after flash column chromatography on silica gel (elution with EtOAc/hexane = 1:2) as a pale yellow soild. MP: 69–70 °C; IR (film): 3283, 2978, 2219, 1448, 1254, 1020, 793, 700, 581 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.74–7.64 (m, 2H), 7.47–7.35 (m, 3H), 4.25–4.12 (m, 2H), 4.08–3.90 (m, 2H), 2.85–2.70 (m, 1H), 2.54–2.38 (m, 1H), 2.22–2.10 (m, 1H), 1.34 (t, *J* = 7.1 Hz, 3H), 1.20 (t, *J* = 7.1 Hz, 3H), 1.16 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 131.8 (d, *J*_{C-P} = 8.7 Hz), 129.3 (d, *J*_{C-P} = 3.2 Hz), 128.7 (d, *J*_{C-P} = 3.0 Hz), 127.9 (d, *J*_{C-P} = 4.5 Hz), 117.5 (d, *J*_{C-P} = 2.8 Hz), 65.2 (d, *J*_{C-P} = 7.1 Hz), 65.1 (d, *J*_{C-P} = 7.5 Hz), 64.0 (d, *J*_{C-P} = 157.6 Hz), 39.4 (d, *J*_{C-P} = 13.1 Hz), 16.3 (d, *J*_{C-P} = 5.7 Hz), 16.2 (d, *J*_{C-P} = 5.6 Hz), 15.1 ppm; ³¹P NMR (202 MHz, CDCl₃) δ 14.3 ppm; HRMS (ESI) calcd for C₁₄H₂₁N₂O₃PNa [M+Na⁺]: 319.1182, found: 319.1183.


Diethyl (cyano((3-methoxypropyl)amino)(phenyl)methyl)phosphonate (1u)

(EtO)₂OP CN

Following the general procedure, the reaction of amide 2u (96.5 mg, 0.500 mmol) with TMSCN (75.0 µL, 0.600 mmol) and HPO(OEt)₂ (83.0 µL, 0.650 mmol) afforded

the α -amino- α -cyanophosphonate **1u** (151 mg, yield: 89%) after flash column chromatography on silica gel (elution with EtOAc/hexane = 1:2) as a pale yellow soild. MP: 75–76 °C; IR (film): 3312, 2928, 2216, 1655, 1448, 1257, 1021, 793, 700, 581 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.71–7.63 (m, 2H), 7.45–7.35 (m, 3H), 4.22–4.12 (m, 2H), 4.08–3.88 (m, 2H), 3.51–3.44 (m, 2H), 3.33 (s, 3H), 2.83–2.75 (m, 1H), 2.62–2.48 (m, 2H), 1.87–1.76 (m, 2H), 1.34 (t, *J* = 7.0 Hz, 3H), 1.20 (t, *J* = 7.0 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 131.5 (d, *J*_{C-P} = 8.6 Hz), 129.1 (d, *J*_{C-P} = 3.2 Hz), 128.5 (d, *J*_{C-P} = 2.8 Hz), 127.7 (d, *J*_{C-P} = 4.4 Hz), 117.3 (d, *J*_{C-P} = 2.9 Hz), 71.3, 65.2 (d, *J*_{C-P} = 7.1 Hz), 65.1 (d, *J*_{C-P} = 5.7 Hz), 63.8 (d, *J*_{C-P} = 5.7 Hz) ppm; ³¹P NMR (202 MHz, CDCl₃) δ 14.2 ppm; HRMS (ESI) calcd for C₁₆H₂₅N₂O₄PNa [M+Na⁺]: 363.1444, found: 363.1448.

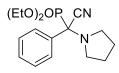
Methyl 3-((cyano(diethoxyphosphoryl)(phenyl)methyl)amino)propanoate (1v)



Following the general procedure, the reaction of amide **2v** (104 mg, 0.500 mmol) with TMSCN (75.0 μL, 0.600 mmol) and HPO(OEt)₂ (83.0 μL, 0.650 mmol) afforded the α-amino-α-cyanophosphonate **1v** (151 mg, yield: 85%) after flash column chromatography on silica gel (elution with EtOAc/hexane = 1:2) as a pale yellow soild. MP: 71–72 °C; IR (film): 3283, 2984, 2219, 1737, 1439, 1257, 1020, 756, 699, 581 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.70–7.64 (m, 2H), 7.44–7.35 (m, 3H), 4.19–4.11 (m, 2H), 4.05–3.85 (m, 2H), 3.68 (s, 3H), 3.07–2.95 (m, 1H), 2.81–2.72 (m, 1H), 2.70–2.59 (m, 1H), 2.54 (t, *J* = 6.2 Hz, 2H), 1.32 (t, *J* = 7.1 Hz, 3H), 1.17 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 172.3, 131.2 (d, *J*_{C-P} = 8.2 Hz), 129.2 (d, *J*_{C-P} = 3.1 Hz), 128.6 (d, *J*_{C-P} = 2.8 Hz), 127.7 (d, *J*_{C-P} = 4.4 Hz), 117.0 (d, *J*_{C-P} = 3.4 Hz), 65.3 (d, *J*_{C-P} = 7.7 Hz), 65.2 (d, *J*_{C-P} = 8.2 Hz), 63.5 (d, *J*_{C-P} = 5.6 Hz), 16.1 (d, *J*_{C-P} = 5.8 Hz) ppm; ³¹P NMR (202 MHz, CDCl₃) δ 13.9 ppm; HRMS (ESI) calcd for C₁₆H₂₃N₂O₅PNa [M+Na⁺]: 377.1237, found: 377.1243.

Diethyl (((2-chloroethyl)amino)(cyano)(phenyl)methyl)phosphonate (1w)

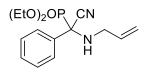
Following the general procedure, the reaction of amide **2w** (88.6 mg, 0.500 mmol) with TMSCN (75.0 μL, 0.600 mmol) and HPO(OEt)₂ (83.0 μL, 0.650 mmol) afforded the α-amino-α-cyanophosphonate **1w** (139 mg, yield: 84%) after flash column chromatography on silica gel (elution with EtOAc/hexane = 1:2) as a pale yellow soild. MP: 73–74 °C; IR (film): 3255, 2983, 2201, 1599, 1488, 1259, 1022, 758, 699, 581 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.75–7.67 (m, 2H), 7.49–7.37 (m, 3H), 4.26–4.14 (m, 2H), 4.11–3.89 (m, 2H), 3.73–3.61 (m, 2H), 3.15–3.03 (m, 1H), 2.85–2.71 (m, 2H), 1.35 (t, *J* = 7.1 Hz, 3H), 1.21 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 131.1 (d, *J*_{C-P} = 8.2 Hz), 129.4 (d, *J*_{C-P} = 3.1 Hz), 128.7 (d, *J*_{C-P} = 2.7 Hz), 127.6 (d, *J*_{C-P} = 4.3 Hz), 116.9 (d, *J*_{C-P} = 3.2 Hz), 65.3 (d, *J*_{C-P} = 7.2 Hz), 65.2 (d, *J*_{C-P} = 5.7 Hz), 63.0 (d, *J*_{C-P} = 5.7 Hz) ppm; ³¹P NMR (202 MHz, CDCl₃) δ 13.7 ppm; HRMS (ESI) calcd for C₁₄H₂₀ClN₂O₃PNa [M+Na⁺]: 353.0792, found: 353.0797.


Diethyl (((2-bromoethyl)amino)(cyano)(phenyl)methyl)phosphonate (1x)

Following the general procedure, the reaction of amide 2x (114 mg, 0.500 mmol) with TMSCN (75.0 µL, 0.600 mmol) and HPO(OEt)₂ (83.0 µL, 0.650 mmol) afforded the α -amino- α -cyanophosphonate 1x (153 mg, yield: 82%) after flash column chromatography on silica gel (elution with EtOAc/hexane = 1:2) as a pale yellow soild. MP: 99–100 °C; IR (film): 3307, 2980, 1251, 1032, 697, 579 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.73–7.67 (m, 2H), 7.48–7.37 (m, 3H), 4.25–4.15 (m, 2H),

4.13–3.90 (m, 2H), 3.59–3.45 (m, 2H), 3.20–3.09 (m, 1H), 2.91–2.81 (m, 1H), 2.81–2.71 (m, 1H), 1.35 (t, J = 7.1 Hz, 3H), 1.21 (t, J = 7.0 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 131.2 (d, $J_{C-P} = 8.3$ Hz), 129.4 (d, $J_{C-P} = 3.0$ Hz), 128.7 (d, $J_{C-P} = 2.8$ Hz), 127.6 (d, $J_{C-P} = 4.4$ Hz), 116.9 (d, $J_{C-P} = 3.5$ Hz), 65.4 (d, $J_{C-P} = 7.3$ Hz), 65.3 (d, $J_{C-P} = 7.6$ Hz), 63.0 (d, $J_{C-P} = 157.6$ Hz), 45.7 (d, $J_{C-P} = 13.5$ Hz), 32.3, 16.2 (d, $J_{C-P} = 5.6$ Hz), 16.1 (d, $J_{C-P} = 5.7$ Hz) ppm; ³¹P NMR (202 MHz, CDCl₃) δ 13.7 ppm; HRMS (ESI) calcd for C₁₄H₂₀BrN₂O₃PNa [M+Na⁺]: 397.0287, found: 397.0297.

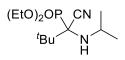
Diethyl (cyano(phenyl)(pyrrolidin-1-yl)methyl)phosphonate (1y)



Following the general procedure, the reaction of amide **2y** (128 mg, 0.500 mmol) with TMSCN (75.0 µL, 0.600 mmol) and HPO(OEt)₂ (83.0 µL, 0.650 mmol) afforded the α -amino- α -cyanophosphonate **1y** (106 mg, yield: 66%) after flash column chromatography on silica gel (elution with EtOAc/hexane = 1:2) as a pale yellow oil. IR (film): 2973, 2843, 1489, 1261, 1032, 697, 578 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.88–7.70 (m, 2H), 7.43–7.36 (m, 3H), 4.28–4.15 (m, 2H), 3.85–3.69 (m, 1H), 3.39–3.25 (m, 1H), 2.86–2.75 (m, 2H), 2.72–2.60 (m, 2H), 1.88–1.76 (m, 4H), 1.37 (t, *J* = 7.0 Hz, 3H), 1.05 (td, *J* = 7.1, *J*_{P-H} = 0.8 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 133.2 (d, *J*_{C-P} = 8.7 Hz), 129.1 (d, *J*_{C-P} = 3.0 Hz), 128.4 (d, *J*_{C-P} = 2.6 Hz), 128.2 (d, *J*_{C-P} = 4.6 Hz), 114.7, 69.4 (d, *J*_{C-P} = 164.9 Hz), 64.9 (d, *J*_{C-P} = 7.2 Hz), 64.1 (d, *J*_{C-P} = 8.5 Hz), 50.1 (d, *J*_{C-P} = 6.5 Hz), 23.4, 16.2 (d, *J*_{C-P} = 6.0 Hz), 16.0 (d, *J*_{C-P} = 5.6 Hz) ppm; ³¹P NMR (202 MHz, CDCl₃) δ 13.5 ppm; HRMS (ESI) calcd for C₁₆H₂₃N₂O₃PNa [M+Na⁺]: 345.1339, found: 345.1351.

Diethyl ((benzylamino)(cyano)(phenyl)methyl)phosphonate (1z)

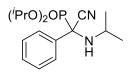
Following the general procedure, the reaction of amide **2z** (106 mg, 0.500 mmol) with TMSCN (75.0 μ L, 0.600 mmol) and HPO(OEt)₂ (83.0 μ L, 0.650 mmol) afforded the α -amino- α -cyanophosphonate **1z** (150 mg, yield: 84%) after flash column chromatography on silica gel (elution with EtOAc/hexane = 1:2) as a pale yellow soild. MP: 70–71 °C; IR (film): 3282, 2925, 2359, 1455, 1255, 1020, 698, 583 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.86–7.71 (m, 2H), 7.49–7.39 (m, 3H), 7.39–7.31 (m, 4H), 7.30–7.25 (m, 1H), 4.26–4.12 (m, 2H), 4.12–3.91 (m, 2H), 3.85 (dd, *J* = 12.3, 4.3 Hz, 1H), 3.63 – 3.57 (m, 1H), 2.60–2.45 (m, 1H), 1.34 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ 138.2, 131.3 (d, *J*_{C-P} = 8.6 Hz), 129.3 (d, *J*_{C-P} = 3.2 Hz), 128.7 (d, *J*_{C-P} = 2.8 Hz), 128.5, 128.3, 127.7 (d, *J*_{C-P} = 4.5 Hz), 127.5, 117.1 (d, *J*_{C-P} = 3.1 Hz), 65.3 (d, *J*_{C-P} = 7.2 Hz), 65.2 (d, *J*_{C-P} = 7.6 Hz), 63.7 (d, *J*_{C-P} = 157.5 Hz), 48.9 (d, *J*_{C-P} = 13.5 Hz), 16.3 (d, *J*_{C-P} = 5.6 Hz), 16.2 (d, *J*_{C-P} = 5.8 Hz) ppm; ³¹P NMR (202 MHz, CDCl₃) δ 13.9 ppm; HRMS (ESI) calcd for C₁₉H₂₃N₂O₃PNa [M+Na⁺]: 381.1339, found: 381.1342.


