Supporting Information

Dehydrogenation of Isobutane over Ni-P/SiO₂ Catalyst: Effect of P Addition

Qingqing Zhu, Shan Zhang, Huanling Zhang, Guowei Wang*, Xiaolin Zhu, and Chunyi Li*

State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, PR China

*Corresponding authors: wangguowei@upc.edu.cn (G. Wang)

chyli@upc.edu.cn (C. Li)

^{*} Corresponding authors: wangguowei@upc.edu.cn (G. Wang); chyli@upc.edu.cn (C. Li) S-1

Contents

The principle and method of carbometer

Figures

Figure S1. TG-DTA curves of deactivated 5Ni-P/SiO₂-1.0 catalyst.

Figure S2. H₂-TPR profiles of the precursors of 5Ni-P/SiO₂-x catalyst.

Figure S3. NH₃-TPD curve of 5Ni-P/SiO₂-1.0 catalyst.

Figure S4. The geometry arrangements of Ni and P atoms in (a) Ni₃P, (b) Ni₁₂P₅, and (c) Ni₂P.

Figure S5. Real time MS spectra of isobutane dehydrogenation over 5Ni-P/SiO₂-1.0 catalyst with time on stream (Reaction conditions: mass of catalyst: 1.0 g; gas flow: 20 mL min⁻¹; isobutane partial pressure: 20 kPa; temperature: 600 °C).

Figure S6. TEM images of fresh (a) and deactivated (b) 5Ni-P/SiO₂-1.0 catalysts.

Tables

Table S1 Quantitative results of NH_3 -TPD profiles of 5Ni-P/SiO₂-a (a = 1.0, 0.5 and 0.3) catalysts.

Table S2 Reaction results of isobutane on SiO₂ at different temperature.

Table S3 Reaction results of isobutane over 5Ni/SiO₂ catalyst under different GHSV.

Table S4 Reaction results of isobutane over P/SiO₂ catalyst.

Table S5 Reaction results of isobutene passing through 5Ni-P/SiO₂-1.0 catalyst at different temperature.

Table S6 Reaction results of isobutene passing through 5Ni-P/SiO₂-1.0 catalyst under different GHSV.

 Table S7 Assignment of the infrared spectrum of gaseous isobutane.

 Table S8 Assignment of the infrared spectrum of gaseous isobutene.

Table S9 Pore properties of 5Ni-P/SiO₂-1.0 catalyst before and after 120 min reaction.

Table S10 The conversion of isobutane and selectivity to isobutene over 5Ni-P/SiO₂, 5Ni-Sn/SiO₂ and

Ni-S/SiO₂ catalyst.

The principle and method of carbometer

1HW(T) HF infrared absorption C/S instrument was applied to measure coke amount. The principle and method are described as follows. The procedure consists of coke combustion, gas purification, quantitative analysis of generated CO₂, and determination of coke amount. CaCO₃ is used as a reference sample as it can be decomposed to CaO and CO₂ at high temperature. Fully dried CaCO₃ powders (50.0 mg) were loaded in a crucible, and the temperature was rapidly raised to 950 °C in order to ensure the complete decomposition of CaCO₃. The signal of formed CO₂ (22.0 mg) was detected by infrared detector at the same time. The corresponding area of this signal is labeled as S. About 250 mg catalyst (m mg, accurately weighed) was put in another crucible, and it was heated to 950 °C under O₂ flow. The signal area of generated CO₂ was S_C. The percentage of coke (w_C) in the catalyst can be calculated by the following formula.

$$w_C = \frac{22.0 \times S_C \times 12}{m \times S \times 44} \times 100 wt\%$$
⁽¹⁾

The final coke amount of the catalyst was calculated by the average value for more than three tests.

Figures

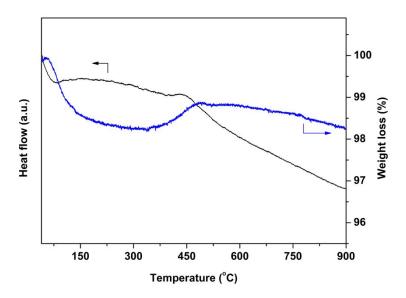
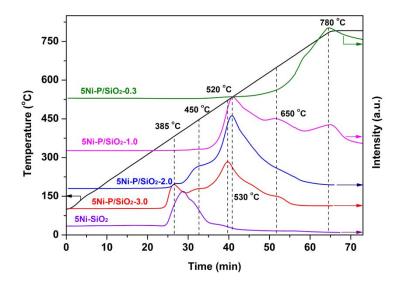



Figure S1. TG-DTA curves of deactivated 5Ni-P/SiO₂-1.0 catalyst.

