Asymmetric Formal Synthesis of (+)-Catharanthine via Desymmetrization of Isoquinuclidine

Masato Kono,[†] Shingo Harada,^{*,†} Tomoyuki Nozaki,[†] Yoshinori Hashimoto,[†] Shun-ichi Murata,[†] Harald Gröger,[‡] Yusuke Kuroda,[§] Ken-ichi Yamada,[∥] Kiyosei Takasu,[§] Yasumasa Hamada,[†] Tetsuhiro Nemoto^{*,†,⊥}

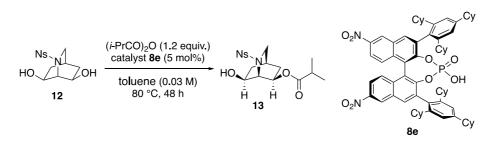
[†]Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan [‡]Chair of Organic Chemistry I, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany

[§]Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan

^{II}Graduate School of Pharmaceutical Sciences, Tokushima University, Shomachi, Tokushima 770-8505, Japan ^IMolecular Chirality Research Center, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

> E-mail: tnemoto@faculty.chiba-u.jp, Sharada@chiba-u.jp Tel/Fax: +81-43-226-2920.

Table of Contents


1. <u>General Information</u> S3
2. Asymmetric Desymmetrization
3. <u>Asymmetric Formal Synthesis of (+)-Catharanthine (Scheme 4)</u> S6
4. Synthesis and Characterization of 3
5. Protecting-group Manipulation

6. Supplementary Data for Asymmetric Desymmetrization	S22
7. Charts of ¹ H- and ¹³ C-NMR Spectra	S23
8. Chiral and Racemic HPLC Traces	S44
9. <u>References</u>	S45

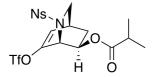
1. General Information

NMR spectra were recorded on a JEOL ecs 400 spectrometer. Chemical shifts in CDCl₃, were reported downfield from TMS (= 0 ppm) for ¹H NMR. Data are reported as follows: chemical shift, multiplicity (s = singlet, d =doublet, t = triplet, q = quartet, m = multiplet, and br = broad), integration and coupling constants in Hz. For ¹³C NMR, chemical shifts were reported in the scale relative to the solvent signal $[CHCl_3 (77.0 \text{ ppm})]$ as an internal reference. ESI mass spectra were measured on JEOL AccuTOF LC-plus JMS-T100LP. Optical rotations were measured on a JASCO P-1020 polarimeter. IR spectra were recorded on a JASCO FT/IR 230 Fourier transform infrared spectrophotometer, equipped with ATR (Smiths Detection, DuraSample IR II). The enantiomeric ratio (er) was determined by HPLC analysis. HPLC was performed on JASCO HPLC systems consisting of the following: pump, PU-980; detector, UV-970; column DAICEL CHIRALPAK AS-H, mobile phase, nhexane/i-PrOH. Melting points were measured with a SIBATA NEL-270 melting point apparatus. Analytical thin layer chromatography was performed on Kieselgel 60F254, 0.25 mm thickness plates. Column chromatography was performed with silica gel 60 N (spherical, neutral 63-210 mesh). Reactions were conducted in dry solvent. Other reagents were purified by the usual methods. Catalysts 8d and 8e were prepared according to the reported procedure.¹

2. Asymmetric Desymmetrization

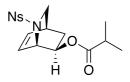
(1S,4R,6R,7S)-7-Hydroxy-2-((2-nitrophenyl)sulfonyl)-2-

azabicyclo[2.2.2]octan-6-yl isobutyrate (13)