Diethyl ((allylamino)(cyano)(phenyl)methyl)phosphonate (1aa)

Following the general procedure, the reaction of amide **2aa** (80.5 mg, 0.500 mmol) with TMSCN (75.0 μ L, 0.600 mmol) and HPO(OEt)₂ (83.0 μ L, 0.650 mmol) afforded the α-amino-α-cyanophosphonate **1aa** (137 mg, yield: 89%) after flash column chromatography on silica gel (elution with EtOAc/hexane = 1:2) as a pale yellow soild. MP: 69–70 °C; IR (film): 3280, 2984, 2222, 1255, 1021, 758, 698, 580 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.74–7.63 (m, 2H), 7.47–7.35 (m, 3H), 5.99–5.82 (m, 1H), 5.33–5.22 (m, 1H), 5.19–5.09 (m, 1H), 4.22–4.13 (m, 2H), 4.10–3.91 (m, 2H),

3.39–3.28 (m, 1H), 3.12–3.01 (m, 1H), 2.45–2.20 (m, 1H), 1.34 (t, J = 7.0 Hz, 3H), 1.21 (t, J = 7.0 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 134.7, 131.3 (d, $J_{C-P} =$ 8.4 Hz), 129.2 (d, $J_{C-P} = 3.2$ Hz), 128.6 (d, $J_{C-P} = 2.7$ Hz), 127.6 (d, $J_{C-P} = 4.4$ Hz), 117.1 (d, $J_{C-P} = 2.9$ Hz), 117.0, 65.3 (d, $J_{C-P} = 7.1$ Hz), 65.2 (d, $J_{C-P} = 7.5$ Hz), 63.4 (d, $J_{C-P} = 157.4$ Hz), 47.2 (d, $J_{C-P} = 13.3$ Hz), 16.2 (d, $J_{C-P} = 5.6$ Hz), 16.2 (d, $J_{C-P} = 5.6$ Hz) ppm; ³¹P NMR (202 MHz, CDCl₃) δ 14.0 ppm; HRMS (ESI) calcd for C₁₅H₂₁N₂O₃PNa [M+Na⁺]: 331.1182, found: 331.1185.

Methyl 3-((cyano(diethoxyphosphoryl)(phenyl)methyl)amino)propanoate (1ad)



Following the general procedure, the reaction of amide **2ad** (43.0 mg, 0.500 mmol) with TMSCN (75.0 μ L, 0.600 mmol) and HPO(OEt)₂ (83.0 μ L, 0.650 mmol) afforded the α-amino-α-cyanophosphonate **1ad** (98.7 mg, yield: 68%) after flash column chromatography on silica gel (elution with EtOAc/hexane = 1:2) as a pale yellow oil. IR (film): 3310, 2927, 2355, 1666, 1462, 1396, 1201, 1055, 997, 753, 546 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 4.32–4.15 (m, 4H), 3.32–3.24 (m, 1H), 1.40–1.34 (m, 6H), 1.18 (s, 9H), 1.14 (t, *J* = 6.3 Hz, 6H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 117.1 (d, *J*_{C-P} = 4.6 Hz), 64.5 (d, *J*_{C-P} = 148.3 Hz), 64.3 (d, *J*_{C-P} = 8.1 Hz), 63.9 (d, *J*_{C-P} = 7.8 Hz), 47.9 (d, *J*_{C-P} = 1.9 Hz), 39.8 (d, *J*_{C-P} = 4.0 Hz), 26.2 (d, *J*_{C-P} = 4.5 Hz), 24.9 (d, *J*_{C-P} = 1.8 Hz), 24.6, 16.4 (d, *J*_{C-P} = 5.6 Hz), 16.3 (d, *J*_{C-P} = 5.8 Hz) ppm; ³¹P NMR (202 MHz, CDCl₃) δ 18.0 ppm; HRMS (ESI) calcd for C₁₃H₂₇N₂O₃PNa [M+Na⁺]: 313.1652, found: 313.1660.

Dimethyl (cyano(isopropylamino)(phenyl)methyl)phosphonate (1ae)

(MeO)₂OP CN N H Following the general procedure, the reaction of amide **2a** (81.6 mg, 0.500 mmol) with TMSCN (75.0 µL, 0.600 mmol) and HPO(OMe)₂ (60.0 µL, 0.650 mmol) afforded the α-amino-α-cyanophosphonate **1ae** (130 mg, yield: 92%) after flash column chromatography on silica gel (elution with EtOAc/hexane = 1:2) as a pale yellow oil. IR (film): 3302, 2964, 2857, 2359, 2341, 1782, 1693, 1385, 1033, 839, 699, 580 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.77–7.70 (m, 2H), 7.45–7.36 (m, 3H), 3.89–3.82 (m, 3H), 3.61–3.55 (m, 3H), 3.00–2.89 (m, 1H), 2.15–2.06 (m, 1H), 1.23 (d, J = 6.3 Hz, 3H), 0.92 (d, J = 6.4 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 132.2 (d, $J_{C-P} = 8.2$ Hz), 129.2 (d, $J_{C-P} = 3.1$ Hz), 128.5 (d, $J_{C-P} = 2.8$ Hz), 127.9 (d, $J_{C-P} = 4.6$ Hz), 117.9 (d, $J_{C-P} = 4.7$ Hz), 62.4 (d, $J_{C-P} = 156.1$ Hz), 55.6 (d, $J_{C-P} = 7.2$ Hz), 55.5 (d, $J_{C-P} = 7.4$ Hz), 46.8 (d, $J_{C-P} = 13.3$ Hz), 24.7, 23.5 ppm; ³¹P NMR (202 MHz, CDCl₃) δ 16.8 ppm; HRMS (ESI) calcd for C₁₃H₁₉N₂O₃PNa [M+Na⁺]: 305.1026, found: 305.1030.

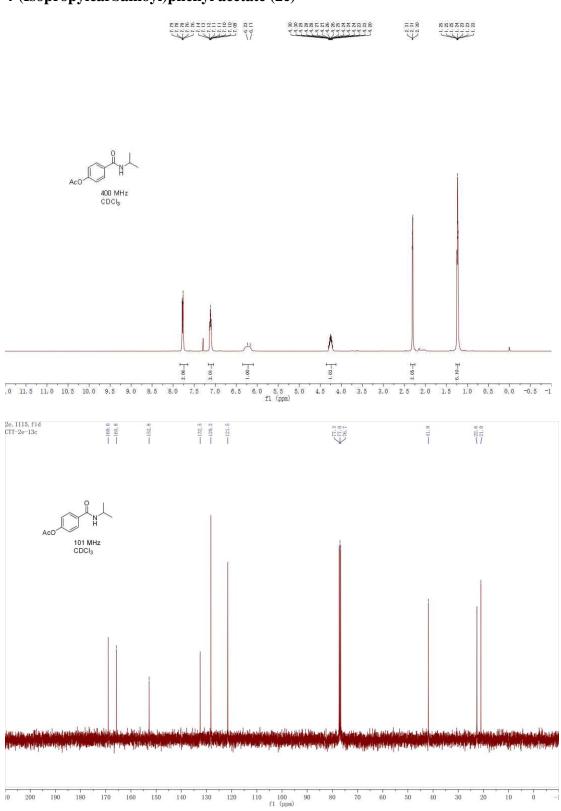
Diisopropyl (cyano(isopropylamino)(phenyl)methyl)phosphonate (1af)

Following the general procedure, the reaction of amide **2a** (81.6 mg, 0.500 mmol) with TMSCN (75.0 μ L, 0.600 mmol) and HPO(O^{*i*}Pr)₂ (106 μ L, 0.650 mmol) afforded the α-amino-α-cyanophosphonate **1af** (144 mg, yield: 85%) after flash column chromatography on silica gel (elution with EtOAc/hexane = 1:2) as a pale yellow oil. IR (film): 3316, 2979, 2357, 1639, 1385, 1250, 1009, 697, 584 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.76–7.69 (m, 2H), 7.41–7.32 (m, 3H), 4.87–4.74 (m, 1H), 4.54–4.39 (m, 1H), 3.05–2.86 (m, 1H), 2.15–2.02 (m, 1H), 1.39 (d, *J* = 6.2 Hz, 3H), 1.33 (d, *J* = 6.2 Hz, 3H), 1.24–1.18 (m, 6H), 1.03 (d, *J* = 6.2 Hz, 3H), 0.89 (d, *J* = 6.4 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 132.9 (d, *J*_{C-P} = 7.9 Hz), 128.9 (d, *J*_{C-P} = 3.1 Hz), 128.1 (d, *J*_{C-P} = 5.4 Hz), 118.3 (d, *J*_{C-P} = 5.3 Hz), 74.2 (d, *J*_{C-P} = 5.2 Hz), 74.1 (d, *J*_{C-P} = 5.4 Hz), 62.9 (d, *J*_{C-P} = 156.2 Hz), 46.9 (d, *J*_{C-P} = 13.5 Hz),

24.7, 24.0 (d, $J_{C-P} = 3.2 \text{ Hz}$), 23.9 (d, $J_{C-P} = 3.3 \text{ Hz}$), 23.6, 23.5 (d, $J_{C-P} = 5.9 \text{ Hz}$), 23.1 (d, $J_{C-P} = 6.2 \text{ Hz}$) ppm; ³¹P NMR (202 MHz, CDCl₃) δ 12.9 ppm; HRMS (ESI) calcd for C₁₇H₂₇N₂O₃PNa [M+Na⁺]: 361.1652, found: 361.1660.

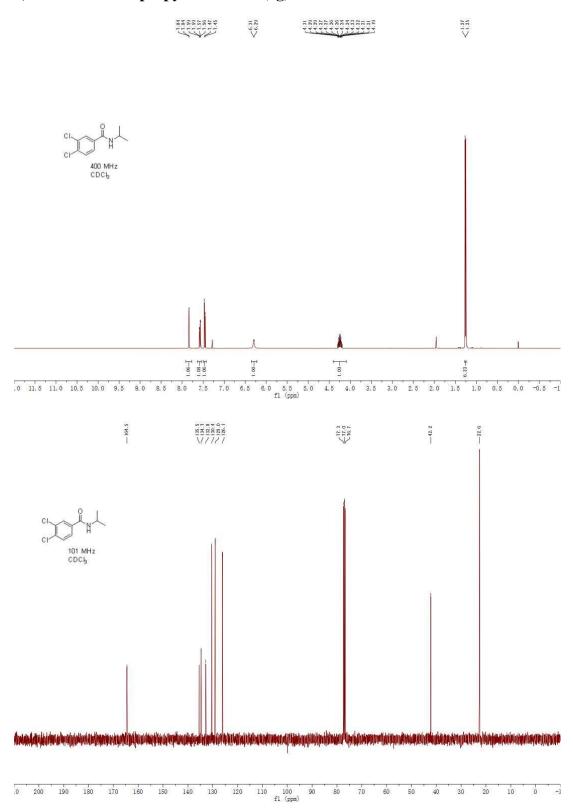
6. Gram-scale Synthesis of 1z

Trifluoromethanesulfonic anhydride (Tf₂O, 1.00 mL, 5.50 mmol) was added dropwise to a cooled solution of amides **2z** (1.06 g, 5.00 mmol) and 2-fluoropyridine (500 µL, 6.00 mmol) in dichloromethane (0.20 M) at 0 °C. After the mixture was stirred for 10 min, TMSCN (750 µL, 6.00 mmol) was added dropwise at 0 °C. The resulting mixture was warmed to rt and stirred for 3 h. HPO(OEt)₂ (830 µL,, 6.50 mmol) and K₂CO₃ (1.38 g, 10.0 mmol) were then added to the above mixture and stirred for 10 h. The reaction was quenched with saturated aqueous NaHCO₃ solution (10 mL) at room temperature. The organic layer was separated and the aqueous phase was extracted with dichloromethane (3 × 30 mL). The combined organic layers were washed with brine (3 × 10 mL), dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (elution: hexane/EtOAc) to afford the desired α -amino- α -cyanophosphonates **1z** (1.43 g, yield: 80%).

