Supporting Information

Isomeric quinoxalinedicarbonitrile as color managing acceptors of thermally activated delayed fluorescent emitters

Shantaram Kothavale, Kyung Hyung Lee, Jun Yeob Lee*
School of Chemical Engineering, Sungkyunkwan University
2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 440-746, Korea
E-mail: leej17@skku.edu

Table of contents Page No
Experimental S-4
Figure S1. Optimized structures of TADF emitters1-4 S-8
Figure. S2. Solid state PL spectra of TADF emitters 1-4 S-8
Figure S3. TGA curves of TADF emitters 1-4 S-9
Figure S4. DSC thermograms of TADF emitters 1-4 S-9
Figure S5. Cyclic voltammograms of TADF emitters 1-4 S-10
Figure S6. EL spectra of emitters 1-4 at 3% doping concentration S-10
Figure S7. TRPL curves of emitters 1-4 with fitting line S-11
Table S1. EL performance of TADF-OLEDs of emitters 1-4 at 3% doping concentration S-11
Figure S8. ${ }^{1} \mathrm{H}$ NMR spectrum of Intermediate 5 S-12
Figure S9. ${ }^{13} \mathrm{C}$ NMR spectrum of Intermediate 5 S-13
Figure S10. ${ }^{1} \mathrm{H}$ NMR spectrum of Intermediate 6 S-14
Figure S11. ${ }^{13} \mathrm{C}$ NMR spectrum of Intermediate 6 S-15
Figure S12. ${ }^{1} \mathrm{H}$ NMR spectrum of Intermediate 8 S-16
Figure S13. ${ }^{13} \mathrm{C}$ NMR spectrum of Intermediate 8 S-17
Figure S14. ${ }^{1} \mathrm{H}$ NMR spectrum of Intermediate 9 S-18
Figure S15. ${ }^{13} \mathrm{C}$ NMR spectrum of Intermediate 9 S-19
Figure S16. ${ }^{1} \mathrm{H}$ NMR spectrum of $6,7-\mathrm{DCQx}-\mathrm{Ca}(1)$ S-20
Figure S17. ${ }^{13} \mathrm{C}$ NMR spectrum of $6,7-\mathrm{DCQx}-\mathrm{Ca}$ (1) S-21
Figure S18. ${ }^{1} \mathrm{H}$ NMR spectrum of $6,7-\mathrm{DCQx}-\mathrm{Ac}(2)$ S-22

Figure S20. ${ }^{1} \mathrm{H}$ NMR spectrum of 5,8-DCQx-Ca (3) S-24
Figure S21. ${ }^{13} \mathrm{C}$ NMR spectrum of 5,8-DCQx-Ca (3) S-25
Figure $22 .{ }^{1} \mathrm{H}$ NMR spectrum of 5,8-DCQx-Ac (4) S-26
Figure S23. ${ }^{13} \mathrm{C}$ NMR spectrum of 5,8-DCQx-Ac (4) S-27
Equations for the calculation of rate constants \quad S-28
Reference S-28

Experimental

General Information

4,4'-dibromobenzil and anhydrous o-xylene were acquired from Sigma Aldrich Chemical Co. 4,7 dibromobenzo[c][1,2,5]thiadiazole (BTD), 3,6-di-tert-butyl-9H-carbazole, 9,9-dimethyl-9,10dihydroacridine, 4,5-diaminophthalonitrile, tris-tert-butylphosphine, and Tris(dibenzylideneacetone)dipalladium $\left(\mathrm{Pd}_{2}(\mathrm{dba})_{3}\right)$ were purchased from $\mathrm{P} \& \mathrm{H}$ tech. ptoluenesulfonic acid (PTSA) and copper cyanide (CuCN) were purchased from Alfa Aesar Co. Sodium borohydride $\left(\mathrm{NaBH}_{4}\right)$ was purchased from Tokyo Chemical Industry Co., Ltd. Caesium carbonate $\left(\mathrm{Cs}_{2} \mathrm{CO}_{3}\right)$, anhydrous ethanol, N, N dimethyl formamide (DMF), and acetic acid were obtained from Duksan Sci. Co. All these chemicals were used without further purification. Column chromatography (Silica Gel 60, 230-400 mesh, Merck) purified all four TADF emitters were further purified by sublimation $\left(10^{-3}\right.$ Torr at $\left.300^{\circ} \mathrm{C}\right)$ before applying for OLED devices.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ nuclear magnetic resonance (NMR) spectra were recorded in deuterated chloroform $\left(\mathrm{CDCl}_{3}\right)$ solution on an Avans 500 MHz spectrometer. Chemical shifts of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals were quoted relative to tetramethylsilane ($\delta=0.00$). All coupling constants are reported in Hertz. The ultraviolet-visible (UV-vis) spectra were obtained using a UV-vis spectrophotometer (JASCO, Easton, MD; V-730), and the photoluminescence (PL) spectra were recorded on a fluorescence spectrophotometer (PerkinElmer, Waltham, MA; LS55). CV measurement was carried out in dichloromethane solution with scan rate at $100 \mathrm{mV} / \mathrm{s}$. The glassy carbon, platinum wire and $\mathrm{Ag} / \mathrm{AgCl}$ were used as working, counter and reference electrode respectively. Internal standard was ferrocenium/ferrocene couple and supporting electrolyte was 0.1 M tetrabutylammonium perchlorate $\left(\mathrm{TBAClO}_{4}\right)$. The mass spectra were recorded using a Advion, Expresion LCMS spectrometer in APCI mode. Absolute photoluminescence quantum yields (PLQYs) of $1 \mathrm{wt} \%$ doped polystyrene film solid film were measured with a Hamamatsu Quantaurus-QY C11347-11 spectrometer under nitrogen atmosphere condition. The transient photoluminescence decay characteristics of solid film samples were recorded using a Quantaurus-Tau fluorescence lifetime measurement system (C11367-31, Hamamatsu Photonics).

