Supplementary data

Photo-rechargeable Organic-Inorganic Dye Integrated Polymeric Power Cell with Superior Performances and Durability

Farha Khatun¹, Pradip Thakur^{*2}, Arpan Kool³, Swagata Roy¹, Nur Amin Hoque¹, Prosenjit Biswas¹, Biswajoy Bagchi⁴, Sukhen Das^{*1}

¹Department of Physics, Jadavpur University, Kolkata-700032, India.

Email address: sdasphysics@gmail.com, Mobile: +919433091337

²Department of Physics, Netaji Nagar College for Women, Kolkata-700092, India.

Email address: pradipthakurju@gmail.com, Mobile: +919830366215

³Department of Physics, Techno India University, Kolkata-700091, India.

⁴Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom

*Corresponding authors.

Sample name	Amount of PVDF (g)	Percentage of SDS (mass %)	Amount of SDS (g)
PVDF	0.2	0	0
PDS1	0.2	1	0.002
PDS5	0.2	5	0.010
PDS10	0.2	10	0.020
PDS15	0.2	15	0.030
PDS20	0.2	20	0.040
PDS25	0.2	25	0.050

Table S1: Sample designations showing of respective compositions

1. Synthesis of ZnO NPs:

7.436 g $Zn(NO_3)_2$ is mixed in a solution of 40 ml water by stirring vigorously in a magnetic stirrer to prepare a zinc nitrate ($Zn(NO_3)_2$) solution. After that 2g NaOH is added in 10 ml water separately by continuous stirring in a magnetic stirrer at 90°C to prepare another solution of sodium hydroxide. Now by using a burette, $Zn(NO_3)_2$ solution is added drop wise in the solution of NaOH for 20 minutes. Then we will collect a mixed solution which is washed twice with deionized water after centrifuging to collect a white precipitate. The obtained precipitate is completely dried up and annealed to get the ZnO (100°C) nanoparticles.

2. Characterization of ZnO NPs:

Figure S1: The characterization peaks at $2\theta = 77^{\circ}$, 69° , 63° , 68° , 66.4° , 62.8° , 56.7° , 47.7° , 36.1° , 34.5° , 31.9° in the X-ray diffraction pattern of ZnO confirm the formation of ZnO nanoparticles.^[1]

Figure S2: A sharp absorption peak is observed at 375.4 nm (~ 4.42 eV) and a very weak peak is also centred at 223 nm ((~ 5.56 eV) in the UV-Visible absorption spectroscopy of ZnO. ^[2]

Figure-S3 is representing the morphological and microscopically structure of the ZnO nanoparticles. According to the FESEM image, some Nano-flower like structure is observed.

Table S2: Comparison of the overall performance (energy conversion efficiency, energy storage efficiency and overall efficiency) of our photo power cell (SCPPC) with the other photovoltaic devices previously reported.

Referenc es	Articles Title	Energ y densit y	Power density	Storage ability or specific capacita nce	η _{conversi} on (%)	η _{storage} (%)	η _{overall} (%)
[3]	The photocapacitor: An efficient self- charging capacitor for direct storage of solar energy	-	-	0.69 F/cm ²	-	-	-
[4]	Integration of solid- state dye-sensitized solar cell with metal oxide charge storage material into photoelectrochemica l capacitor.	0.17 mWh /cm ²	0.34 mW/cm 2	407 F/g (3.26 F/cm ²)	0.8	-	-

[5]	An Integrated Power Pack of Dye- Sensitized Solar Cell and Li Battery Based on Double-Sided TiO2 Nanotube Arrays	-	-	_	1.95	42	0.82
[6]	Integrated Power Fiber for Energy Conversion and Storage	9.5×10^{-7} Wh/c m ²	4.2 mW/cm 2	19 mF/cm ²	5.41	46	2.1
[7]	Integrated Photo- Supercapacitor Based on Bi-polar TiO 2 Nanotube Arrays with Selective One-Side Plasma-Assisted Hydrogenation	6.662 × 10 -8 Wh/c m ²	-	1.289 mF/cm ²	3.17	50	1.61
[8]	All Silicon Electrode Photocapacitor for Integrated Energy Storage and Conversion	0.17 μWh/c m ²	22 µWh/c m ²	3.5 mF/cm ²	4.8	43	2.1
[9]	Dye-Sensitized Solar Cell with Energy Storage Function through PVDF/ZnO Nanocomposite Counter Electrode.	1.4 mWh kg ⁻¹	-	-	3.7	-	-
[10]	An integrated device for both photoelectric conversion and energy storage based on free-standing and aligned carbon nanotube film.	-	-	54 F/g	2.31	34	0.79
[11]	The novel "energy fiber" by coaxially integrating dye- sensitized solar cell and electrochemical capacitor.	-	0.27m W/cm ²	3.32 mF/cm ²	2.73	75.7	-