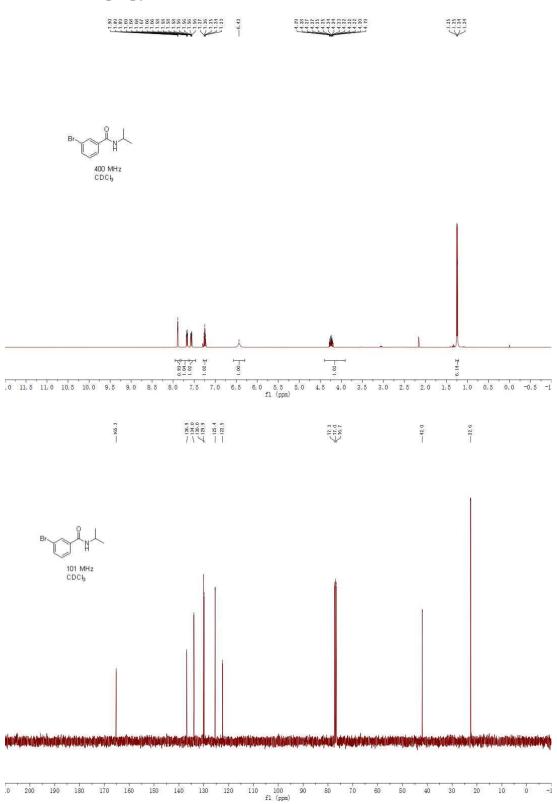

7. References

- Deng, Y.-L.; Tang, S.; Ding, G.-L.; Wang, M.-W.; Li, J.; Li, Z.-Z.; Yuana, L.; Sheng, R.-L. Org. Biomol. Chem., 2016, 14, 9348–9353.
- 2. Jiang, H.; Liu, B.; Li, Y.; Wang, A.; Huang, H. Org. Lett. 2011, 13, 1028-1031.
- Rolfe, A.; Probst, D. A.; Volp, K. A.; Omar, I.; Flynn, D. L.; Hanson, P. R. J. Org. Chem. 2008, 73, 8785–8790.
- Mathew, B. P.; Yang, H. J.; Kim, J.; Lee, J. B.; Kim, Y.-T.; Lee, S.; Lee, C. Y.; Choe, W.; Myung, K.; Park, J.-U.; Hong, S. Y. Angew. Chem. Int. Ed. 2017, 56, 5007 –5011.
- 5. Evans, V.; Mahon, M. F.; Webster, R. L. Tetrahedron 2014, 70, 7593–7597.
- 6. Sharma, S.; Park, E.; Park, J.; Kim, I. S. Org. Lett., 2012, 14, 906–909.
- 7. Albert-Sorianoand, M.; Pastor, I. M. Eur. J. Org. Chem. 2016, 5180-5188.
- 8. Jørgensen, C. G.; Frølund, B.; Kehler, J.; Jensen, A. A. ChemMedChem 2011, 6, 725–736.
- 9. Singh, G.; Dada, R.; Yaragorla, S. Tetrahedron Letters 2016, 57, 4424–4427.
- 10. Lee, S.-H.; Nikonov, G. I. Dalton Trans., 2014, 43, 8888-8893.
- 11. Kokare, N. D.; Nagawade, R. R.; Rane, V. P.; Shinde, D. B. Synthesis 2007, 5, 766–772.
- 12. Pham, V.-T.; Joo, J.-E.; Lee, K.-Y.; Kim, T.-W.; Mu, Y.; Ham, W.-H. *Tetrahedron* **2010**, *66*, 2123–2131.
- 13. You, T. J.; Wang, Z. R.; Chen, J. J.; Xia, Y. Z. J. Org. Chem. 2017, 82, 1340-1346.
- 14. Xu, X. J.; Feng, H. D.; Huang, L. L.; Liu, X. H. J. Org. Chem. 2018, 83, 7962–7969.
- 15. Bahde, R. J.; Appella, D. H.; Trenkle, W. C. Tetrahedron Letters 2011, 52, 4103–4105.
- 16. Huy, P. H.; Motsch, S.; Kappler, S. M. Angew. Chem. Int. Ed. 2016, 55, 10145–10149.
- 17. Ellsworth, A. A.; Magyar, C. L.; Hubbell, G. E.; Theisen, C. C.; Holmes, D.; Mosey, R. A.

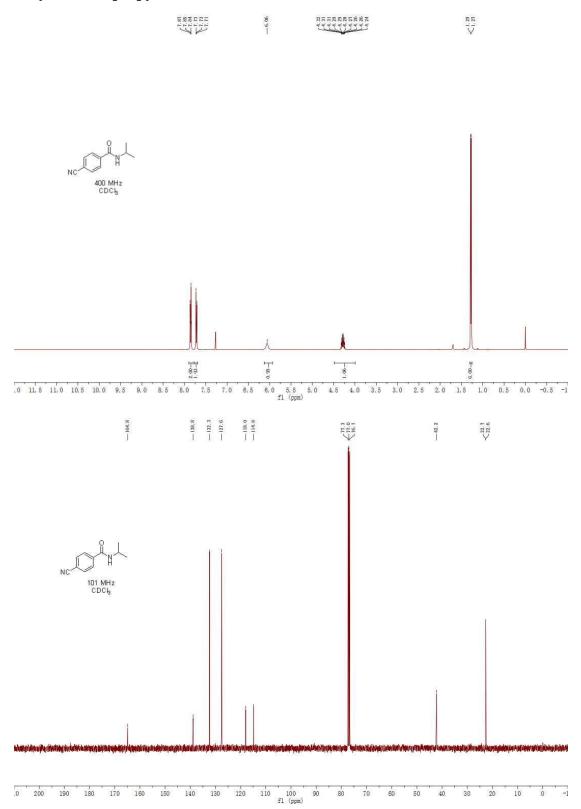
Tetrahedron 2016, 72, 6380-6389.


- 18. Pouliot, M.-F.; Mahé, O.; Hamel, J.-D.; Desroches, J.; Paquin, J.-F. Org. Lett., 2012, 14, 5428–5431.
- 19. Smith, R. T.; Zhang, X.; Rincon, J. A.; Agejas, J.; Mateos, C.; Barberis, M.; García-Cerrada, S.; de Frutos, O.; MacMillan, D. W. C. *J. Am. Chem. Soc.* **2018**, *140*, 17433–17438.
- 20. Hemming, D. S.; Talbot, E. P.; Steel, P. G. Tetrahedron Letters 2017, 58, 17-20.
- 21. Singh, G.; Dada, R.; Yaragorla, S. Tetrahedron Letters 2016, 57, 4424–4427.
- 22. Halima, T. B.; Vandavasi, J. K.; Shkoor, M.; Newman, S. G. ACS Catal. 2017, 7, 2176–2180.
- 23. Kitamura, M.; Sasaki, S.; Nishikawa, R.; Yamada, K.; Kunishima, M. *RSC Adv.*, **2018**, *8*, 22482–22489.

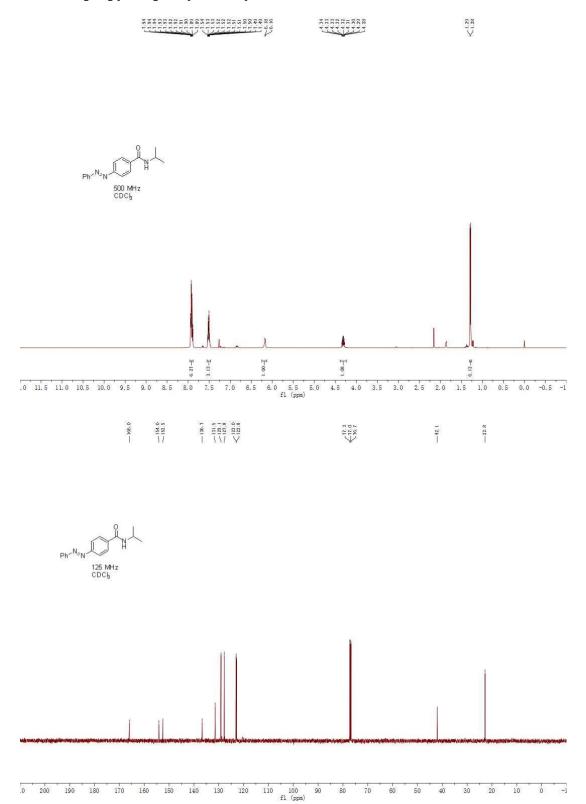
8. ¹H/ ¹³C/ ³¹P/ ¹⁹F NMR Spectra of New Compounds



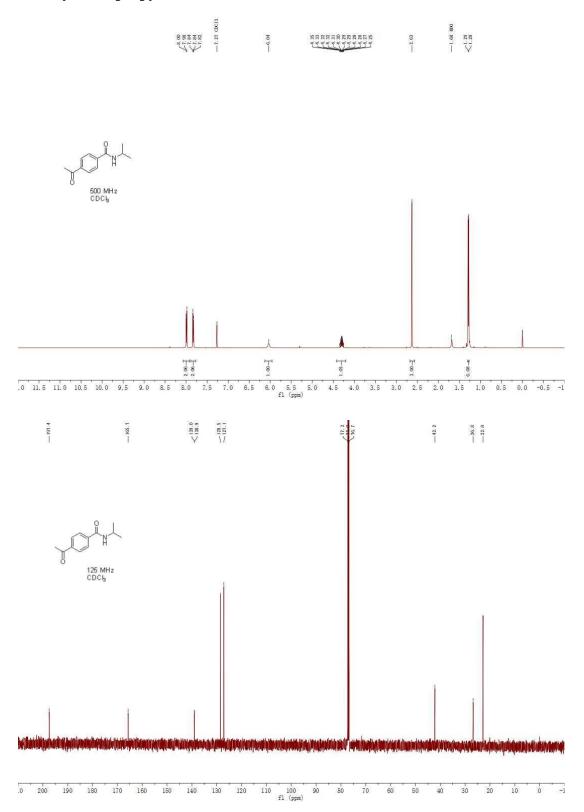
4-(Isopropylcarbamoyl)phenyl acetate (2e)

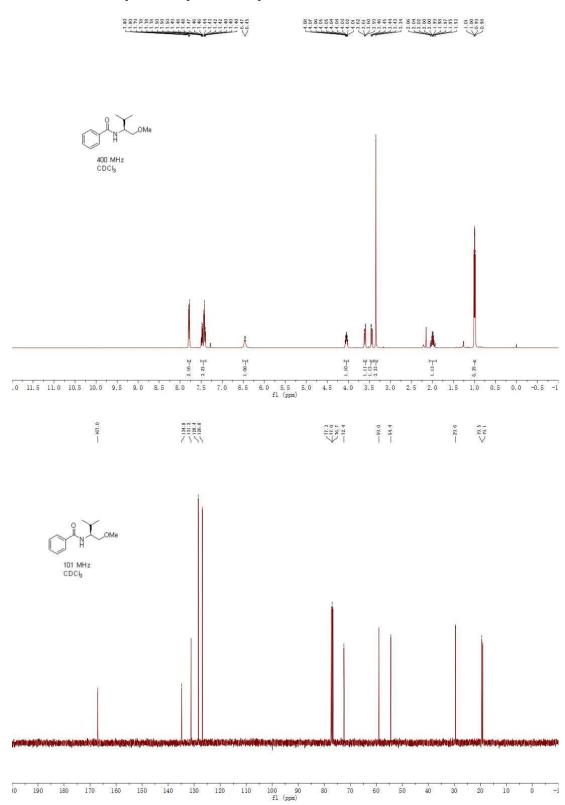

3,4-Dichloro-N-isopropylbenzamide (2g)

3-Bromo-N-isopropylbenzamide (2i)

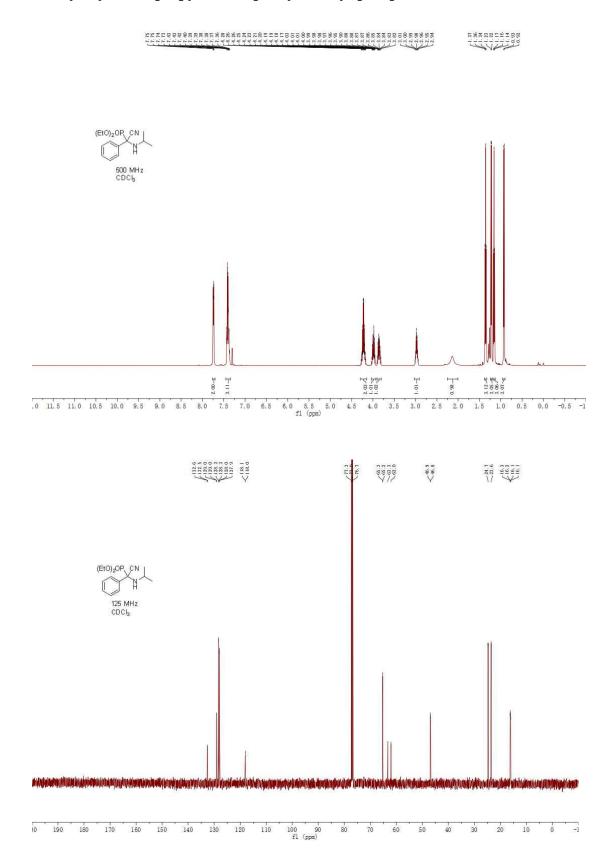


4-Cyano-N-isopropylbenzamide (21)

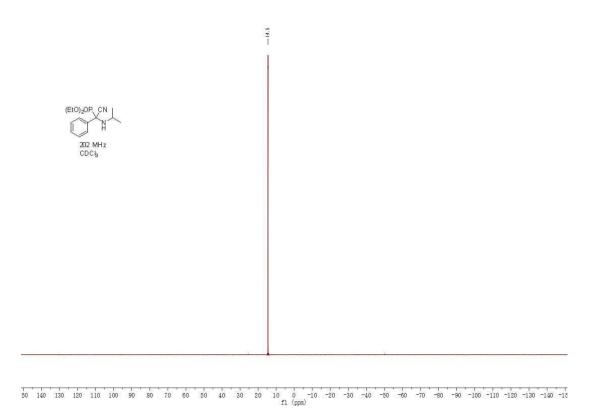


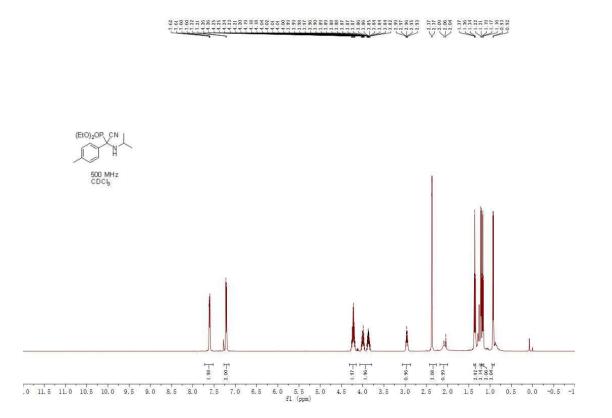

S37

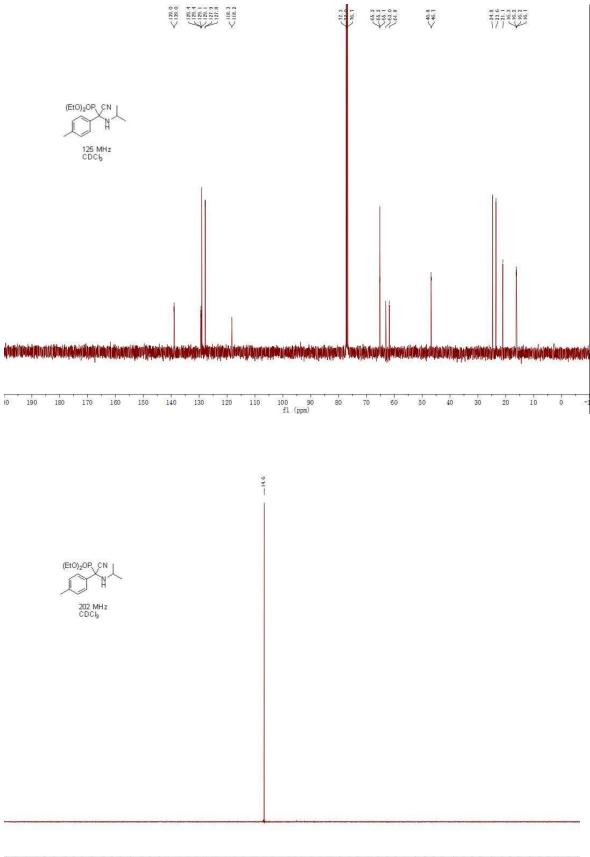
(E)-N-Isopropyl-4-(phenyldiazenyl)benzamide (2m)



