## Supporting information

## Preparation of Nanostructured Ta<sub>3</sub>N<sub>5</sub> Electrodes by Alkaline Hydrothermal Treatment Followed by NH<sub>3</sub>-annealing and Their Improved Water Oxidation Performance

Ashraf Abdel Haleem,<sup>\*,†,‡</sup> Nagaraju Perumandla,<sup>†</sup> Yoshinori Naruta<sup>†,§</sup>

<sup>†</sup>Center for Chemical Energy Conversion Research and Institute of Science and Technology Research, Chubu University, Kasugai, Aichi 487-8501, Japan.

<sup>‡</sup> Department of Engineering Mathematics and Physics, Faculty of Engineering, Fayoum University, Fayoum, Egypt.

Corresponding author emails: Ashraf Abdel Haleem: <u>mailto:ama05@fayoum.edu.eg</u> Yoshinori Naruta: <u>naruta@isc.chubu.ac.jp</u>



Figure S1. Schematic diagram of the steps of samples preparation.

| Ta <sub>3</sub> N <sub>5</sub><br>morphology | Modifying layer                          | Onset<br>potential<br>(V <sub>RHE</sub> ) | Initial current<br>@1.23V <sub>RHE</sub><br>(mA cm <sup>-2</sup> )@AM1.5G | Stability test:<br>I <sub>final</sub> / I <sub>intial</sub> ;<br>Measuring time | Ref.      |
|----------------------------------------------|------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------|
| nanoparticles                                | Ni:CoFeO <sub>x</sub>                    | 0.76                                      | 5.3 @ 100 mW/cm <sup>2</sup><br>(Xenon lamp)                              | 90%, 7 h                                                                        | This work |
| nanorods                                     | Ni-Fe Layered Double<br>Hydroxides (LHD) | 0.9                                       | 1.7                                                                       | 90 %; 2h                                                                        | 1         |
| nanorods                                     | Co-Pi + Co(OH)x                          | 0.8                                       | 5;                                                                        | 20 %; 2h                                                                        | 1         |
| nanorods                                     | IrO <sub>3</sub>                         | 0.8                                       | 3                                                                         | 20 %; 20 min                                                                    | 2         |
| nanorods                                     | Co-Pi                                    | 0.7                                       | 4 @ 0.9V                                                                  | 62 %; 20 min                                                                    | 2,3       |
| nanorods                                     | Co(OH) <sub>x</sub>                      | 0.85                                      | 3                                                                         | 93 %; 20 min                                                                    | 4         |
| nanorods                                     | Co-Pi                                    | 0.8                                       | 3.6                                                                       | No stability test                                                               | 5         |
| nanorods                                     | Co-Pi+Co(OH)x/NiFe<br>LDH                | 0.7                                       | 7                                                                         | 71 %, 2 h                                                                       | 1         |
| nanotubes                                    | Co(OH) <sub>x</sub>                      | 0.7                                       | 6                                                                         | 96 %; 200 sec                                                                   | 6         |
| nanotubes                                    | Co <sub>3</sub> O <sub>4</sub>           | 0.8                                       | 5                                                                         | 20 %; 6 min                                                                     | 7         |
| nanotubes                                    | Co <sub>3</sub> O <sub>4</sub>           | 0.95                                      | 5                                                                         | 20 %; 1 h                                                                       | 8         |

Table S1. Water splitting PEC performance of catalyst-modified  $Ta_3N_5$  nanostructures electrodes that recently reported.



Figure S2. SEM images (top-view) of the  $Ta_3N_5$  derived from  $(Na,Ta)O_x$  grown in 23 wt% NaOH solution at (a) 200 °C for 8 h and (b) 250 °C for 5 h.



Figure S3. Current-voltage curves of Ni:CoFeO<sub>x</sub>-loaded Ta<sub>3</sub>N<sub>5</sub> whose precursor electrodes grown in 23 wt% NaOH solution at 250  $^{\circ}$ C for 5 h (black), 200  $^{\circ}$ C for 8 h (red) under dark (broken line) and light (solid line) conditions (100 mW•cm<sup>-2</sup>) in 1 M NaOH (pH 13.6) electrolyte.



Figure S4. SEM image (top-view) of the  $Ta_3N_5$  derived from (Na,Ta)O<sub>x</sub> grown in 16 wt% NaOH solution at 250 °C for 5 h.



Figure S5. SEM image (top-view) of the  $Ta_3N_5$  derived from  $NaTaO_3$  grown in 23 wt% NaOH solution at 250 °C for 3 h.



Figure S6. Current-voltage curves of Ni:CoFeO<sub>x</sub>-loaded Ta<sub>3</sub>N<sub>5</sub> whose precursor electrodes grown in 16 wt% KOH solution at 150  $^{\circ}$ C for 1 h (black), 150  $^{\circ}$ C for 3 h (red), 120  $^{\circ}$ C for 2 h (blue) under dark (broken line) and light (solid line) conditions (100 mW•cm<sup>-2</sup>) in 1 M NaOH (pH 13.6) electrolyte.



Figure S7. SEM image (cross-sectional view) of the  $Ta_3N_5$  derived from (K<sub>1</sub>Ta)O<sub>x</sub> grown in 16 wt% KOH solution at 150 °C for 3 h.