To a stirred solution of 12 (99 mg, 0.3 mmol) and (*S*)-3,3'-bis(2,4,6tricyclohexylphenyl)-6,6'-dinitro-1,1'-binaphthyl phosphate 8e (16.3 mg, 5 mol %, 0.015 mmol) in toluene (10 mL, 0.03 M) at room temperature was added isobutyric anhydride (6.3 µL, 1.2eq, 0.038 mmol), and the resulting mixture was stirred at 80 °C for 48 h. The reaction was quenched with H₂O and the aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated under vacuum. The obtained residue was purified by flash chromatography on silica gel (column condition; gradient elution: *n*-hexane/EtOAc = $3/1 \rightarrow 1/2$) to give 13 as colorless oil in 74% yield (89 mg): $R_f = 0.2$ (*n*-hexane/EtOAc, 1/2); ¹H NMR (400 MHz, CDCl₃) δ 1.08-1.11 (m, 6H), 1.39-1.43 (m, 1H), 1.51-1.57 (m, 1H), 1.94-2.03 (m, 2H), 2.13 (t, *J*=2.8 Hz, 1H), 2.33-2.38 (m, 1H), 2.60 (d, 1.6 Hz, 1H), 3.42 (dt, *J*= 2.4, 4.8 Hz, 1H), 3.63 (dt, *J*=2.4, 4.8Hz, 1H), 4.06-4.09 (m, 2H), 4.82 (ddd, *J*= 2.0, 2.4, 4.0 Hz, 1H), 7.56-7.58 (m, 1H), 7.66-7.68 (m, 2H), 8.07-8.10 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 18.6, 18.9, 25.3, 31.4, 33.8, 33.9, 49.1, 56.3, 66.2, 68.2, 123.7, 130.8, 131.6, 133.1, 133.2, 147.8, 176.7; IR (ATR) v 3526, 2971, 1729, 1543, 1373, 1345, 1170, 1092, 1043, 991 cm⁻¹; HRMS (ESI-TOF) [M + Na]⁺ calcd for C₁₇H₂₂N₂NaO₇S⁺ m/z 421.1047, found m/z 421.1040; [α]^{23.2} D = 54.2 (*c* 1.0, CHCl₃).

The enantiomeric ratio was determined to be 97:3 by analytical chiral HPLC. 48 min (minor), 67 min (major) (AS-H column, 75/25 *n*-hexane/*i*-PrOH, 1 mL/min, 254 nm). 3. Asymmetric Formal Synthesis of (+)-Catharanthine (Scheme 4)

(1*R*,4*S*,6*R*)-2-((2-Nitrophenyl)sulfonyl)-7-oxo-2-azabicyclo[2.2.2]octan-6-yl isobutyrate (14)

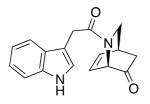

A solution of **13** (87.2 mg, 0.22 mmol) and Ac₂O (0.31 mL, 15 eq, 3.3 mmol) in DMSO (4.4 mL, 0.05 M) was stirred for 24 h at room temperature. The reaction was quenched with saturated aqueous NaHCO₃, extracted with EtOAc, washed with brine, dried over Na_2SO_4 , and concentrated under reduced pressure. The crude residue was purified by flash chromatography on silica gel (column condition; *n*-hexane/EtOAc = 1/1) to give **14** as white solid in 84% yield (72.5 mg). The optical purity was increased to 99:1 er by recrystallization from *n*-hexane/EtOAc: mp 108–110 °C; $R_f = 0.2$ (*n*hexane/EtOAc, 1/1); ¹H NMR (400 MHz, CDCl₃) δ 1.12 (dd, J = 0.8, 2.8 Hz, 6H), 1.73 (dd, J=2.8, 12.0 Hz, 1H), 2.10-2.17 (m, 1H), 2.33-2.37 (m, 2H), 2.41-2.49 (m, 1H), 2.58 (s, 1H), 3.61-3.75 (m, 2H), 4.33 (d, J = 3.2 Hz, 1H), 5.07-5.11 (m, 1H), 7.61-7.63 (m, 1H), 7.67-7.74 (m, 2H), 7.98-8.00 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) & 18.6, 18.8, 27.7, 32.4, 33.8, 41.6, 48.1, 59.7, 67.6, 124.1, 131.1, 131.9, 132.4, 133.9, 147.8, 176.0, 202.8; IR (ATR) v 2974, 1732, 1540, 1470, 1352, 1146, 1128, 1078, 936, 730 cm⁻¹; HRMS (ESI-TOF) [M + Na]⁺ calcd for $C_{17}H_{20}N_2NaO_7S^+$ m/z 419.0879, found 419.0883; [a]^{22.4} D = 15.1 (c 1.0, CHCl₃).

The enantiomeric ratio was determined to be 99:1 by analytical chiral HPLC. 28 min (minor), 36 min (major) (AS-H column, 70/30 *n*-hexane/*i*-PrOH, 1 mL/min, 254 nm).