4-Acetyl-*N*-isopropylbenzamide (2n)

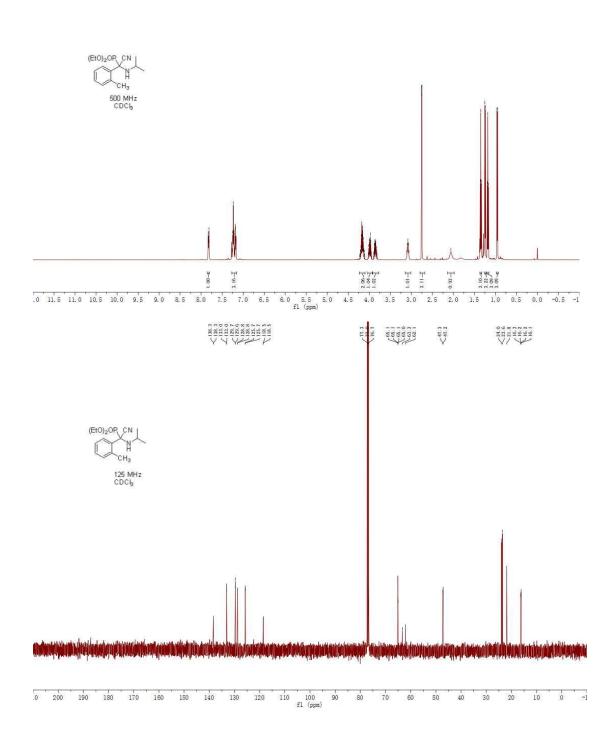


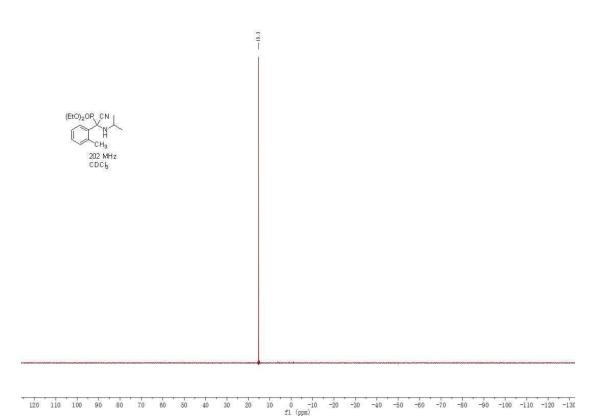

(S)-N-(1-Methoxy-3-methylbutan-2-yl)benzamide (2s)



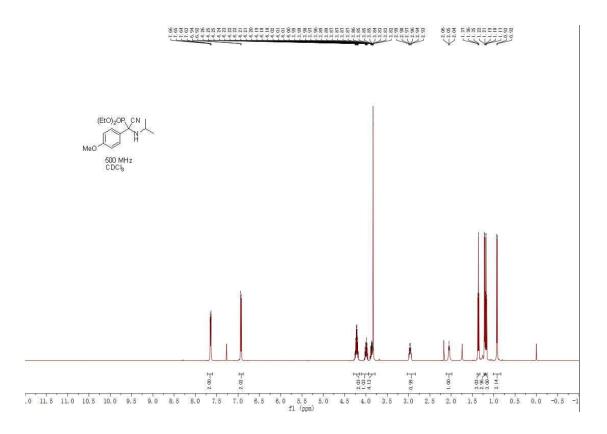
Diethyl (cyano(isopropylamino)(phenyl)methyl)phosphonate (1a)

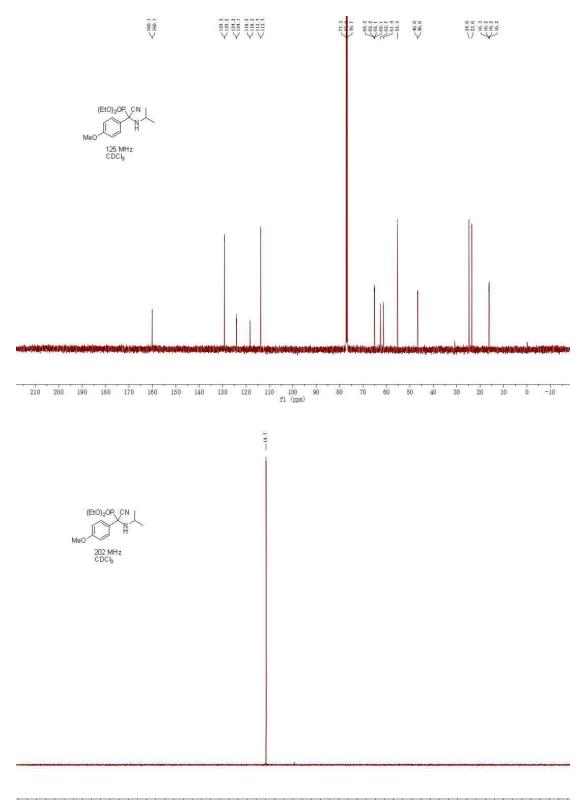
Diethyl (cyano(isopropylamino)(p-tolyl)methyl)phosphonate (1b)

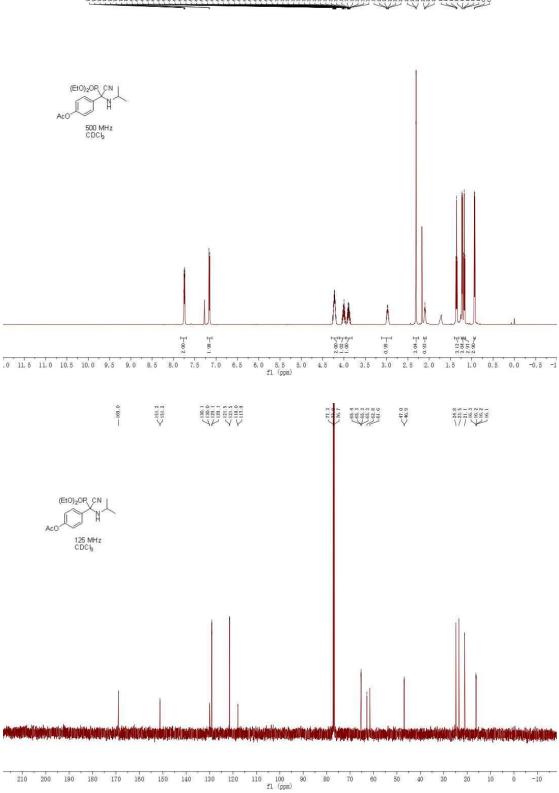


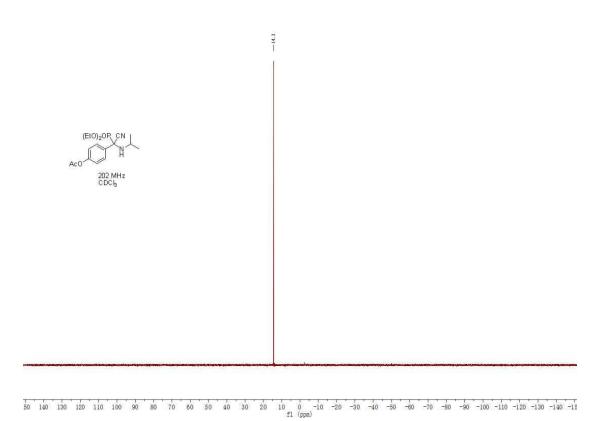


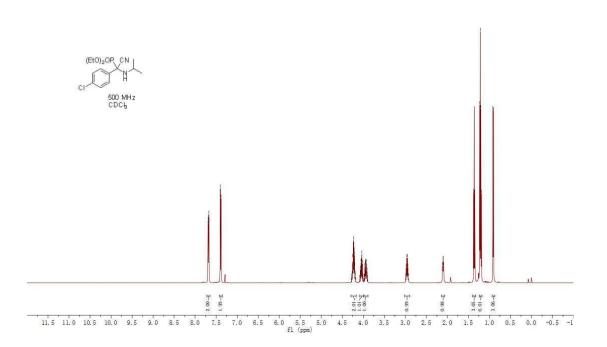
50 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -15 f1 (ppm)

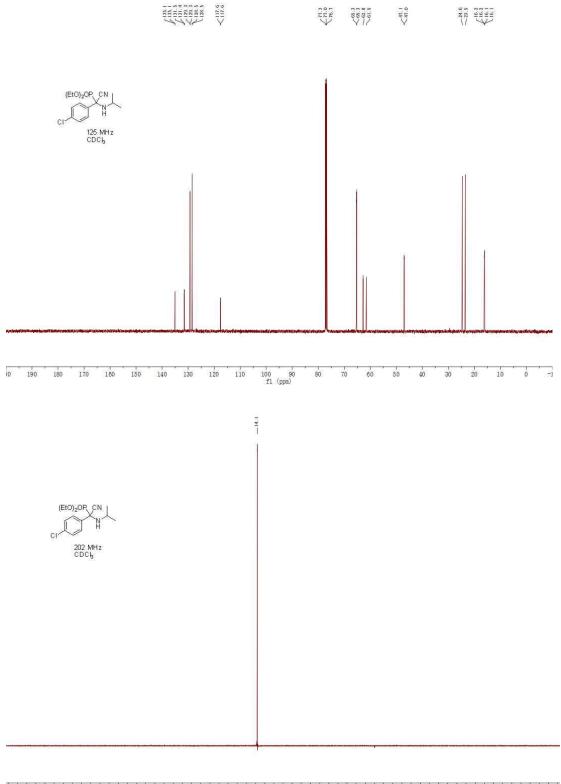

Diethyl (cyano(isopropylamino)(o-tolyl)methyl)phosphonate (1c)




Diethyl (cyano(isopropylamino)(4-methoxyphenyl)methyl)phosphonate (1d)

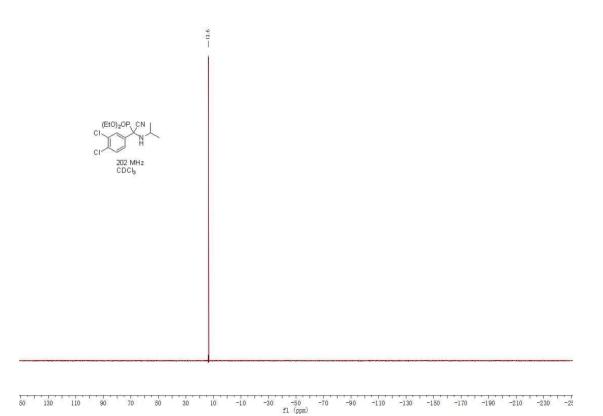


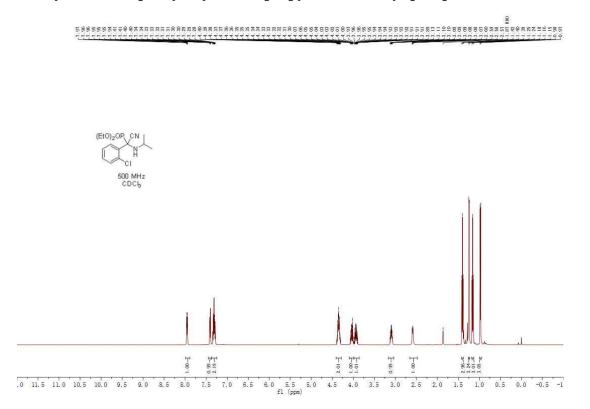

50 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -50 -50 -50 -100 -110 -120 -130 -140 -15 fl (ppm)

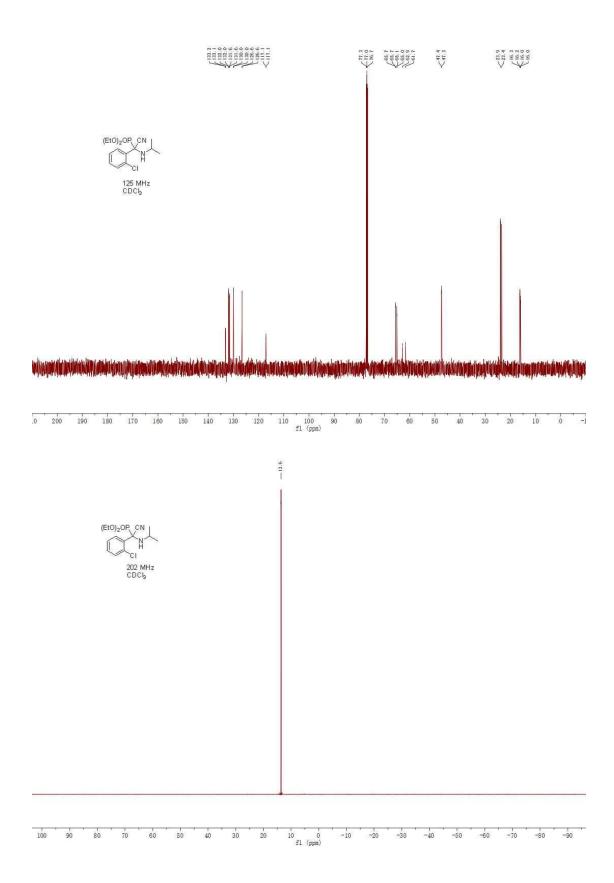

4-(Cyano(diethoxyphosphoryl)(isopropylamino)methyl)phenyl acetate (1e)