Figure S8. XRD pattern of the NaTaO<sub>3</sub> precursor electrode grown in 23 wt% NaOH solution at 250  $^{\circ}$ C for 5 h.



Figure S9. XRD pattern of the  $K_2Ta_2O_6$  precursor electrode grown in 16 wt% KOH solution at 150 °C for 3 h.



Figure S10. SEM images (top-view) of the  $Ta_3N_5$  derived from  $NaTaO_3$  grown in 23 wt% NaOH solution at 250  $^\circ\!C$  for 5 h.



Figure S11. SEM image (top-view) of the  $Ta_3N_5$  derived from  $K_2Ta_2O_6$  grown in 16 wt% KOH solution at 150 °C for 1h.



Figure S12. (a) XPS spectra of Co2p, (b) Ni2p and (c) peak-fitting Fe2p core levels measured at the surface of Ni:CoFeO<sub>x</sub>-modified Ta<sub>3</sub>N<sub>5</sub> derived from NaTaO<sub>3</sub> prepared in 23 wt% NaOH solution at 250 °C for 5 h.





Figure S13. Current-voltage curves of Ni:CoFeO<sub>x</sub>-loaded Ta<sub>3</sub>N<sub>5</sub> (black) and bare Ta<sub>3</sub>N<sub>5</sub> (red), whose precursor electrodes grown in 23 wt% NaOH solution at 250  $^{\circ}$ C for 5 h, under dark (broken) and light (solid) conditions (100 mW•cm<sup>-2</sup>) in 1 M NaOH (pH 13.6) electrolyte.



Figure S14. Mott-Schottky plots of (a) bare S-NaOH and (b) bare S-KOH. The experiments were conducted under dark condition in 1 M NaOH solution (pH 13.6) as the electrolyte, a Pt wire as the counter electrode, and Ag/AgCl as a reference electrode.



Figure S15. IPCE values (black) of Ni:CoFeO<sub>x</sub>/Ta<sub>3</sub>N<sub>5</sub> photoanode at 1.23 V<sub>RHE</sub> potential under irradiation of Xenon light (100 mW.cm<sup>-2</sup>) and the optical absorbance (red) of the bare Ta<sub>3</sub>N<sub>5</sub>. The precursor NaTaO<sub>3</sub> was grown in 23 wt% NaOH solution at 250 °C for 5 h.

## References

- Wang, L.; Dionigi, F.; Nguyen, N. T.; Kirchgeorg, R.; Gliech, M.; Grigorescu, S.; Strasser, P.; Schmuki, P. Tantalum Nitride Nanorod Arrays: Introducing Ni-Fe Layered Double Hydroxides as a Cocatalyst Strongly Stabilizing Photoanodes in Water Splitting. *Chem. Mater.* 2015, 27, 2360–2366.
- Li, Y.; Takata, T.; Cha, D.; Takanabe, K.; Minegishi, T.; Kubota, J.; Domen, K. Vertically Aligned Ta<sub>3</sub>N<sub>5</sub> Nanorod Arrays for Solar-Driven Photoelectrochemical Water Splitting. *Adv. Mater.* 2013, 25, 125–131.
- Li, Y.; Zhang, L.; Torres-Pardo, A.; González-Calbet, J. M.; Ma, Y.; Oleynikov, P.; Terasaki, O.; Asahina, S.; Shima, M.; Cha, D.; Zhao, L; Takanabe, K.; Kubota, J.; Domen, K. Cobalt Phosphate-Modified Barium-Doped Tantalum Nitride Nanorod Photoanode with 1.5% Solar Energy Conversion Efficiency. *Nat. Commun.* 2013, *4*, 2566.
- Zhen, C.; Wang, L. Z; Liu, G.; Lu, G. Q. (Max); Cheng, H. M. Template-free synthesis of Ta3N5 nanorod arrays for efficient photoelectrochemical water splitting. *Chem. Commun.* 2013, 49, 3019-3021.
- 5. Zixue, S.; Wang, L.; Grigorescu, S.; Lee, K.; Schmuki, P. Hydrothermal growth of highly oriented single crystalline Ta<sub>2</sub>O<sub>5</sub> nanorod arrays and their conversion to Ta<sub>3</sub>N<sub>5</sub> for efficient solar driven water splitting, *Chem. Commun.* **2014**, 50, 15561-15564.
- 6. Wang, L.; Nguyen, N. T.; Zhou, X.; Hwang, I.; Killian, M. S.; Schmuki, P. Enhanced Charge Transport in Tantalum Nitride Nanotube Photoanodes for Solar Water Splitting. *ChemSusChem.* **2015**, *8*, 2615–2620.
- Wang, L.; Zhou, X.; Nguyen, N. T.; Hwang, I.; Schmuki, P. Strongly Enhanced Water Splitting Performance of Ta<sub>3</sub>N<sub>5</sub> Nanotube Photoanodes with Subnitrides. *Adv. Mater.* 2016, 28, 2432–2438.
- Zhang, P.; Wang, T.; Zhang, J.; Chang, X.; Gong, J. Bridging the transport pathway of charge carriers in a Ta<sub>3</sub>N<sub>5</sub> nanotube array photoanode for solar water splitting. *Nanoscale*, 2015, 7, 13153-13158.