Figure S2. H₂-TPR profiles of the precursors of 5Ni-P/SiO₂-x catalyst.

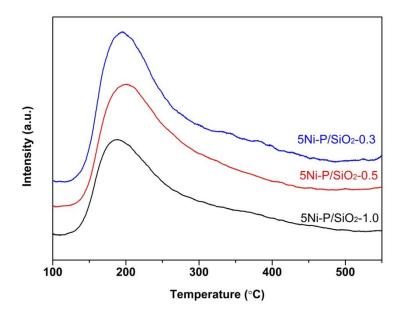


Figure S3. NH₃-TPD curves of 5Ni-P/SiO₂-1.0 catalyst.

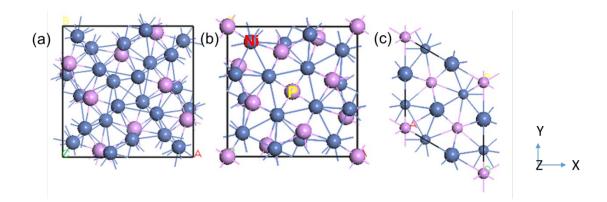
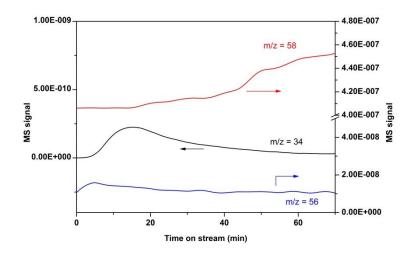



Figure S4. The geometry arrangements of Ni and P atoms in (a) Ni_3P , (b) $Ni_{12}P_5$, and (c) Ni_2P .

Figure S5. Real time MS spectra of isobutane dehydrogenation over 5Ni-P/SiO₂-1.0 catalyst with time on stream (Reaction conditions: mass of catalyst: 1.0 g; gas flow: 20 mL min⁻¹; isobutane partial pressure: 20

kPa; temperature: 600 °C).

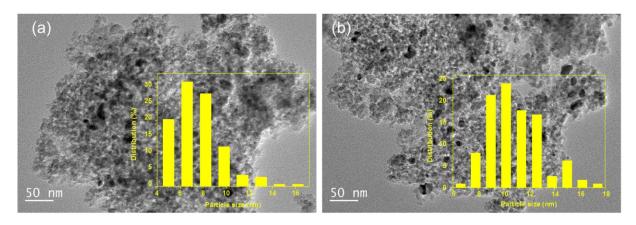


Figure S6. TEM images of fresh (a) and deactivated (b) 5Ni-P/SiO₂-1.0 catalysts

Tables

Catalyst	Total acid sites (mmol g_{cat}^{-1})	Peak temperature (°C)
5Ni-P/SiO ₂ -1.0	0.28	188
5Ni-P/SiO ₂ -0.5	0.41	197
5Ni-P/SiO ₂ -0.3	0.48	198

Table S1 Quantitative results of NH_3 -TPD profiles of 5Ni-P/SiO₂-a (a = 1.0, 0.5 and 0.3) catalysts

		Temperature (°C)			
	-	560	580	600	620
Conversion (%)		0.7	2.8	6.0	9.6
	methane	7.6	15.0	14.8	20.1
	ethane	1.6	0.8	0.3	0.3
	ethene	0.7	0.5	1.0	1.9
Selectivity(%)	propane	27.5	9.8	3.6	2.7
	propene	19.1	32.2	33.8	37.7
	isobutene	43.6	41.8	46.5	37.3
	<i>n</i> -butenes	0.0	0.0	0.0	0.0
	1,3-butadiene	0.0	0.0	0.0	0.0

Table S2 Reaction results of isobutane on SiO_2 at different temperature.

Reaction conditions: isobutane flow = 10 mL min⁻¹, mass of $SiO_2 = 2.0$ g.

		GHSV (h ⁻¹)	
		150	1200
Conversion (%)		100	20.3
	methane	100	98.3
	ethane	0.0	0.3
	ethene	0.0	0.0
Salastivity (0/)	propane	0.0	0.6
Selectivity (%)	propene	0.0	0.0
	isobutene	0.0	0.9
	<i>n</i> -butenes	0.0	0.0
	1,3-butadiene	0.0	0.0

Table S3 Gaseous product distribution of isobutane over 5Ni/SiO₂ catalyst under different GHSV.

Reaction conditions: mass of catalyst = 2.0 g, temperature = 600 °C.

		P/SiO ₂
Conversion (%)		6.3
	methane	9.2
	ethane	0.3
	ethene	0.7
	propane	3.9
Selectivity(%)	propene	24.9
	isobutene	55.3
	<i>n</i> -butenes	5.4
	1,3-butadiene	0.2

Table S4 Reaction results of isobutane over P/SiO₂ catalyst.