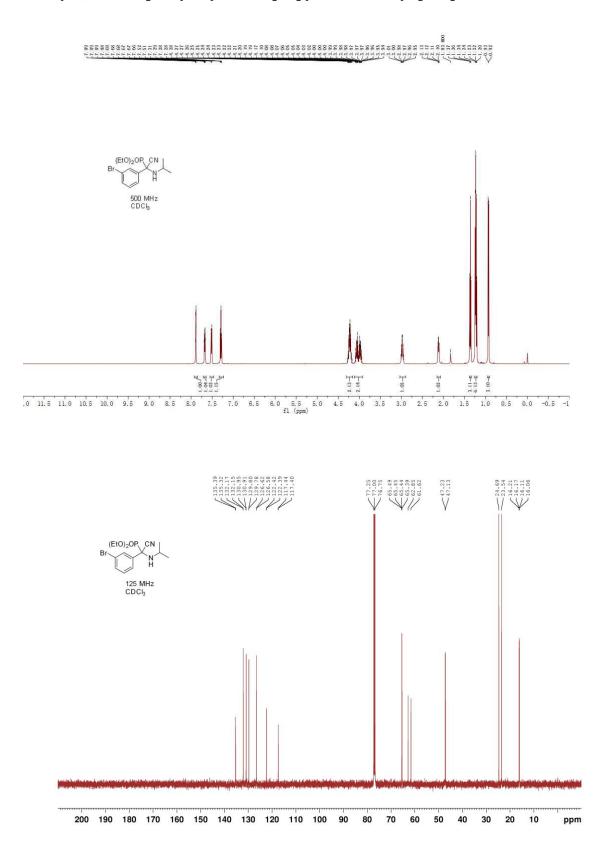
Diethyl ((4-chlorophenyl)(cyano)(isopropylamino)methyl)phosphonate (1f)

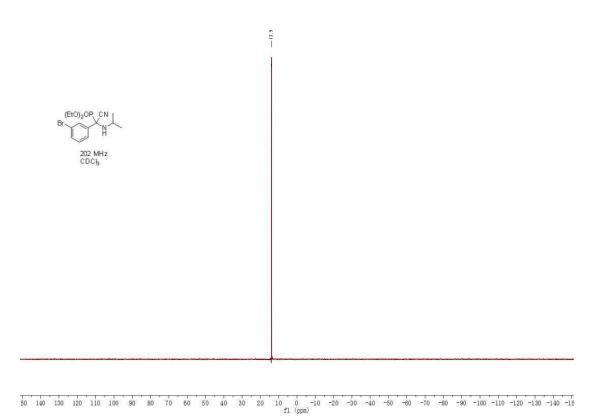


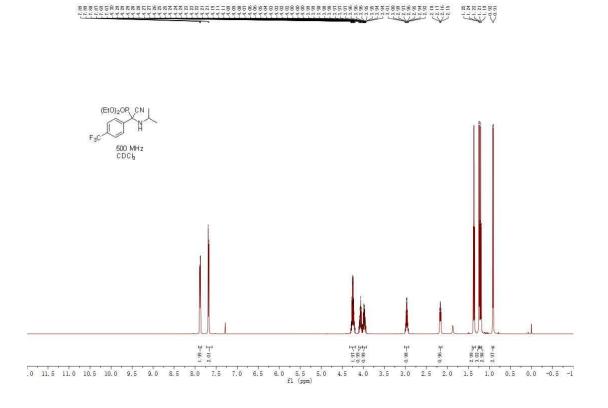

50 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -15 fl (pps)

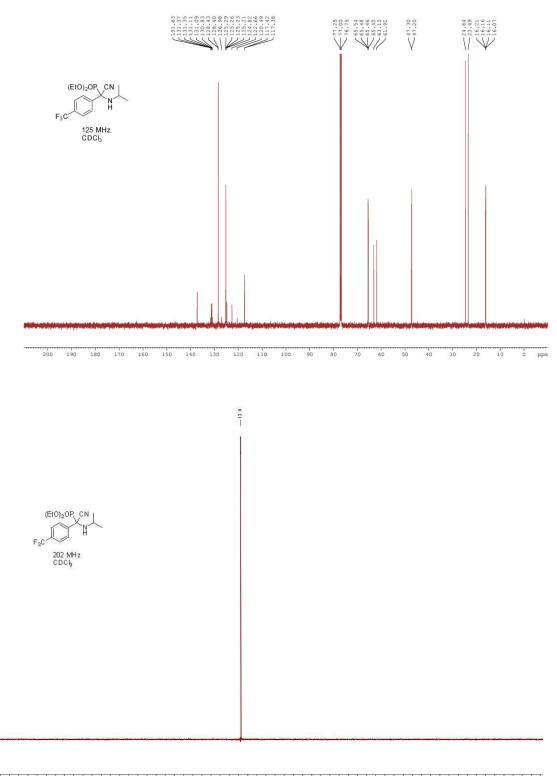


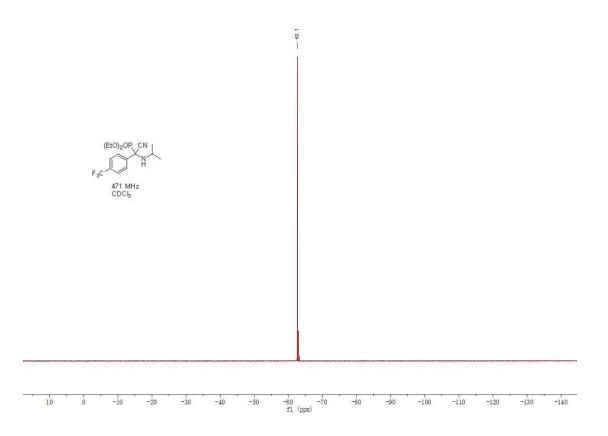
Diethyl (cyano(3,4-dichlorophenyl)(isopropylamino)methyl)phosphonate (1g)



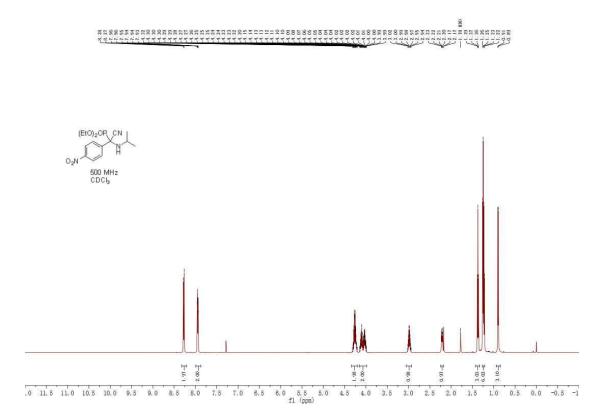

Diethyl ((2-chlorophenyl)(cyano)(isopropylamino)methyl)phosphonate (1h)

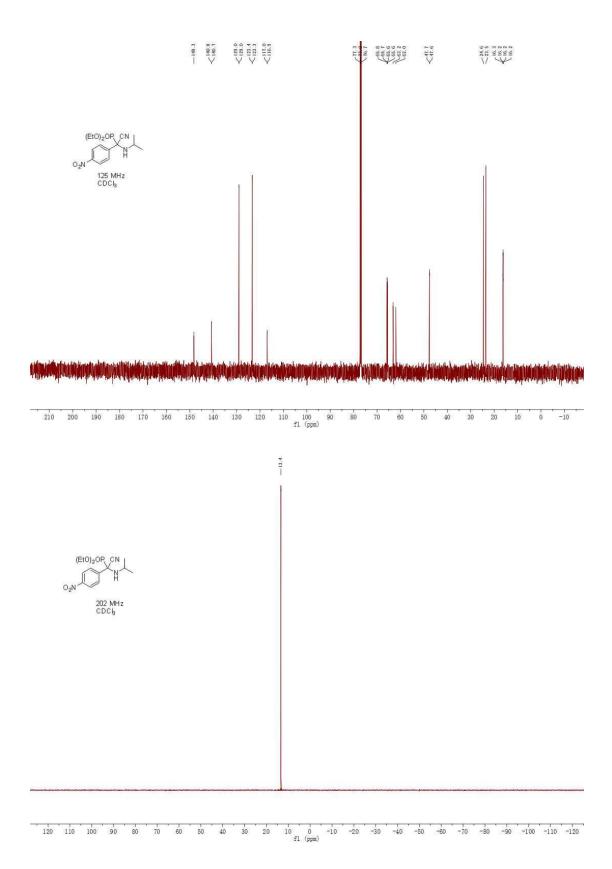



Diethyl ((3-bromophenyl)(cyano)(isopropylamino)methyl)phosphonate (1i)

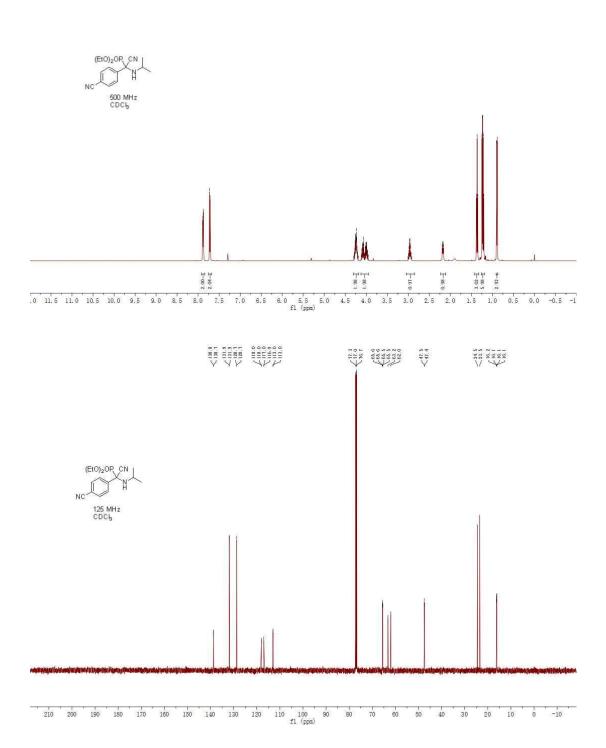


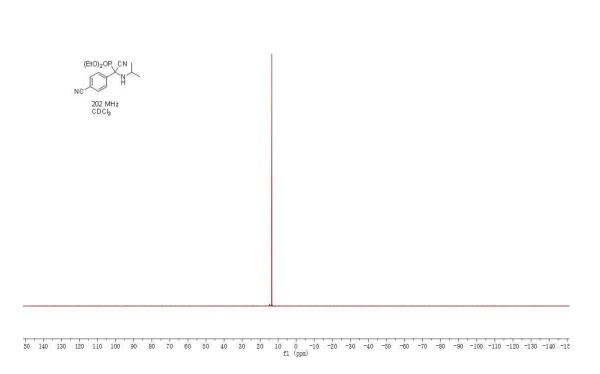
Diethyl (cyano(isopropylamino)(4-(trifluoromethyl)phenyl)methyl)phosphonate (1j)



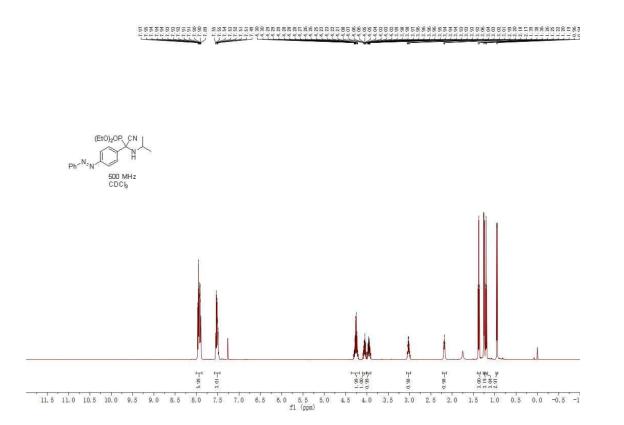


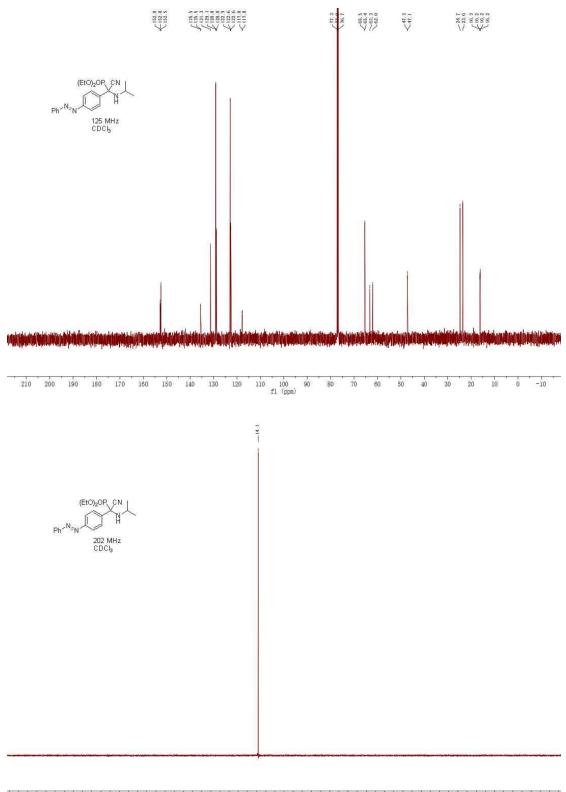
50 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -15 fl (ppm)