(1*R*,4*S*,6*R*)-2-((2-Nitrophenyl)sulfonyl)-7-(((trifluoromethyl)sulfonyl)oxy)-2azabicyclo[2.2.2]oct-7-en-6-yl isobutyrate (15)

To a stirred solution of 14 (92 mg, 0.23 mmol) in THF (4.6 mL, 0.05 M) was added KHMDS (0.5 M solution in toluene) (0.51 mL, 1.1 eq, 0.25 mmol) at -78 °C, and the reaction mixture was stirred for 30 min at the same temperature. Then PhNTf₂ (90.4 mg, 1.1 eq, 0.25 mmol) was added, and the mixture was stirred for 1 h at -78 °C. The reaction was quenched with saturated aqueous NH₄Cl, extracted with EtOAc, washed with water and brine, dried over Na₂SO₄, and concentrated under reduced pressure. The crude residue was purified by flash chromatography on silica gel (column condition; gradient elution: *n*-hexane/EtOAc $3/1 \rightarrow 1/1$) to give 15 as white solid in 86% yield (106 mg): mp 80–82 °C; $R_f = 0.5$ (*n*-hexane/EtOAc, 1/1); ¹H NMR (400 MHz, CDCl₃) δ 1.14 (d, J = 6.8 Hz, 6H), 1.50 (ddd, J = 12.0, 2.8, 2.0 Hz, 1H), 2.12 (m, 1H), 2.50 (m, 1H), 3.07 (ddd, J = 7.2, 2.8, 2.8 Hz, 1H), 3.14 (m, 1H), 3.64 (dd, J = 9.6, 2.0 Hz, 1H), 4.87 (dd, J = 2.8, 2.4 Hz, 1H), 4.95 (ddd, J = 9.6, 3.2, 2.8 Hz, 1H), 6.22 (dd, J = 7.6, 2.0 Hz, 1H), 7.64 (d, J = 7.2 Hz, 1H), 7.66-7.74 (m, 2H), 7.98 (d, J = 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 18.6, 18.8, 29.6, 30.8, 33.8, 47.6, 54.8, 70.5, 118.4 (q, J = 320.4 Hz), 122.1, 124.2, 130.7, 131.8, 132.2, 133.8, 147.0, 148.1, 176.6; IR (ATR) v 2925, 1734, 1655, 1544, 1423, 1370, 1246, 1211, 1172, 1133 cm⁻¹; HRMS (ESI-TOF) [M + Na]⁺ calcd for C₁₈H₁₉F₃N₂NaO₉S₂⁺ m/z 551.0382, found 551.0372; [a]^{22.1}D - 30.7 (*c* 1.0, CHCl₃).

(1*S*,4*S*,6*R*)-2-((2-Nitrophenyl)sulfonyl)-2-azabicyclo[2.2.2]oct-7-en-6-yl isobutyrate (16)

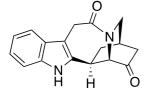

To a stirred solution of **15** (106 mg, 0.2 mmol) and $PdCl_2(PPh_3)_2$ (14.0 mg, 10 mol%, 0.02 mmol) in DMF (2 mL, 0.1 M) were added Et_3N (0.084 mL, 3 eq, 0.6 mmol) and HCOOH (0.015 mL, 2 eq, 0.4 mmol) at room temperature, and the reaction mixture was stirred for 2 h at 60 °C. The reaction was quenched with saturated aqueous NaHCO₃, extracted with EtOAc, washed with water and brine, dried over Na₂SO₄, and concentrated under reduced pressure. The crude residue was purified by flash chromatography on silica gel (column

condition; gradient elution: *n*-hexane/EtOAc $3/1 \rightarrow 1/1$) to give **16** as pale brown oil in 85% yield (65 mg): $R_f = 0.4$ (*n*-hexane/EtOAc, 1/1); ¹H NMR (400 MHz, CDCl₃) δ 1.16 (d, J = 6.8 Hz, 3H), 1.17 (d, J = 6.8 Hz, 3H), 1.44 (ddd, J= 14.0, 2.8, 2.4 Hz, 1H), 2.01 (m, 1H), 2.51 (qq, J = 6.8, 6.8 Hz, 1H), 2.82 (m, 1H), 2.96 (ddd, J = 9.2, 2.8, 2.4 Hz, 1H), 3.61 (dd, J = 9.2, 2.8 Hz, 1H), 4.68-4.74 (m, 2H), 6.37-6.42 (m, 2H), 7.58-7.69 (m, 3H), 7.96 (d, J = 6.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 18.77, 18.85, 28.9, 30.1, 34.0, 48.4, 52.1, 70.6, 124.1, 130.0, 130.8, 131.4, 132.8, 133.2, 135.9, 148.1, 176.9; IR (ATR) v 2925, 1727, 1541, 1469, 1348, 1260, 1170, 1129, 1098, 1008 cm⁻¹; HRMS (ESI-TOF) [M + Na]+ calcd for C₁₇H₂₀N₂NaO₆S⁺ m/z 403.0940, found 403.0935; [a]^{22.0} D = 14.6 (*c* 1.0, CHCl₃).