Materials and Synthesis

3,6-Dibromobenzene-1,2-diamine (7) was prepared according to the literature procedure ${ }^{1}$.

Synthesis of 1,2-bis(4-(3,6-di-tert-butyl-9H-carbazol-9-yl)phenyl)ethane-1,2-dione (5)

4,4'-Dibromobenzil ($5 \mathrm{~g}, 13.58 \mathrm{mmol}$) was reacted with 3,6-di-tert-butyl-9H-carbazole (8.3 g , $29.88 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(17.71 \mathrm{~g}, 54.34 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(1.24 \mathrm{~g}, 1.35 \mathrm{mmol})$ and tri-tertbutylphosphine ($0.32 \mathrm{~mL}, 1.35 \mathrm{mmol}$) in anhydrous o-xylene $(50 \mathrm{~mL})$. The resulting mixture was stirred at $130{ }^{\circ} \mathrm{C}$ for 12 h . After cooling to room temperature, the reaction mixture was extracted with dichloromethane. Organic layer was dried over anhydrous MgSO_{4} and was concentrated on rotary evaporator. The crude product obtained was purified by column chromatography ($1: 1$ dichloromethane: n-hexane) to afford yellow solid ($6.4 \mathrm{~g}, 62 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.29$ (d, $\left.J=9.0 \mathrm{~Hz}, 4 \mathrm{H}\right), 8.14(\mathrm{~m}, 4 \mathrm{H}), 7.81(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.48-7.52$ $(\mathrm{m}, 8 \mathrm{H}), 1.47(\mathrm{~s}, 36 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$). $\delta 32.2,35.1,109.6,116.7,124.2,124.4$, 126.2, 130.6, 132.1, 138.4, 144.3, 144.8, 193.2. MS (FAB) m/z $765\left[(\mathrm{M}+\mathrm{H})^{+}\right]$.

Synthesis of 1,2-bis(4-(9,9-dimethylacridin-10(9H)-yl)phenyl)ethane-1,2-dione (6)

Compound 6 was synthesized according to the similar procedure as described for the synthesis of compound 5, except that 9,9-dimethyl-9,10-dihydroacridine was used as the reactant instead of 3,6-di-tert-butyl-9H-carbazole, yielding bright yellow solid (4 g, 59%). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.25(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.54(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.48-7.50(\mathrm{dd}, J=7.5$ and 1.5 Hz , $4 \mathrm{H}), 7.00-7.06(\mathrm{~m}, 8 \mathrm{H}), 6.49(\mathrm{~d}, J=8 \mathrm{~Hz}, 4 \mathrm{H}), 1.67(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) . \delta$ $30.7,36.6,116.2,122.2,125.5,126.6,129.1,131.2,132.8,140.4,148.5,193.1$, MS (FAB) m/z $625\left[(\mathrm{M}+\mathrm{H})^{+}\right]$.