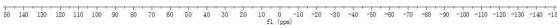

Diethyl (cyano(isopropylamino)(4-nitrophenyl)methyl)phosphonate (1k)



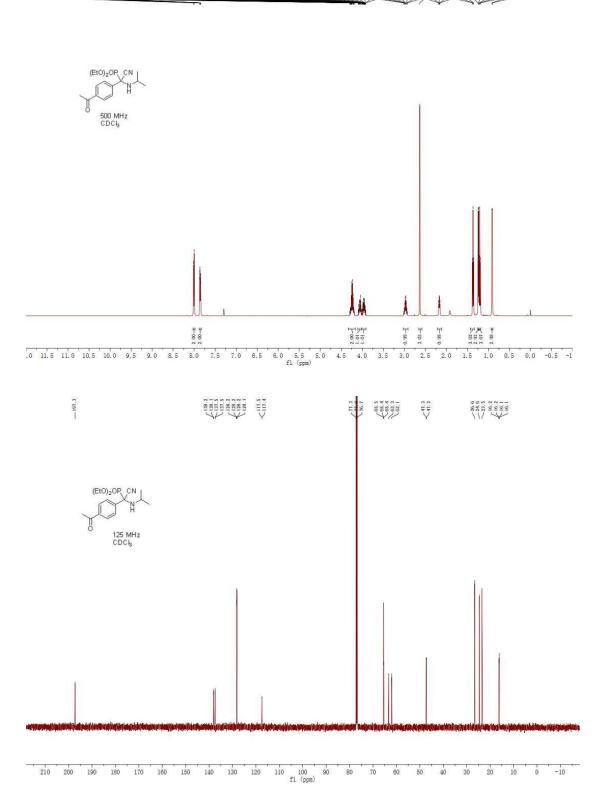
S57

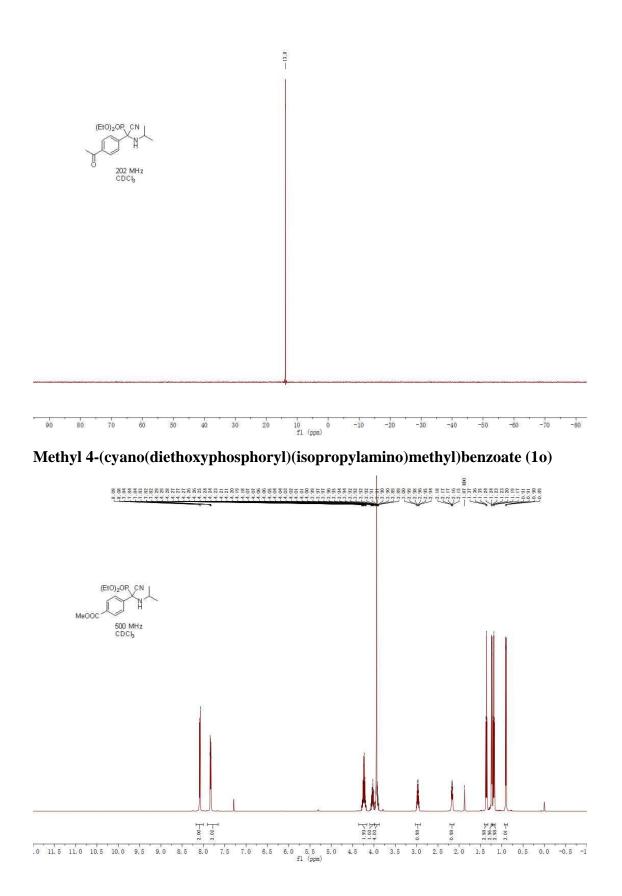

Diethyl (cyano(4-cyanophenyl)(isopropylamino)methyl)phosphonate (11)

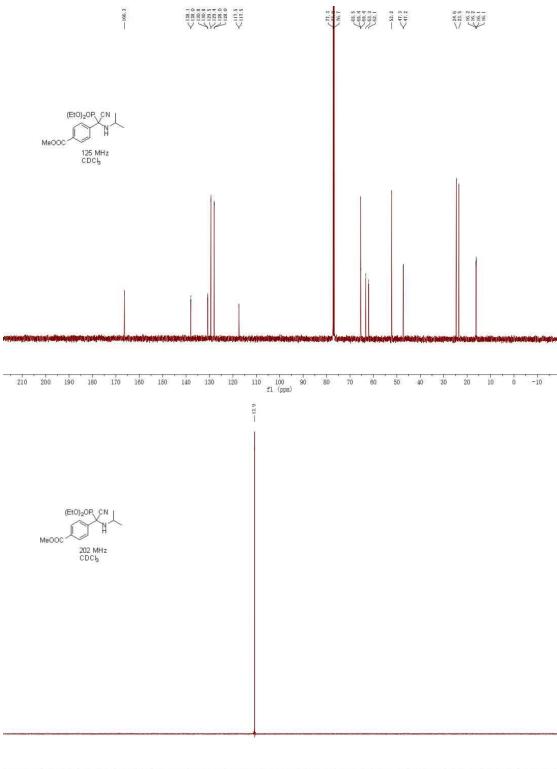




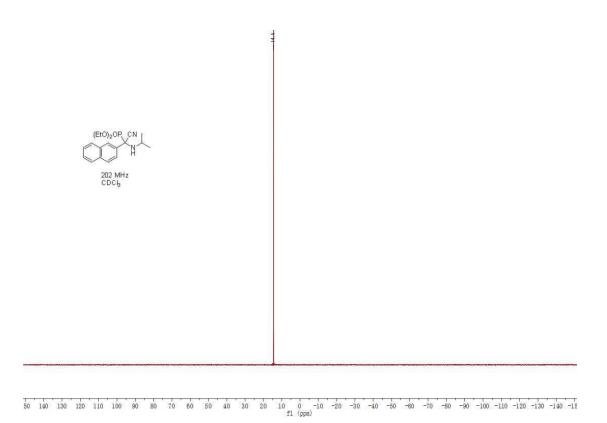
 $Diethyl\ (E)-(cyano (isopropylamino) (4-(phenyldiazenyl)phenyl)methyl) phosphon$

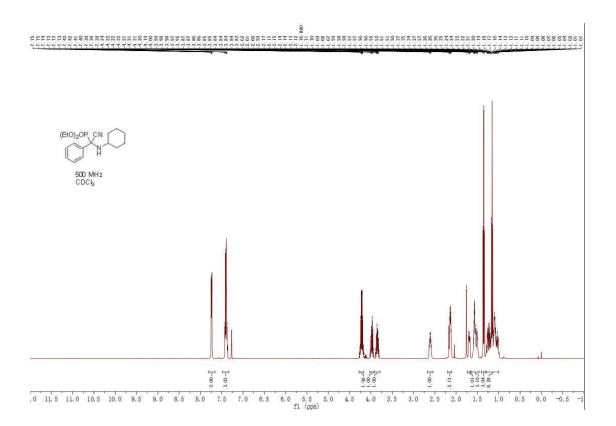

ate (1m)

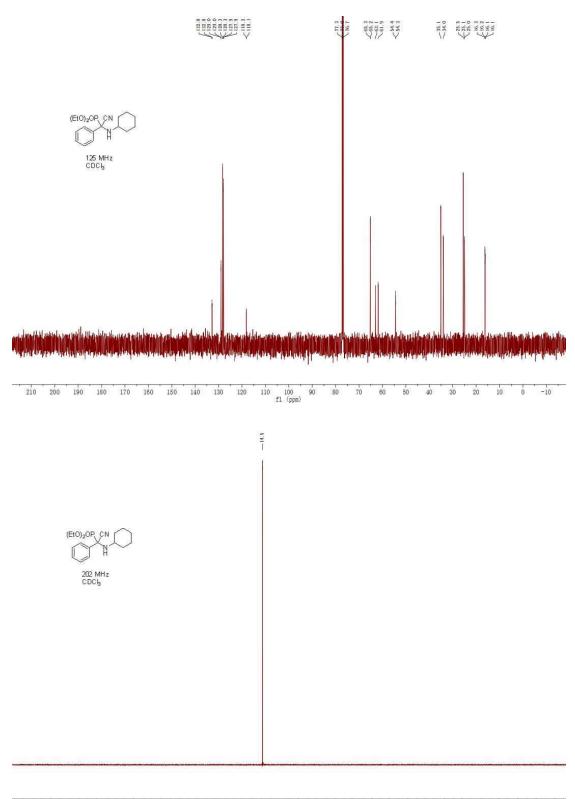


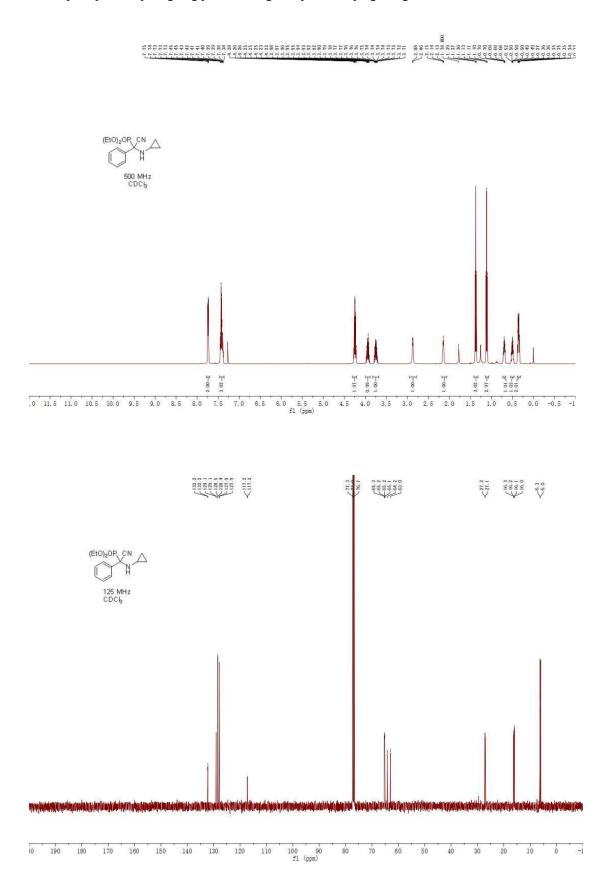


Diethyl ((4-acetylphenyl)(cyano)(isopropylamino)methyl)phosphonate (1n)

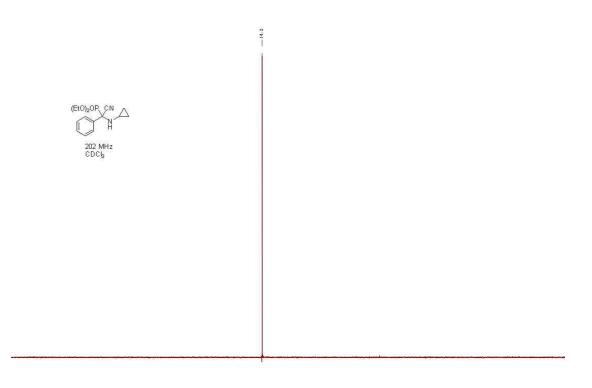



50 140 130 120 110 100 90 50 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -60 -90 -100 -110 -120 -130 -140 -15 f1 (ppm)

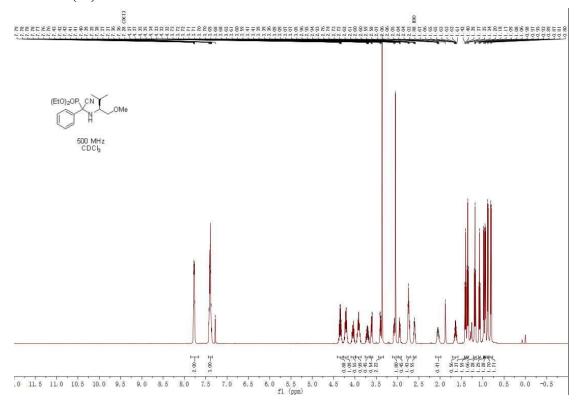

Diethyl (cyano(isopropylamino)(naphthalen-2-yl)methyl)phosphonate (1p)