(1S,4S,6R)-2-((2-Nitrophenyl)sulfonyl)-2-azabicyclo[2.2.2]oct-7-en-6-ol (17)

To a stirred solution of **16** (60.0 mg, 0.16 mmol) in 1,4-dioxane (3.2 mL, 0.05 M) was added 2.5 N aqueous NaOH (0.19 mL, 3 eq, 0.48 mmol), and the reaction mixture was stirred for 15 h at 80 °C. The reaction was quenched with saturated aqueous NaHCO₃, extracted with EtOAc, washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The crude residue was purified by flash chromatography on silica gel (column condition;

gradient elution: *n*-hexane/EtOAc 1/1 \rightarrow EtOAc) to give 17 as colorless oil in 90% yield (43.9 mg): $R_f = 0.3$ (*n*-hexane/EtOAc, 1/2); ¹H NMR (400 MHz, CDCl₃) δ 1.29 (ddd, J = 13.6, 2.8, 2.4, 1H), 1.96 (m, 1H), 2.38 (d, J = 8.4 Hz, 1H), 2.78 (m, 1H), 3.10 (ddd, J = 9.2, 2.8, 2.0 Hz, 1H), 3.54 (dd, J = 9.2, 2.4 Hz, 1H), 3.82 (m, 1H), 4.42 (m, 1H), 6.31-6.39 (m, 2H), 7.60 (dd, J = 7.2, 2.0 Hz, 1H), 7.64-7.73 (m, 2H), 8.02 (dd, J = 7.6, 2.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 30.3, 31.9, 48.9, 55.7, 68.9, 124.1, 130.0, 131.1, 131.5, 132.1, 133.6, 135.6, 148.1; IR (ATR) v 3535, 2958, 1542, 1440, 1372, 1348, 1170, 1130, 1096, 1033 cm⁻¹; HRMS (ESI-TOF) [M + Na]⁺ calcd for C₁₃H₁₄N₂NaO₅S⁺ m/z 333.0521, found 333.0525; [a]^{23.9} D + 8.5 (*c* 1.0, CHCl₃).


(1S,4S)-2-(2-(1H-Indol-3-yl)acetyl)-2-azabicyclo[2.2.2]oct-7-en-6-one (18)

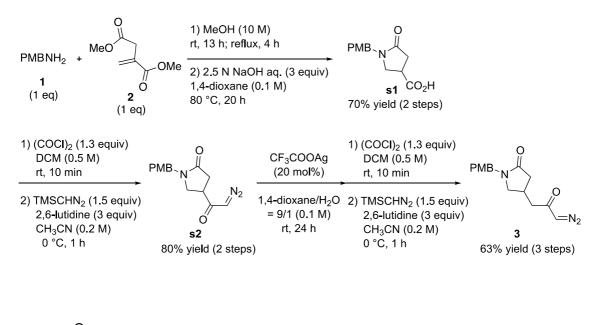
A solution of **17** (43.9 mg, 0.14 mmol) and Ac₂O (0.2 mL, 15 eq, 2.1 mmol) in DMSO (2.8 mL, 0.05 M) was stirred for 24 h at room temperature. The reaction was quenched with saturated aqueous NaHCO₃, extracted with EtOAc, washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The crude ketone was used for the next step without further purification. A solution of the crude ketone obtained above, Cs_2CO_3 (136.8 mg, 3 eq, 0.42 mmol) and MetSThiol[®] (1.24 mmol/g) (451.6 mg, 4 eq, 0.56 mmol) in CH₃CN (14 mL, 0.01 M) was stirred for 18 h at 80 °C. The reaction mixture was filtered through celite and concentrated under reduced pressure to give crude secondary amine which was used for the next step without further purification.