Synthesis of 6,7-DCQx-Ca (1)

Intermediate $5(0.5 \mathrm{~g}, 0.65 \mathrm{mmol})$ and 4,5 -diaminophthalonitrile $(0.1 \mathrm{~g}, 0.65 \mathrm{mmol})$ were dissolved in anhydrous ethanol $(10 \mathrm{~mL})$. Catalytic amount of p -toluenesulphonic acid was added and the resulting mixture was refluxed for 12 hrs . After cooling to room temperature, the solid precipitated out in the reaction mixture was filtered, dried well and purified on column chromatography (1:1 DCM-hexane mixture) to get the desired product as yellow solid (0.51 g ,
89%). ${ }^{1}{ }^{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.67(\mathrm{~s}, 2 \mathrm{H}), 8.14(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.91-7.92(\mathrm{~d}, J=6.5$ $\mathrm{Hz}, 4 \mathrm{H}$), 7.72-7.73 (d, $J=6 \mathrm{~Hz}, 4 \mathrm{H}), 7.46-7.50(\mathrm{~m}, 8 \mathrm{H}), 1.47(\mathrm{~s}, 36 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}). $\delta 31.9,34.8,109.2,114.4,115.1,116.5,123.9,126.2,131.6,135.1,136.8,138.5,140.7$, 141.7, 143.8, 156.5. MS (FAB) m/z $887\left[(M+H)^{+}\right]$. Element analysis Calcd. for $\mathrm{C}_{62} \mathrm{H}_{58} \mathrm{~N}_{6}$ $\mathrm{C}(83.94$ \%), $\mathrm{H}(6.59$ \%), $\mathrm{N}(9.47$ \%); found $\mathrm{C}(84.60$ \%), $\mathrm{H}(6.19$ \%), $\mathrm{N}(9.22$ \%).

Synthesis of 6,7-DCQx-Ac (2)

Compound 2 was synthesized according to the similar procedure as described for the synthesis of compound 1, except that intermediate 6 was used as the reactant instead of intermediate 5 , yielding red solid ($0.49 \mathrm{~g}, 82 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.70(\mathrm{~s}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 4 \mathrm{H}), 7.45-7.47(\mathrm{~m}, 8 \mathrm{H}), 6.85-6.93(\mathrm{~m}, 8 \mathrm{H}), 6.32-6.34(\mathrm{dd}, J=6$ and $1 \mathrm{~Hz}, 4 \mathrm{H}), 1.68(\mathrm{~s}, 12$ H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$). $\delta 30.8,36.1,114.2,114.6,114.9,121.2,125.2,126.5,130.8$, 131.3, 132.5, 136.7, 136.9, 140.5, 141.7, 143.7, 156.9. MS (FAB) m/z $747\left[(\mathrm{M}+\mathrm{H})^{+}\right]$. Element analysis Calcd. for $\mathrm{C}_{52} \mathrm{H}_{38} \mathrm{~N}_{6} \mathrm{C}(83.62$ \%), $\mathrm{H}(5.13$ \%), $\mathrm{N}(11.25$ \%); found $\mathrm{C}(83.56 \%), \mathrm{H}(5.31$ \%), N(11.05 \%).

Synthesis of 9,9'-((5,8-dibromoquinoxaline-2,3-diyl)bis(4,1-phenylene))bis(3,6-di-tert-butyl-9H-carbazole) (8)

3,6-Dibromobenzene-1,2-diamine $(0.15 \mathrm{~g}, 0.56 \mathrm{mmol})$ and intermediate $5(0.43 \mathrm{~g}, 0.56 \mathrm{mmol})$ were dissolved in acetic acid $(20 \mathrm{~mL})$ and the resulting mixture was stirred at $110{ }^{\circ} \mathrm{C}$ for 12 h . After cooling to room temperature, the yellow solid precipitated out in the reaction mixture was filtered, washed with acetic acid and n-hexane and dried well as a yellow solid ($0.5 \mathrm{~g}, 89 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.15(\mathrm{~m}, 4 \mathrm{H}), 8.01(\mathrm{~s}, 2 \mathrm{H}), 7.99(\mathrm{~m}, 4 \mathrm{H}), 7.69(\mathrm{~d}, J=8 \mathrm{~Hz}, 4 \mathrm{H})$, 7.47-7.51 (m, 8H), 1.47 (s, 36 H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$). $\delta 32.2,34.9,109.5,116.5$, $123.9,124.1,126.3,132.0,133.6,136.0,138.9,139.7,140.0,143.6,153.5$. MS (FAB) m/z 993 $\left[(\mathrm{M}+\mathrm{H})^{+}\right]$.