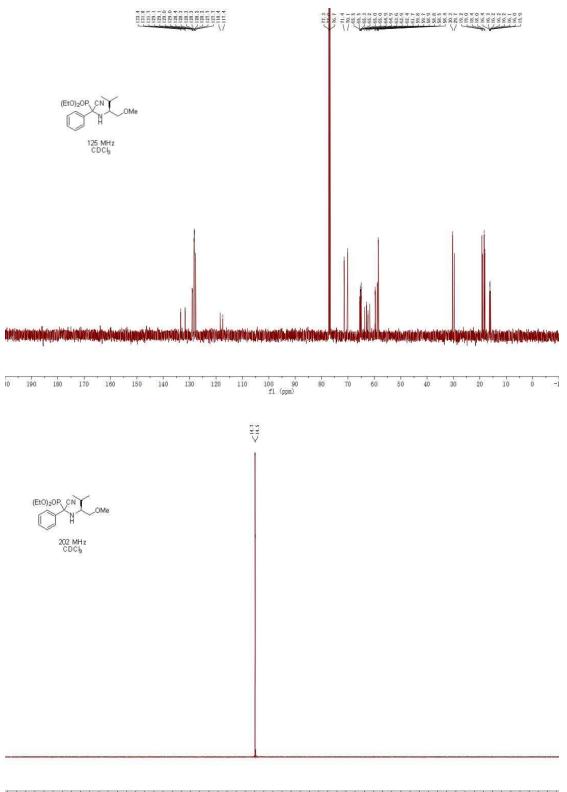


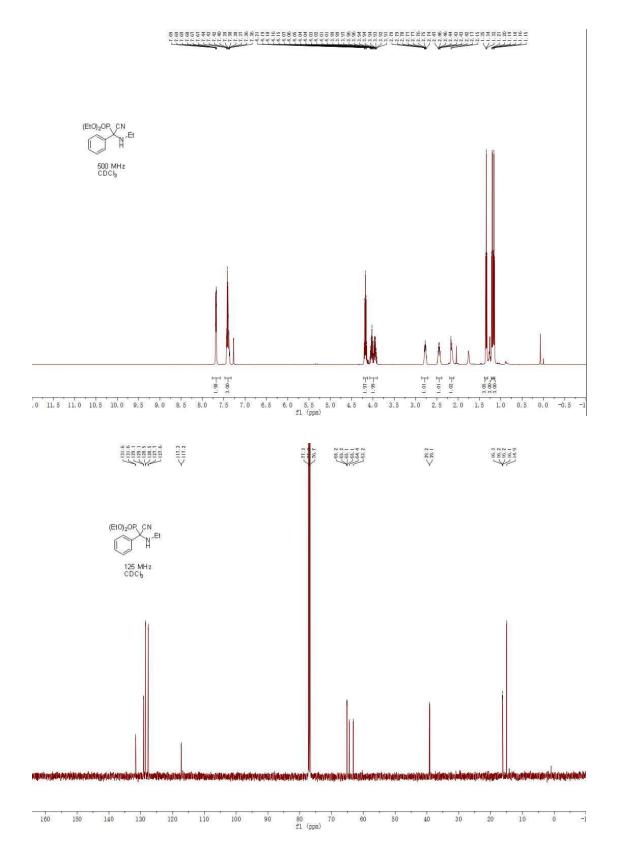
Diethyl (cyano(cyclohexylamino)(phenyl)methyl)phosphonate (1q)



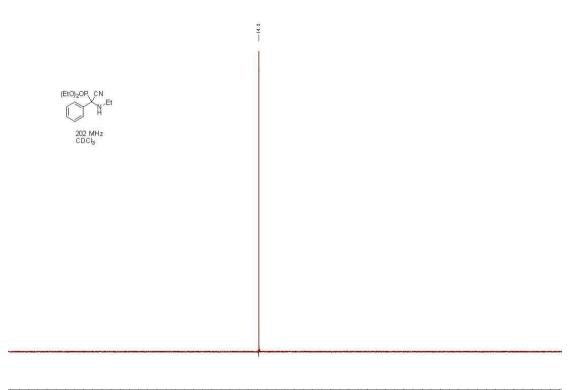
50 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -15 fl (ppm)



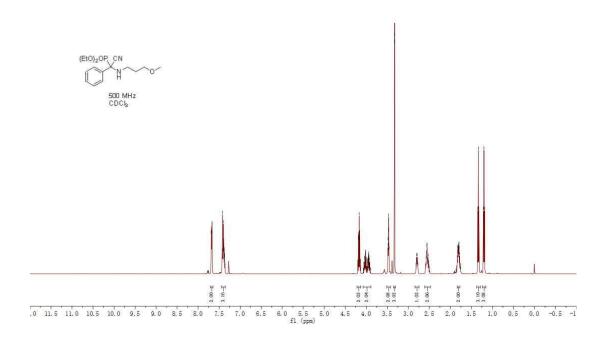

Diethyl (cyano(cyclopropylamino)(phenyl)methyl)phosphonate (1r)

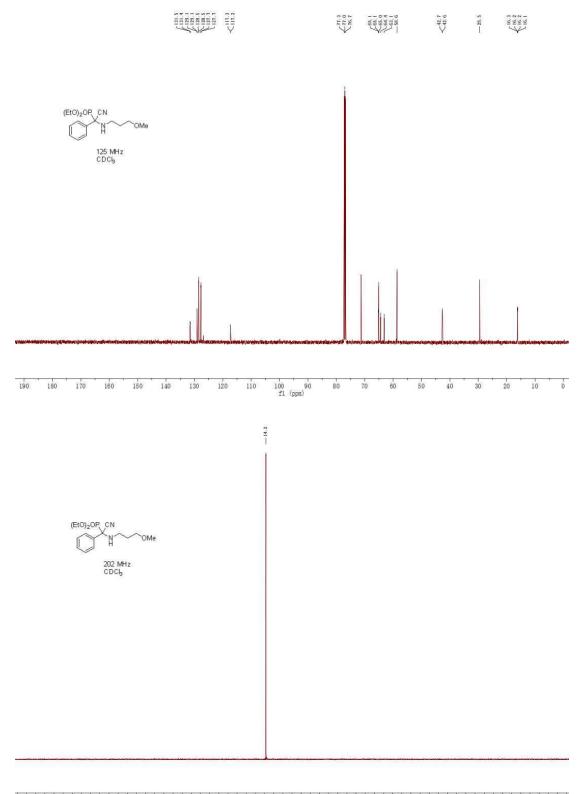

50 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -15 fl (ppm)

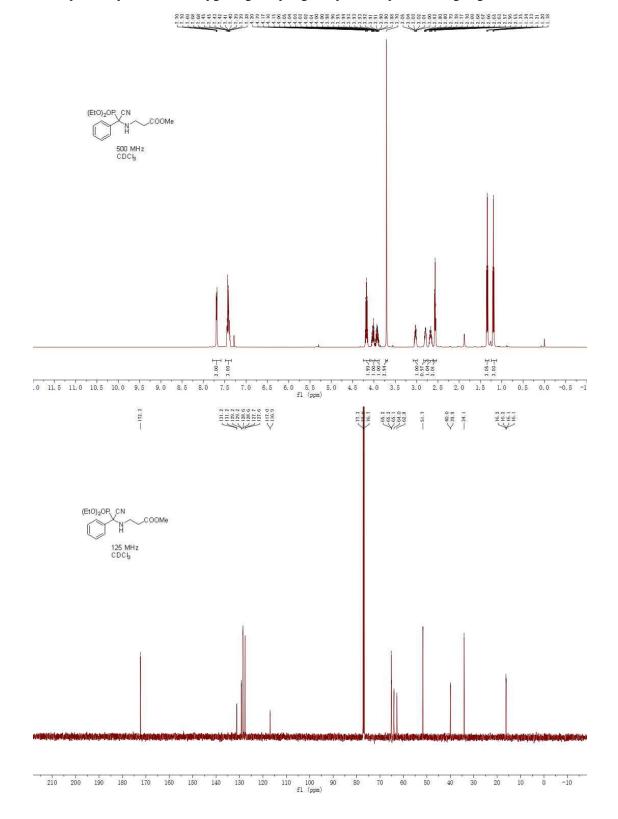
Diethyl (cyano(((S)-1-methoxy-3-methylbutan-2-yl)amino)(phenyl)methyl)phosp hornate (1s)



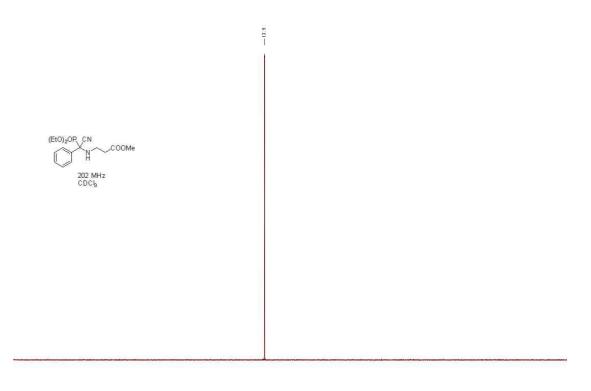
50 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -15 fl (ppm)



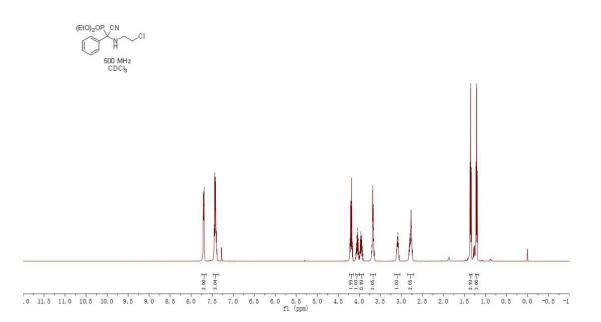

Diethyl (cyano(ethylamino)(phenyl)methyl)phosphonate (1t)

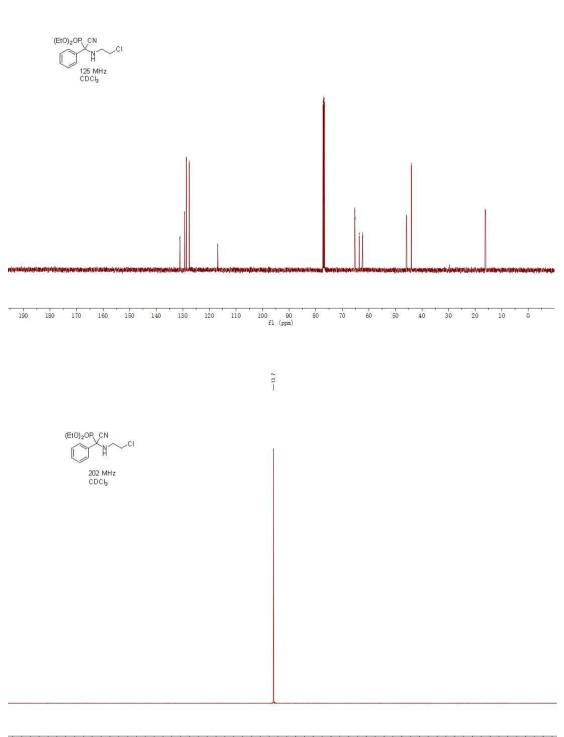

50 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -60 -90 -100 -110 -120 -130 -140 -15 fl (ppm)

Diethyl (cyano((3-methoxypropyl)amino)(phenyl)methyl)phosphonate (1u)

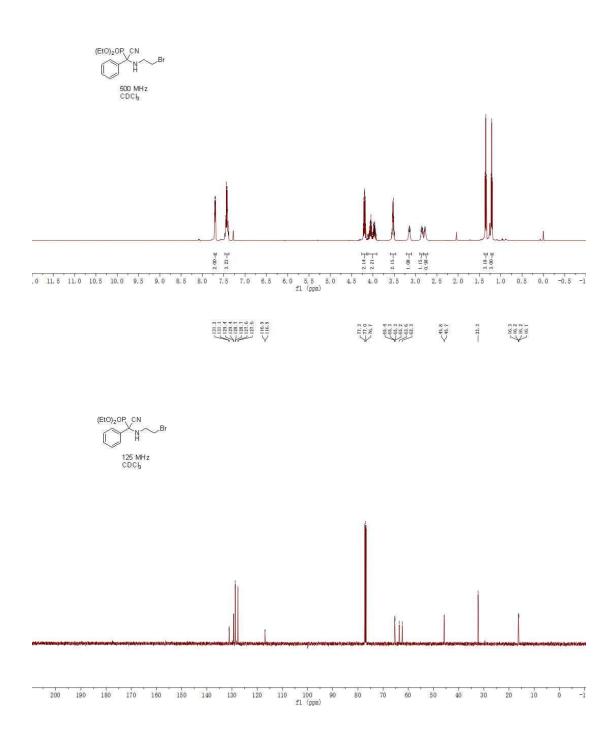


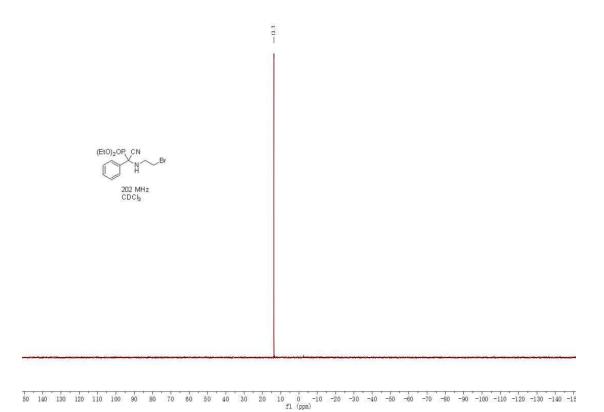
50 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -50 -50 -50 -100 -110 -120 -130 -140 -15 fl (ppm)

