Impact of the Silica Surface Nanoconfinement on the Microstructure of Alkoxysilane Layers Grafted by Supercritical Carbon Dioxide

Diane Rébiscoul^{†~}, Susan Sananes Israel[†], Samuel Tardif[‡], Vincent Larrey[#], André Ayral[§], Francois Rieutord[‡]

† CEA, ICSM – UMR 5257 CEA-CNRS-UM-ENSCM, 30207 Bagnols-sur-Cèze Cedex, France

[‡] Univ. Grenoble Alpes, CEA, IRIG-MEM, F-38000 Grenoble, France

[#]Univ. Grenoble Alpes, CEA, LETI, F-38000 Grenoble, France

§ Institut Européen des Membranes, IEM, UMR-5635, Université de Montpellier, ENSCM,

CNRS, Place Eugène Bataillon, 34095 Montpellier cedex 5, France

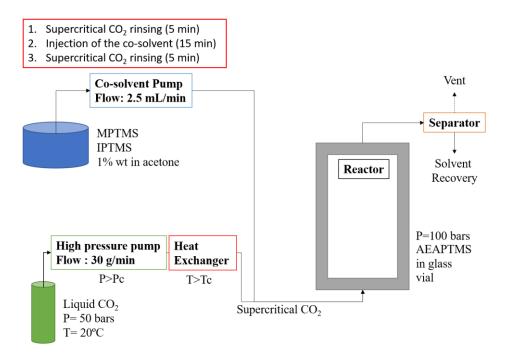
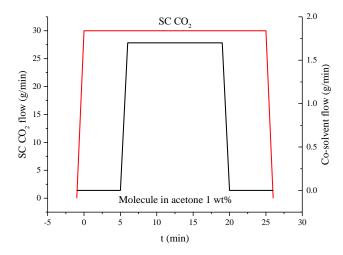
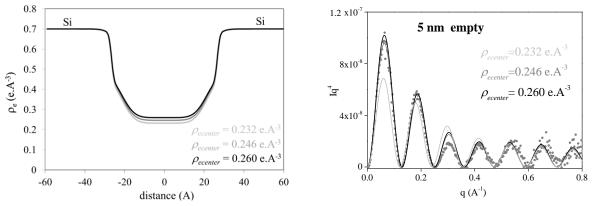
~Corresponding author: <u>diane.rebiscoul@cea.fr</u>

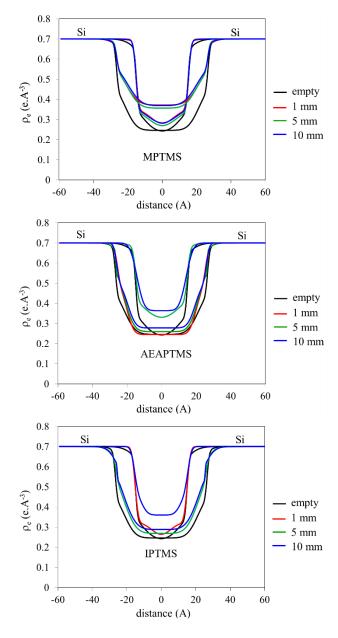
Table S1. Physicochemical properties of the grafted molecules. Molecule length l_{al} is calculated using ChemSketch software and from¹⁶. ρ_{eal} is calculated for each molecule as $\rho_{eal} = \rho_m \frac{\sum_i c_j Z_j}{\sum_i c_j A_j}$, where c_j is the amount of element j in the material, Z_j is the atomic number, A_j is the atomic mass and $\rho_m (g.Å^{-3})$ is the mass density.

Molecule	MPTMS	AEAPTMS	IPTES	
Chemical formula				
	HS OCH ₃ HS OCH ₃ OCH ₃	H ₃ CO-Si NH ₂	$\begin{tabular}{c} OCH_2CH_3\\ I & Si-OCH_2CH_3\\ I & OCH_2CH_3\\ OCH_2CH_3 \end{tabular}$	
$\rho_{\rm m}({\rm g.cm^{-3}})$	1.01	1.06	1.48	
ρ_{eal} (eÅ ⁻³)	0.33	0.34	0.40	
lal (Å)	10	12 ¹⁵	10	

Table S2. Thickness *th* and electron density ρ_e of the layer grafted obtained from the simulation of the X-ray reflectivity curves from ¹⁶.

Sample	Molecule	T (°C)	th (Å)	ρe (eÅ ⁻³)	Roughness grafted layer (Å)
MPT-60	MPTMS	60	13.6	0.326	3
AEA-60	AEAPTMS	60	11.1	0.272	8
IPT-100	IPTMS	100	17.8	0.407	2


Figure S1: Experimental setup of the SC CO₂ grafting process.

