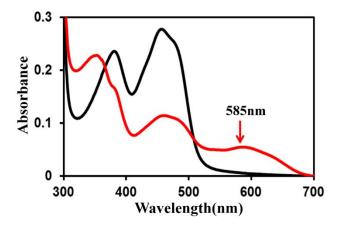
Supporting Information for


Structural and Functional Studies of the Membrane Binding Domain of NADPH - Cytochrome P450 Oxidoreductase

Chuanwu Xia^{1*}, Anna L. Shen^{2*}, Panida Duangkaew^{1,3,5}, Rattanawadee Kotewong^{1,3}, Pornpimol Rongnoparut³, Jimmy Feix⁴, and Jung-Ja P. Kim¹

From ¹Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226; ²McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin 53706 ³Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand ⁴Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 ⁵Present address: Faculty of Animal Sciences and Agricultural Technology, Silpakorn University, Cha-am, Phetchaburi 76120 Thailand.

Corresponding Author: Jung-Ja P. Kim, Department of Biochemistry, Medical College of Wisconsin jjkim@mcw.edu

Figure S1. Absorbance Spectra of oxidized (black) and NADPH reduced (red) forms of Cys-less CYPOR (CYPOR*). The Absorbance Spectrum of CYPOR* was recorded at one minute after addition of $50~\mu M$ (final concentration) of NADPH. The semiquinone formation was indicated by the appearance of the new broad peak at 585~nm in the reduced form. Thus, there is no gross effect of the seven cysteine substitutions on the FMN- and FAD-binding to the polypeptide and electron transfer from NADPH to the flavins.