Synthesis of 10,10'-((5,8-dibromoquinoxaline-2,3-diyl)bis(4,1-phenylene))bis(9,9-dimethyl-9,10-dihydroacridine) (9)

Compound 9 was synthesized according to the similar procedure as described for the synthesis of compound 8, except that intermediate 6 was used as the reactant instead of intermediate 5 ,
yielding yellow solid as pure product ($0.4 \mathrm{~g}, 78 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.01(\mathrm{~s}, 2 \mathrm{H})$, 7.96-7.98 (d, $J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.41-7.46(\mathrm{~m}, 8 \mathrm{H}), 6.86-6.92(\mathrm{~m}, 8 \mathrm{H}), 6.36-6.38(\mathrm{dd}, J=7$ and 2 $\mathrm{Hz}, 4 \mathrm{H}$), $1.68(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$). $\delta 31.0,36.2,114.3,121.1,124.0,125.3$, 126.7, 130.5, 131.5, 133.0, 133.9, 137.7, 139.8, 140.7, 142.9, 153.8. MS (FAB) m/z 853 [(M+ $\mathrm{H})^{+}$.

Synthesis of 5,8-DCQx-Ca (3)

Intermediate $8(0.5 \mathrm{~g}, 0.50 \mathrm{mmol})$ was dissolved in DMF (20 mL), copper cyanide ($0.22 \mathrm{~g}, 2.51$ mmol) was added and the resulting mixture was stirred at $140^{\circ} \mathrm{C}$ for 12 hrs . After cooling to room temperature water was added in the reaction mixture and extracted with dichloromethane. The organic layer was dried over MgSO_{4}, concentrated on rotavapour and purified by column chromatography ($1: 1$ dichloromethane-hexane mixture) to afford an orange solid ($0.24 \mathrm{~g}, 69 \%$) ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.17(\mathrm{~s}, 2 \mathrm{H}), 8.13(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 4 \mathrm{H}), 8.00-8.01(\mathrm{~d}, J=6 \mathrm{~Hz}$, $4 \mathrm{H}), 7.71-7.72(\mathrm{~d}, J=6 \mathrm{~Hz}, 4 \mathrm{H}), 7.47-7.51(\mathrm{~m}, 8 \mathrm{H}), 1.47(\mathrm{~s}, 36 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}). $\delta 32.0,34.8,109.4,114.9,116.4,117.1,123.8,123.9,126.1,131.8,134.2,134.8,138.5$, 140.3, 140.7, 143.7, 155.5. MS (FAB) m/z $887\left[(\mathrm{M}+\mathrm{H})^{+}\right]$. Element analysis Calcd. for $\mathrm{C}_{62} \mathrm{H}_{58} \mathrm{~N}_{6}$ $\mathrm{C}(83.94 \%), \mathrm{H}(6.59 \%), \mathrm{N}(9.47 \%)$; found $\mathrm{C}(83.86 \%), \mathrm{H}(6.74 \%), \mathrm{N}(9.27 \%)$.

Synthesis of 5,8-DCQx-Ac (4)

Compound 4 was synthesized according to the similar procedure as described for the synthesis of compound 3, except that intermediate 9 was used as the reactant instead of intermediate 8 , yielding red solid as pure product ($0.22 \mathrm{~g}, 63 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.26(\mathrm{~s}, 2 \mathrm{H})$, $7.98(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.44-7.47(\mathrm{~m}, 8 \mathrm{H}), 6.89-6.93(\mathrm{~m}, 8 \mathrm{H}), 6.36-6.38(\mathrm{dd}, J=6$ and 1 Hz , $4 \mathrm{H}), 1.68(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) . \delta 30.8,36.1,114.3,114.8,117.5,121.1$, $125.2,126.5,130.8,131.2,132.8,134.5,136.5,140.5,143.7,156.1 . \operatorname{MS}(F A B) \mathrm{m} / \mathrm{z} 747$ [(M+ $\mathrm{H})^{+}$. Element analysis Calcd. for $\mathrm{C}_{52} \mathrm{H}_{38} \mathrm{~N}_{6} \mathrm{C}(83.62 \%)$, $\mathrm{H}(5.13 \%)$, $\mathrm{N}(11.25 \%)$; found $\mathrm{C}(83.98$ \%), H(4.96 \%), N(11.00 \%).

Figure S1. Optimized structures of emitters1-4 with respective dihedral angles between donor and acceptor unit.

Figure. S2. Solid state (1 \% in polystyrene film) PL spectra of TADF emitters 1-4.

Figure S3. TGA curves of emitters $1-4$ at a heating rate of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$ under nitrogen.

Figure S4. DSC thermograms of four emitters (1-4).

Figure S5. Cyclic voltammograms of TADF emitters 1-4.

Figure S6. Electroluminescence (EL) spectra of emitters 1-4 (3 \% doping concentration)

Figure S7. TRPL curves of emitters 1-4 with respective fitting line (a) 6, 7-DCQx-Ca (1); (b) 6,7-DCQx-Ac (2); (c) 5,8-DCQx-Ca (3) and (d) 5,8-DCQx-Ac (4).