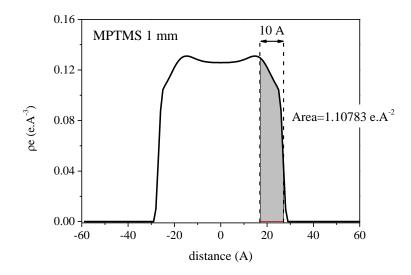
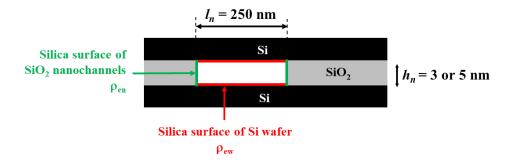

Figure S2. SC CO₂ and solvent flow applied during the SC CO₂ grafting process with MPTMS and IPTMS molecules.

Figure S3. Impact of the variation of the electron density in the center of the nanochannels $\rho_{ecenter}$ of ± 0.014 e.Å⁻³ on X-ray reflectivity curves.


Figure S4: Electron density profiles obtained from the model used for the fitting of the experimental X-ray reflectivity curves of the samples before and after SC CO₂ grafting processes with MPTMS, AEAPTMS and IPTMS at 1, 5 and 10 mm from the entrance of the 3 and 5 nm nanochannels networks.

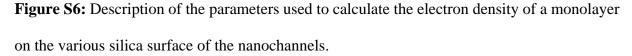


Figure S5: Example of the area determination taking into account the surface density of electron on a distance corresponding to the molecule length for 5 nm nanochannels network grafted with MPTMS at 1 mm from the nanochannels network entrance.

SI1. Origin of the electron density profile: grafted silica surface of Si wafer or/and grafted silica surface of SiO₂ nanochannels

In order to determine if the added electron density in the nanochannels after the SC CO₂ process is mainly due to the alkoxysilanes grafting on the silica surface of Si wafer (top and bottom) and/or on the side silica surface of SiO₂ nanochannels (Figure S6), the two electron densities were calculated supposing a monolayer grafting. The first one is the electron density of a monolayer grafted on the silica of the Si wafer ρ_{ew} . The second one is the electron density of a monolayer on the silica surface of the SiO₂ nanochannels ρ_{en} .

Thus, considering that the accessible surface of silica on Si wafer contributes to 50 % of the total surface in the nanochannels (50% of the Si wafer is covered by the SiO₂ nanochannels), the electron density of a monolayer grafted on the silica of the Si wafer can be written as $\rho_{ew}(1)$:

$$\rho_{ew} = \rho_{eal}/2 \tag{1}$$

With ρ_{eal} (e.Å⁻³), the electron density of the liquid alkoxysilane (Table S1) or the density of the grafted layer measured in ¹⁶.

The electron density of a grafted layer on the silica surface of the SiO₂ nanochannels can be calculated from the number of electrons in the grafted monolayer n_{en} (2):

$$n_{en} = 2\rho_{eal}.\,l_{al}.\,L.\,h_n$$
(2)

with l_{al} (Å) the thickness of the grafted layer, L (Å) the sample length and h_n (Å) the height of the nanochannels.

Considering the volume of a nanochannel v (Å³) (3):

$$v = l_n L. h_n$$

With l_n (Å) the width of one nanochannels and taking into account that SiO₂ nanochannels contribute to 50 % of the total volume of the nanochannels, the electron density of a grafted layer on the silica surface ρ_{en} (e.Å⁻³) of the nanochannels can be written as (4):

$$\rho_{en} = \frac{\rho_{eal} \cdot l_{al}}{l_n}$$
(4)

These values were calculated following two approaches. First, ρ_{ew} and ρ_{en} were determined considering the grafted layer thickness as the molecule length and the mass density of the liquid alkoxysilane ρ_{eal} (e.A⁻³) (Table S1). Second, $\rho_{ew} *$ and $\rho_{en} *$ were calculated from the thickness and the density obtained by X-ray reflectivity for a layer grafted on a large flat surface¹⁶. The obtained values are presented in the Table S3.

Table S3 : Electron densities of a monolayer grafted on the silica of the Si wafer ρ_{ew} and electron density of a monolayer on the silica surface of the SiO₂ nanochannels ρ_{en} . ρ_{ew} and ρ_{en} were calculated from Tablea SI and ρ_{ew}^* and ρ_{en}^* were calculated from ¹⁶.

	$ \rho_{ew} $ (e.A ⁻³)	$\rho_{ew} * (e.A^{-3})$	$ \rho_{en} $ (e.A ⁻³)	$\rho_{en} * (e.A^{-3})$
MPTMS	0.166	0.163	0.001	0.002
AEAPTMS	0.170	0.136	0.003	0.001
IPTES	0.201	0.142	0.002	0.002

As presented in Table S3, the ρ_{en} values are negligible regarding ρ_{ew} , and represent at a maximum 2 % of the $\Delta \rho_e$ shown in Figure 5. This is not surprising considering the high aspect ratio of the channels (3-5 nm high, 250 nm wide). Consequently, the added electron densities in the nanochannels presented in Figure 5 are mainly due to the alkoxysilanes grafted at the silica surface of the Si wafer.