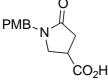
To a stirred solution of the crude amine, indole-3-acetic acid (49.1 mg, 2 eq, 0.28 mmol) in CH₂Cl₂ (14 mL, 0.01 M) were added Et₃N (0.098 mL, 5 eq, 0.7 mmol) and EDCI (53.7 mg, 2 eq, 0.28 mmol) at 0 °C, and the reaction mixture was stirred for 20 h at room temperature. The reaction was quenched with saturated aqueous NaHCO₃, extracted with CHCl₃, washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The crude residue was purified by flash chromatography on silica gel (column condition; gradient elution: *n*-hexane/EtOAc $1/1 \rightarrow 1/2$) to give **18** as colorless oil in 47% yield (3 steps, 18.7 mg): $R_f = 0.2$ (*n*-hexane/EtOAc, 1/2); ¹H NMR (400 MHz, CDCl₃) (mixture of rotamers) δ 2.03-2.23 (m, 4H), 3.12 (m, 1H), 3.16 (m, 1H), 3.26 (d, J = 11.6 Hz, 1H), 3.32 (ddd, J = 9.2, 2.0, 1.6 Hz, 1H), 3.53 (dd, J = 9.6, J = 11.6 Hz, 2H = 11.2.8 Hz, 1H), 3.63 (dd, J = 11.2, 2.4 Hz, 1H), 3.76 (s, 2H), 3.82 (d, J = 15.6 Hz, 1H), 3.91 (d, J = 15.6 Hz, 1H), 4.75 (d, J = 6.4 Hz, 1H), 5.57 (d, J = 6.4 Hz, 1H), 6.16 (m, 1H), 6.40 (m, 1H), 6.58-6.66 (m, 2H), 6.97-7.02 (m, 2H), 7.08-7.14 (m, 2H), 7.15-7.21 (m, 2H), 7.31-7.35 (m, 2H), 7.55 (d, J = 8.0 Hz, 1H), 7.62 (d, J = 3.0 Hz, 1H), 7.62 (d, J == 8.0 Hz, 1H), 8.34 (br s, 1H), 8.40 (br s, 1H); ¹³C NMR (100 MHz, CDCl₃)

(mixture of rotamers) δ 31.7 (2C), 32.2, 32.5, 36.5, 36.6, 46.3, 47.0, 55.6, 60.1, 108.1, 108.6, 111.2, 111.3, 118.3, 118.8, 119.55, 119.65, 122.1, 122.2, 122.60, 122.64, 127.0, 127.1, 127.2, 128.5, 136.1, 136.2, 139.0, 140.2, 170.5, 170.7, 202.58, 202.60; IR (ATR) v 3281, 2925, 1729, 1631, 1457, 1406, 1339, 1317, 1271, 1227 cm⁻¹; HRMS (ESI-TOF) [M + Na]⁺ calcd for C₁₇H₁₆N₂NaO₂⁺ m/z 303.1110, found 303.1111.

At this stage, optical rotation was compared with that of the known intermediate of (+)-catharanthine, and it turned out that our compound has the same absolute configuration of (+)-catharanthine: $[\alpha]^{22.9} _{\rm D} - 85.4$ (c 1.0, CHCl₃) (reported; $[\alpha]^{20} _{\rm D} - 61$ (c 1.2, CHCl₃)²).

(6S,6aR,9R,11R)-5,6,6a,9,10,13-Hexahydro-12H-6,9-

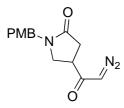

methanopyrido[1',2':1,2]azepino[4,5-b]indole-7,12(8H)-dione (19)


To a suspension of $(CH_3CN)_2PdCl_2$ (10.1 mg, 1.3 eq, 0.04 mmol) and AgBF₄ (8.2 mg, 1.4 eq, 0.042 mmol) in CH₃CN (0.5 mL) was added a solution of **18** (8.2 mg, 0.03 mmol) in CH₃CN (1 mL), and the reaction mixture was stirred for 1 h at room temperature and 18 h at 70 °C. The reaction was then cooled down to 0 °C, and MeOH (0.3 mL) was added followed by NaBH₄ (3.6 mg, 3.2 eq. 0.1 mmol). The reaction mixture was filtered through celite and concentrated under reduced pressure. The crude residue was purified by flash chromatography on silica gel (column condition; gradient elution: n-hexane/EtOAc 1/1 \rightarrow EtOAc) to give **19** as white solid in quantitative yield (8.2 mg).

¹H and ¹³C NMR, and other data are identical to those reported³ (NMR charts are given in the spectra section).

We found that the compound **19** is unstable under the reported measurement condition (CH₂Cl₂/MeOH mix solvent, ($[\alpha]^{25}_{D} - 102.2$ ($c \ 0.59$, CH₂Cl₂/MeOH = 1:1))³). Therefore, we measured the optical rotation of **19** in another solvent: $[\alpha]^{25}_{D} - 55.8$ ($c \ 0.23$, DMSO).

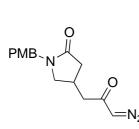
4. Synthesis and Characterization of 3



1-(4-Methoxybenzyl)-5-oxopyrrolidine-3-carboxylic acid (s1)

A solution of dimethyl itaconate (7.1 mL, 50 mmol) and PMBNH₂ (6.5 mL, 1 eq, 50 mmol) in MeOH (5 mL, 10 M) was stirred for 13 h at room temperature and then refluxed for 4 h. The reaction mixture was cooled down to room temperature and concentrated under reduced pressure. The crude residue was used for the next step without further purification.