[12]	An ultrahigh-rate electrochemical capacitor based on solution-processed highly conductive PEDOT:PSS films	1.77 mW h cm ⁻³	N.A.	994 μF cm ⁻² Or 16.6 F cm ⁻³	-	-	-
[13]	For AC line-filtering Perovskite Photovoltachromic Supercapacitorn with All-Transparent Electrodes.	13.4 and 24.5 mWh/ m ²	187.6 and 377.0 mW/m ²	286.8 and 430.7 F/m ²	7.8	-	-
Present Work	Photo-rechargeable Organic-Inorganic Dye Integrated Printable Polymeric Power Cell with Superior Performances and Durability	90 mWh/ m ²	54 W/m ²	450 F/m ² or 0.045 F/cm ²	4.12	89	3.68

Video S1, S2 and S3: Demonstration of lighting up commercially available blue, green and red LEDs using our SCPPC1 as a power bank.

Reference:

1. Arya. K, S.; Saha, S.; Ramirez-Vick. E, Jaime.; Gupta, V.; Bhansali, S.; Singh. P, S.; Recent advances in ZnO nanostructures and thin films for biosensor applications: Review. *Analytica Chimica Acta* **2012**, *737*, 1–21.

2. Bae, S. H.; Lee, S. Y.; Jin, B. J.; Im, S. Pulsed laser deposition of ZnO thin films for applications of light emission. *Applied Surface Science* **2000**, *154*, 458–461.

3. Miyasakaa, T.; Murakami, T. N. The photocapacitor: An efficient self-charging capacitor for direct storage of solar energy. *Appl. Phys. Lett.* **2004**, *85*, 3932-3934.

4. Skunik-Nuckowska, M.; Grzejszczyk, K.; Kulesza, P. J.; Yang, L.; Vlachopoulos, N.; Häggman, L.; Johansson, E.; Hagfeldt, A. Integration of solid state dye sensitized solar cell with metal oxide charge storage material into photoelectrochemical capacitor. *J. Power Sources* **2013**, *234*, 91-99.

5. Guo, W.; Xue, X.; Wang, S.; Lin, C.; Wang, Z. L. An Integrated Power Pack of Dye-Sensitized Solar Cell and Li Battery Based on Double-Sided TiO2 Nanotube Arrays. *Nano Lett.* **2012**, *12*, 2520-2523.

6. Fu. Y.; Wu, H.; Ye, S.; Cai, X.; Yu, X.; Hou, S.; Kafafy, H.; Zou, D. Integrated power fiber for energy conversion and storage. *Energy Environ. Sci.* **2013**, *6*, 805812.

7. Xu, J.; Wu, H.; Lu, L.; Leung, S.-F.; Chen, D.; Chen, X.; Fan, Z.; Shen, G.; Li, D. Integrated Photo-supercapacitor Based on Bi-polar TiO₂ Nanotube Arrays with Selective One-Side Plasma-Assisted Hydrogenation. *Adv. Funct. Mater.* **2014**, *24*, 1840-1846.

8. Cohn, A. P.; Erwin, W. R.; Share, K.; Oakes, L.; Westover, A. S.; Carter, R. E.; Bardhan, R.; Pint, C. L. All Silicon Electrode Photocapacitor for Integrated Energy Storage and Conversion. *Nano Lett.* **2015**, *15*, 2727-2731.

9. Zhang, X.; Huang, X.; Li, C.; Jiang, H. Dye-Sensitized Solar Cell with Energy Storage Function through PVDF/ZnO Nanocomposite Counter Electrode. *Adv. Mater.* **2013**, *25*, 4093-4096.

10. Yang, Z.; Li, L.; Luo, Y.; He, R.; Qiu, L.; Lin, H.; Peng, H. An integrated device for both photoelectric conversion and energy storage based on free-standing and aligned carbon nanotube film. *J. Mater. Chem. A* **2013**, *1*, 954-958.

11. Chen, X.; Sun, H.; Yang, Z.; Guan, G.; Zhang, Z.; Qiu, L.; Peng, H. A novel "energy fiber" by coaxially integrating dye-sensitized solar cell and electrochemical capacitor. *J. Mater. Chem. A* **2014**, *2*, 1897-1902.

12. Zhang, M.; Zhou, Q. Q.; Chen, J.; Yu, X. W.; Huang, L.; Li, Y. R.; Li, C.; Shi, G. Q. An ultrahigh-rate electrochemical capacitor based on solution-processed highly conductive PEDOT:PSS films for AC line-filtering. *Energy Environ. Sci.* **2016**, *9*, 2005–2010.

13. Zhou, F.; Ren, Z.; Zhao, Y.; Shen, X.; Wang, A.; Li, Y. Y.; Surya, C.; Chai, Y. Perovskite Photovoltachromic Supercapacitor with All-Transparent Electrodes. *ACS Nano* **2016**, *10*, 5900–5908.