Reaction conditions: temperature = 600 °C, mass of catalyst = 2.0 g, GHSV = 150 h^{-1}

		r	Гетрегаture (°С)
	-	560	580	600
Conversion (%)		19.0	21.8	25.2
	C6+	0.1	0.1	0.2
	methane	1.7	2.4	3.2
	ethane	0.2	0.2	0.3
	ethene	0.7	0.8	1.1
	propane	0.1	0.2	0.2
	propene	3.6	4.6	5.7
Percent(%)	isobutane	3.2	3.7	4.4
	<i>n</i> -butane	3.2	3.7	4.4
	<i>n</i> -butenes	0.1	0.1	0.1
	isobutene	81.0	78.2	74.8
	1,3-butadiene	5.5	5.4	5.0
	C5	0.5	0.5	0.6

Table S5 Reaction results of isobutene passing through 5Ni-P/SiO₂-1.0 catalyst at different temperature.

Reaction conditions: mass of catalyst = 2.0 g, GHSV = 150 h⁻¹.

		GHSV (h ⁻¹)			
		90	120	150	180
Conversion (%)		37.5	29.3	25.2	20.9
	C6+	0.2	0.1	0.2	0.2
	methane	5.8	4.0	3.2	2.7
	ethane	0.7	0.4	0.3	0.2
	ethene	1.7	1.2	1.1	0.8
	propane	0.7	0.4	0.2	0.1
$\mathbf{D}_{\mathrm{exec}} = (0/2)$	propene	8.6	6.4	5.7	4.8
Percent (%)	isobutane	5.8	5.0	4.4	3.6
	<i>n</i> -butane	5.8	5.0	4.4	3.6
	isobutene	0.8	0.3	0.1	0.1
	<i>n</i> -butenes	62.5	70.7	74.8	79.1
	1,3-butadiene	6.6	5.9	5.0	4.2
	C5	0.8	0.6	0.6	0.5

Table S6 Reaction results of isobutene passing through 5Ni-P/SiO₂-1.0 catalyst under different GHSV.

Reaction conditions: Temperature = 600 °C, mass of catalyst = 2.0 g.

Assignment	Wavenumber (cm ⁻¹)
v _a (CH ₃)	2978, 2966, 2952
v _s (CH ₃)	2879, 2870
v _(C-H) (methylidyne)	2892
$\delta_{as}(CH_3)$	1490, 1477, 1464
$\delta_{sy}(CH_3)$	1395, 1380, 1365
$\delta_{(C-H)}$ (methylidyne)	1334
V _(C-C)	1177

 Table S7 Assignment of the infrared spectrum of gaseous isobutane.

Assignment	Wavenumber (cm ⁻¹)
v _{asym(C-H)} (=CH ₂)	3097, 3087, 3077
ν _(C-H) (-CH ₃)	2990, 2979, 2968, 2944, 2927, 2893, 2865
v(C=C)	1660
$\delta_{(C\text{-}H)}(\text{-}CH_3)$	1469, 1459, 1446, 1393, 1380, 1373
=CH ₂ in plane bend	1291, 1281, 1271
v(C-C)	1067, 1054
=CH ₂ twist	990

 Table S8 Assignment of the infrared spectrum of gaseous isobutene.

Catalant	BET surface area	Pore diameter	Pore volume
Catalyst	$(m^2 g^{-1})$	(nm)	$(cm^3 g^{-1})$
Fresh	265.5	7 1	0.7
5Ni-P/SiO ₂ -1.0	265.5	7.1	0.7
Deactivated	2/27		0.7
5Ni-P/SiO ₂ -1.0	263.7	7.5	0.7

Table S9 Pore properties of fresh and deactivated (after 120 min reaction) 5Ni-P/SiO₂-1.0 catalyst.

Ni-S/SiO ₂ catalyst.				
Catalyst	Isobutane conversion (%)	Isobutene selectivity (%)		
Ni-S/SiO ₂ ^[a]	67.0	87.6		
5Ni-P/SiO ₂ ^[b]	11.6	86.2		
5Ni-Sn/SiO2 ^[b]	10.1	94.2		

Table S10 The conversion of isobutane and selectivity to isobutene over 5Ni-P/SiO₂, 5Ni-Sn/SiO₂ and

Reaction conditions: [a] mass of catalyst: 4.0 g; 14.3 vol % isobutane in N_2 at a total flow rate of 14 mL

min⁻¹; [b] mass of catalyst: 2.0 g, isobutane flow rate of 10 mL min⁻¹ without N_2 .