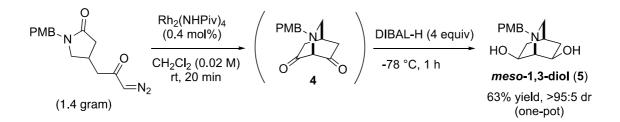
To a stirred solution of the crude product obtained above in 1,4-dioxane (250 mL, 0.2 M) was added 2.5 N aqueous NaOH (60 mL, 3 eq, 150 mmol) at 0 °C, and the mixture was stirred for 24 h at 80 °C. The reaction mixture was


cooled down to room temperature, concentrated under reduced pressure to remove 1,4-dioxane. The water layer was washed with $CHCl_3$, acidified with 1 N aqueous KHSO₄, and extracted with EtOAc. The organic layer of EtOAc was washed with brine, dried over Na₂SO₄, concentrated under reduced pressure to give white precipitate. The precipitate was washed with Et₂O to give pure **s1** as white powder in 70% yield (2 steps, 8.7 g). Compound data was identical to those reported.⁴

4-(2-Diazoacetyl)-1-(4-methoxybenzyl)pyrrolidin-2-one (s2)

To a stirred solution of **s1** (2.5 g, 10 mmol) in CH_2Cl_2 (20 mL, 0.5 M) was added (COCl)₂ (1.1 mL, 1.3 eq, 13 mmol) at room temperature. The reaction mixture was stirred for 10 min at room temperature and concentrated under reduced pressure to give crude acid chloride which was used for the next step without further purification.

To a stirred solution of the crude acid chloride in CH_3CN (50 mL, 0.2 M) were added 2,6-lutidine (3.5 mL, 3 eq, 30 mmol) and $TMSCHN_2$ (2.0 M in Et_2O) (7.5 mL, 1.5 eq, 15 mmol) at 0 °C, and the reaction mixture was stirred for 1 h at 0 °C. The reaction was quenched with saturated aqueous NaHCO₃, extracted with Et_2O , washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The crude residue was purified by flash chromatography on silica gel (column condition; gradient elution: *n*⁻ hexane/EtOAc 1/2 \rightarrow EtOAc \rightarrow EtOAc/MeOH 20/1) to give **s2** as brown oil in 80% yield (2 steps, 2.2 g): R_f = 0.1 (EtOAc); ¹H NMR (400 MHz, CDCl₃) & 2,58-2.77 (m, 2H), 3.12 (m, 1H), 3.36 (dd, *J*= 10.4, 8.4 Hz, 1H), 3.47 (dd, *J*= 10.4, 6.8 Hz, 1H), 3,79 (s, 3H), 4.32 (d, *J*= 14.8 Hz, 1H), 4.45 (d, *J*= 14.8 Hz, 1H), 5.28 (s, 1H), 6.86 (d, *J*= 8.4 Hz, 2H), 7.16 (d, *J*= 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) & 34.2, 40.8, 45.9, 48.1, 54.7, 55.2, 114.1, 127.9, 129.4, 159.1, 171.9, 192.9; IR (ATR) v 2933, 2103, 1678, 1634, 1585, 1511, 1419, 1373, 1318, 1302 cm⁻¹; HRMS (ESI-TOF) [M + Na]⁺ calcd for C₁₄H₁₅N₃NaO₃⁺ m/z 296.1011, found m/z 296.1009.

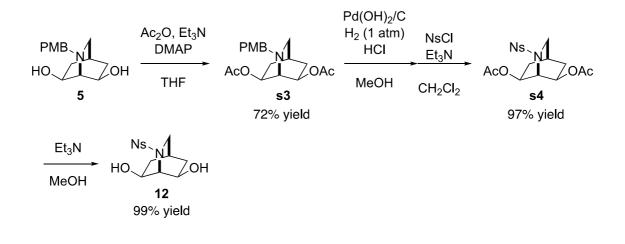

4-(2-Diazoacetyl)-1-(4-methoxybenzyl)pyrrolidin-2-one (3)