Table S1. Electroluminescence (EL) performance of the TADF-OLEDs based on emitters 1-4 (3 \% doping concentration).

Emitter	λ_{EL} $[\mathrm{nm}]$	$\mathrm{CE}_{\max }$ $\left[\mathrm{cd} \mathrm{A}^{-1}\right]$	$\mathrm{PE}_{\max }$ $[\operatorname{lm~W}$ $-1]$	$\mathrm{EQE}_{\max }$ $[\%]$	$\mathrm{CIE} \mathrm{(x,y)}$
1	550	62.7	56.2	18.6	$(0.40,0.56)$
2	587	39.9	35.8	17.5	$(0.51,0.48)$
3	580	45.9	41.1	17.5	$(0.51,0.48)$
4	612	17.2	15.5	10.8	$(0.57,0.43)$

Spectra

Figure S8. ${ }^{1} \mathrm{H}$ NMR spectrum of Intermediate 5

Figure S9. ${ }^{13} \mathrm{C}$ NMR spectrum of Intermediate 5

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectrum of Intermediate 6

Figure S11. ${ }^{13} \mathrm{C}$ NMR spectrum of Intermediate 6

Figure S12. ${ }^{1} \mathrm{H}$ NMR spectrum of Intermediate 8

Figure S13. ${ }^{13} \mathrm{C}$ NMR spectrum of Intermediate 8

Figure S14. ${ }^{1} \mathrm{H}$ NMR spectrum of Intermediate 9

Figure S15. ${ }^{13} \mathrm{C}$ NMR spectrum of Intermediate 9

Figure S16. ${ }^{1} \mathrm{H}$ NMR spectrum of 6,7-DCQx-Ca (1)

Figure $\mathrm{S} 17 .{ }^{13} \mathrm{C}$ NMR spectrum of $6,7-\mathrm{DCQx}-\mathrm{Ca}$ (1)

Figure S18. ${ }^{1} \mathrm{H}$ NMR spectrum of 6,7-DCQx-Ac (2)

Figure S19. ${ }^{13} \mathrm{C}$ NMR spectrum of $6,7-\mathrm{DCQx}-\mathrm{Ac}$ (2)

Figure S20. ${ }^{1} \mathrm{H}$ NMR spectrum of $5,8-\mathrm{DCQx}-\mathrm{Ca}(3)$

Figure $\mathrm{S} 21 .{ }^{13} \mathrm{C}$ NMR spectrum of $5,8-\mathrm{DCQx}-\mathrm{Ca}$ (3)

Figure S22. ${ }^{1} \mathrm{H}$ NMR spectrum of 5,8-DCQx-Ac (4)

Figure S23. ${ }^{13} \mathrm{C}$ NMR spectrum of 5,8-DCQx-Ac (4)

Equations for the calculation of rate constants

$\tau_{\mathrm{p}}=1 / k_{\mathrm{p}}$
(1)
$\tau_{d}=1 / k_{d}$
$\mathrm{k}_{\mathrm{ISC}}=\left(1-\Phi_{\mathrm{F}}\right) \times k_{\mathrm{p}}$
$\mathrm{k}_{\mathrm{RISC}}=\left(k_{\mathrm{p}} k_{\mathrm{d}} / k_{\text {ISC }}\right) \mathrm{x}\left(\Phi_{\text {TADF }} / \Phi_{\mathrm{F}}\right)$
$k_{\mathrm{r}}^{\mathrm{S}}=k_{\mathrm{p}} \Phi_{\mathrm{F}}$
$k_{\mathrm{nr}}{ }^{\mathrm{T}}=k_{\mathrm{d}}-k_{\mathrm{RISC}} \Phi_{\mathrm{F}}$
$\Phi_{\mathrm{F}}=\Phi_{\mathrm{O}_{2}}$
(2)
(3)
(4)
(6)
$\Phi_{\text {TADF }}=\Phi_{\mathrm{N}_{2}-\mathrm{O}_{2}}$

Reference

(1) Kim, J.; Park, S. H.; Kim, J.; Cho, S.; Jin, Y.; Shim, J. Y.; Shin, H.; Kwon, S.; Kim, I.; Lee, K.; Heeger, A. J.; Suh, H. Syntheses and Characterization of Carbazole Based New Low-Band Gap Copolymers Containing Highly Soluble Benzimidazole Derivatives for Solar Cell Application. J. Polym. Sci. Part A Polym. Chem. 2011, 49 (2), 369-380.