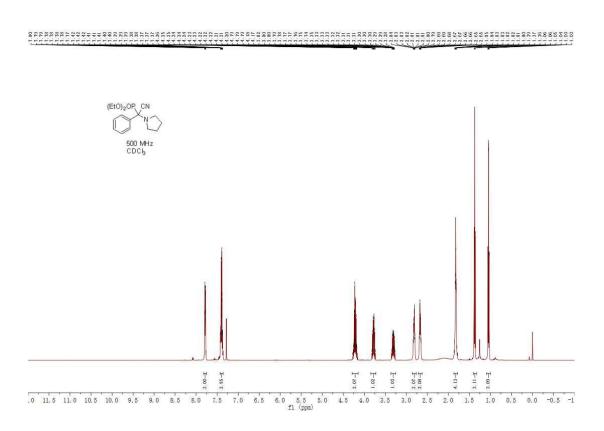


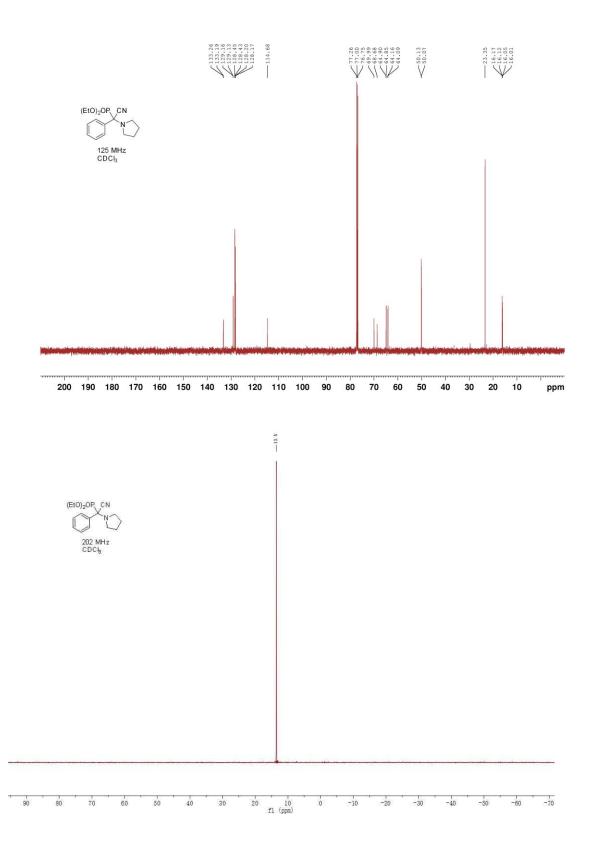

Methyl 3-((cyano(diethoxyphosphoryl)(phenyl)methyl)amino)propanoate (1v)

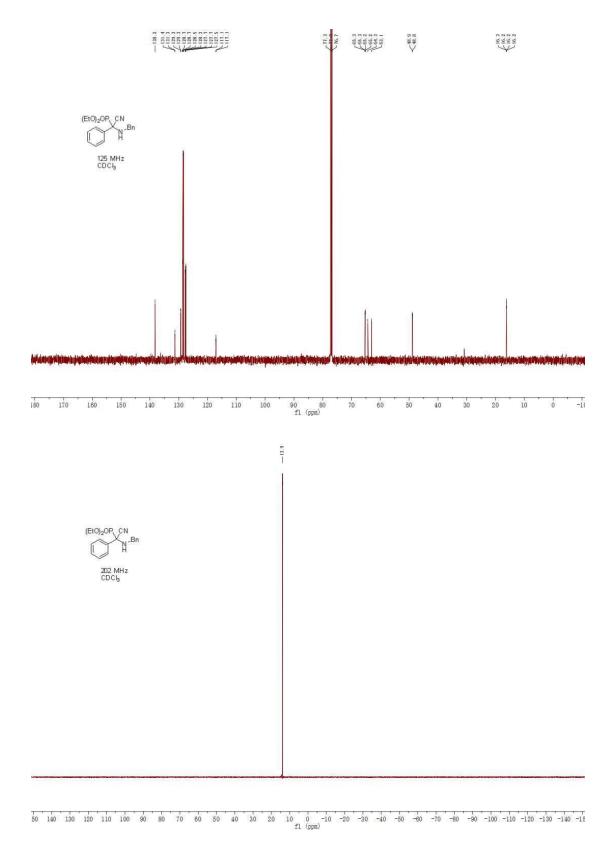
50 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -60 -90 -100 -110 -120 -130 -140 -15 fl (ppm)


Diethyl (((2-chloroethyl)amino)(cyano)(phenyl)methyl)phosphonate (1w)

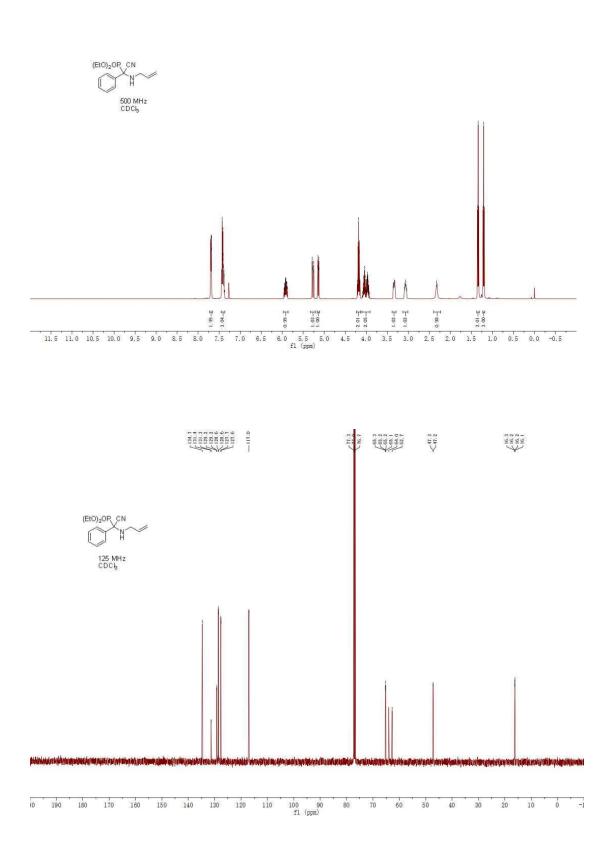


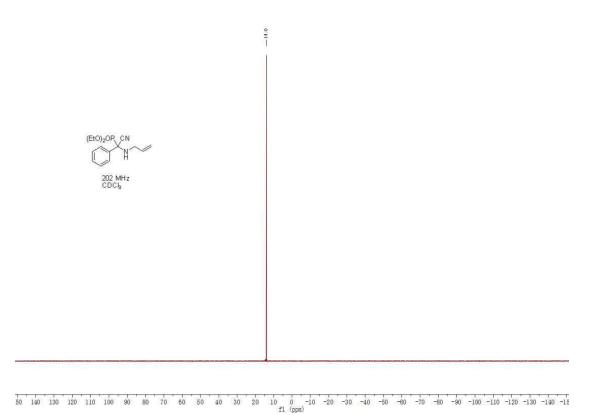

85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 fl (ppm)

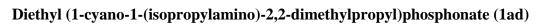

Diethyl (((2-bromoethyl)amino)(cyano)(phenyl)methyl)phosphonate (1x)

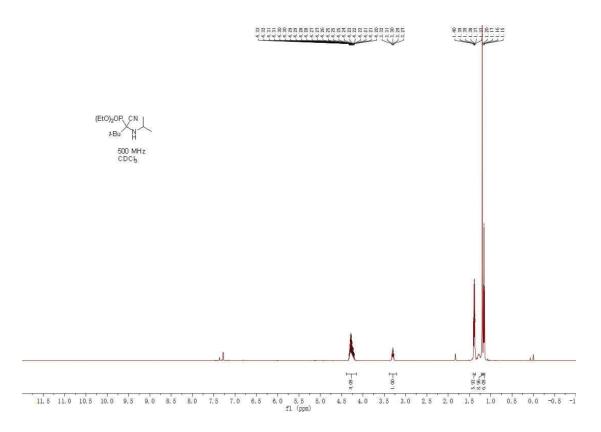


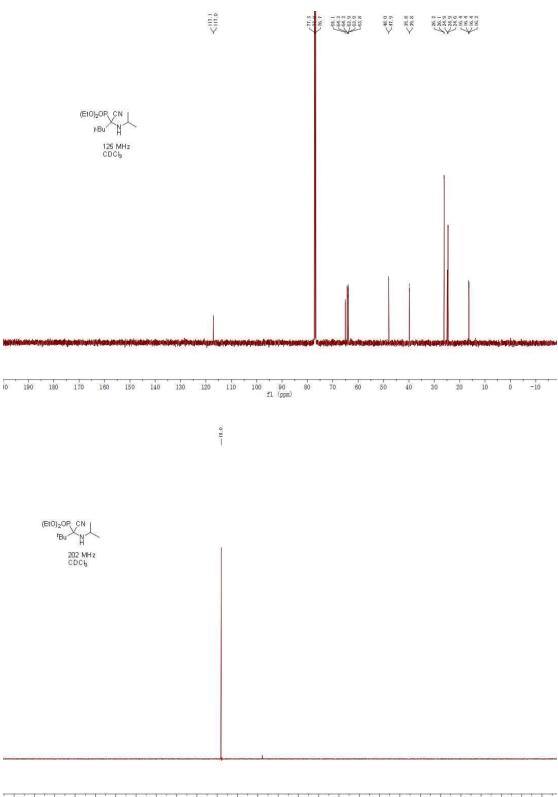
Diethyl (cyano(phenyl)(pyrrolidin-1-yl)methyl)phosphonate (1y)

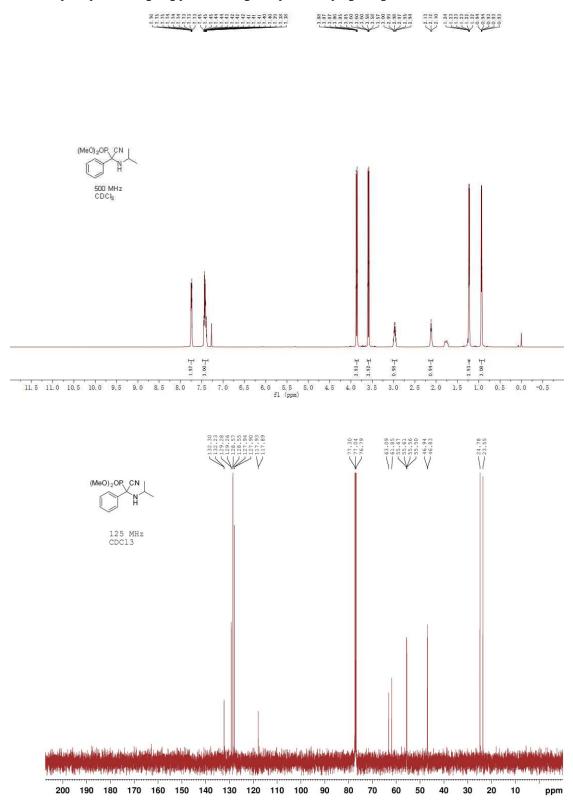


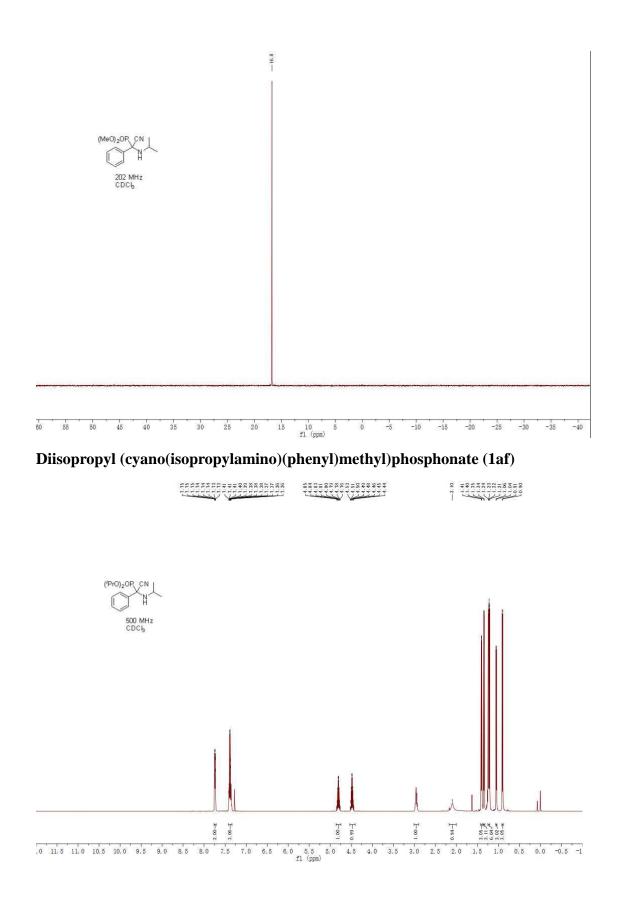


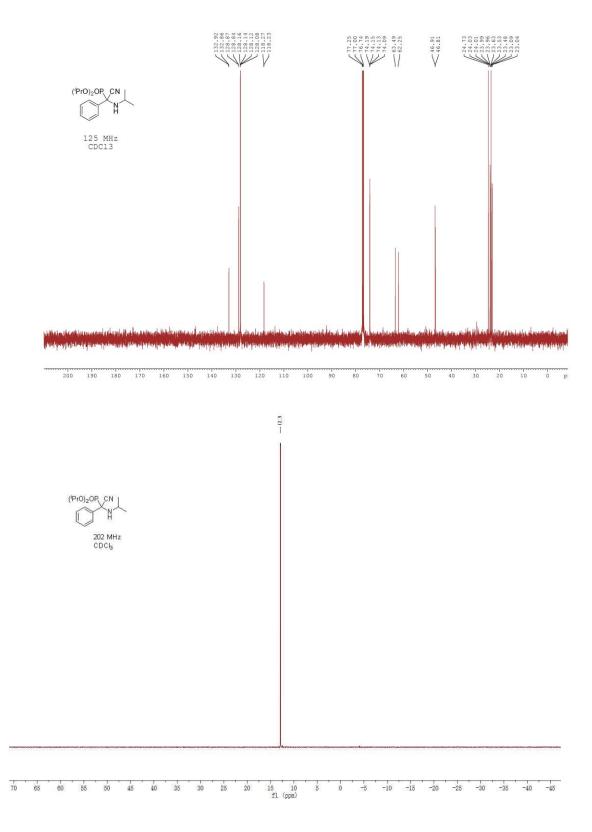

Diethyl ((benzylamino)(cyano)(phenyl)methyl)phosphonate (1z)




Diethyl ((allylamino)(cyano)(phenyl)methyl)phosphonate (1aa)







120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 fl (ppm)

Dimethyl (cyano(isopropylamino)(phenyl)methyl)phosphonate (1ae)