To a stirred solution of s2 (2.2 g, 8.0 mmol) in 1,4-dioxane (72 mL) and H₂O (8 mL) was added CF₃COOAg (353 mg, 20 mol%, 1.6 mmol), and the reaction mixture was stirred for 14 h at room temperature and concentrated under reduced pressure to remove 1,4-dioxane. EtOAc and 1 N aqueous HCl were successively added to the reaction mixture, and the aqueous layer was extracted with EtOAc. The combined organic layer was washed with brine,

dried over Na₂SO₄, and concentrated under reduced pressure to give crude carboxylic acid which was used for the next step without further purification. To a stirred suspension of the crude carboxylic acid (1.8 g, 6.8 mmol) in CH_2Cl_2 (14 mL, 0.5 M) was added (COCl)₂ (0.76 mL, 1.3 eq, 8.8 mmol) at room temperature. The reaction mixture was stirred for 10 min at room temperature and concentrated under reduced pressure to give crude acid chloride which was used for the next step without further purification.

To a stirred solution of the crude acid chloride in CH₃CN (34 mL, 0.2 M) were added 2,6-lutidine (2.4 mL, 3 eq, 20 mmol) and TMSCHN₂ (2.0 M in Et₂O) (5.1 mL, 1.5 eq, 10 mmol) at 0 °C, and the reaction mixture was stirred for 1 h at 0 °C. The reaction was quenched with saturated aqueous NaHCO₃, extracted with Et₂O, washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The crude residue was purified by flash chromatography on silica gel (column condition; gradient elution: *n*hexane/EtOAc $1/2 \rightarrow$ EtOAc \rightarrow EtOAc/MeOH 20/1) to give **3** as brown oil in 63% yield (3 steps, 1.4 g).

¹H and ¹³C NMR, IR, and MS were identical to those reported.⁵



(1S,4R,6R,7S)-2-(4-Methoxybenzyl)-2-azabicyclo[2.2.2]octane-6,7-diol (5)

To a stirred solution of Rh₂(NHPiv)₄ (12 mg, 0.4 mol%, 0.02 mmol) in CH₂Cl₂ (240 mL) was added **3** (1.4 g, 5.0 mmol) in CH₂Cl₂ (10 mL), and the reaction mixture was stirred for 20 min at room temperature. Then the reaction mixture was cooled to -78 °C, and DIBAL-H (1.02 M in hexane) (20 mL, 4 eq, 20 mmol) was added. After being stirred for 1 h at the same temperature, the reaction was quenched with 2 M aqueous Rochelle salt, and the resulting mixture was stirred for 1 h at room temperature. The reaction mixture was filtered through Celite, extracted with CH₂Cl₂, washed with brine, dried over Na₂SO₄, concentrated under reduced pressure, and purified by flash chromatography on silica gel (column condition; gradient elution: CHCl₃/MeOH 15/1 \rightarrow 5/1) to give **5** as pale yellow powder in 63% yield (2 steps, 822 mg).

¹H and ¹³C NMR, IR, and MS were identical to those reported.⁵

5. Protecting-group Manipulation

PMB. AcO. /OAc

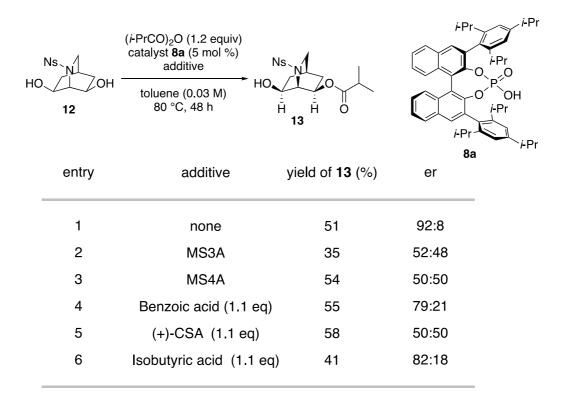
(1*S*,4*R*,6*R*,7*S*)-2-(4-Methoxybenzyl)-2-azabicyclo[2.2.2]octane-6,7-diyl diacetate (s3)

To a stirred solution of **5** (753 mg, 2.9 mmol), DMAP (35.4 mg, 10 mol%, 0.29 mmol) and triethylamine (0.9 mL, 2.2 eq, 6.4 mmol) in THF (29 mL, 0.1 M) at 0 °C was added acetic anhydride (0.6 mL, 2.2 eq, 6.4 mmol), and the resulting mixture was stirred for 3 h at room temperature. The reaction was quenched with saturated aqueous NaHCO₃ and the aqueous layer was extracted with EtOAc. The combined organic layers were dried over Na₂SO₄, and then concentrated under vacuum. The obtained residue was purified by flash chromatography on silica gel (column condition; *n*-hexane/EtOAc, 3/1) to give **s3** as colorless oil in 72% yield (712 mg).

¹H and ¹³C NMR, IR, and MS were identical to those reported.⁵

(1*S*,4*R*,6*R*,7*S*)-2-((2-Nitrophenyl)sulfonyl)-2-azabicyclo[2.2.2]octane-6,7-diyl diacetate (s4)

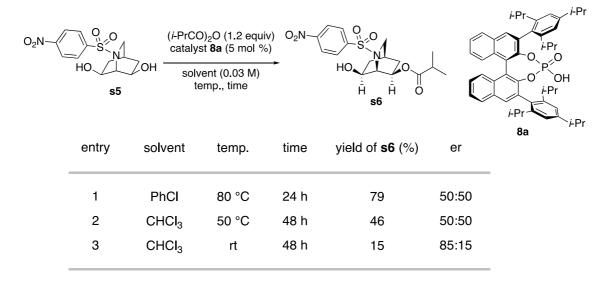
To a suspension of **s3** (534 mg, 1.54 mmol) and 20% Pd(OH)₂/C (100 mg) in MeOH (30 mL, 0.05 M) was added 2 N HCl in MeOH (1.54 mL, 2 eq, 3.1 mmol) and the reaction mixture was stirred under H₂ atmosphere for 13 h at room temperature. The reaction mixture was filtered through a short pad of celite and concentrated under reduced pressure. The crude residue was used for the next step without further purification.

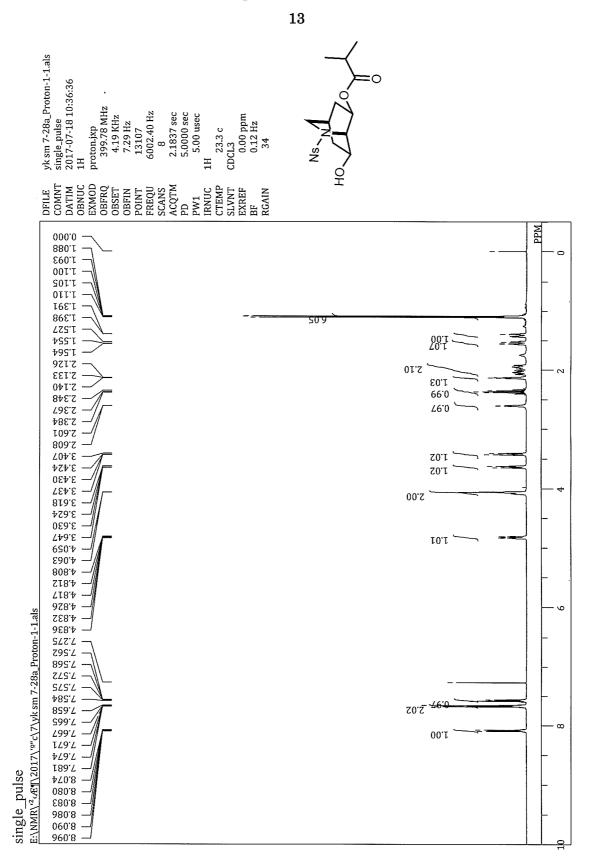

To a stirred solution of the crude product in CH₂Cl₂ (30 mL, 0.05 M) was added NEt₃ (0.86 mL, 4 eq, 6.12 mmol) at 0 °C, and the reaction mixture was stirred for 5 min at 0 °C. Then NsCl (409 mg, 1.2 eq, 1.83 mmol) was added and the resulting mixture was stirred for 5 h at room temperature. The reaction was quenched with saturated aqueous NaHCO₃, extracted with EtOAc, dried over Na₂SO₄, and concentrated under reduced pressure. The crude mixture was purified by flash chromatography on silica gel (column condition; *m*-hexane/EtOAc, 1/1) to give **s4** as colorless oil in 97% yield (612 mg): R_f = 0.3 (*m*-hexane/EtOAc, 1/1); ¹H NMR (400 MHz, CDCl₃) δ 1.57 (dd, *J* =2.8, 12.4 Hz, 2H), 1.81 (s, 6H), 2.05-2.11 (m, 2H), 2.18-2.20 (m, 1H), 3.60 (s, 2H), 4.16 (t, *J*=2.4 Hz, 1H), 4.88 (dt, *J*=2.0, 3.2 Hz, 2H), 7.64-7.71 (m, 3H), 8.03-8.05 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 20.7, 25.1, 31.3, 49.1, 52.7, 68.0, 123.6, 130.8, 131.4, 133.1, 133.8, 147.8, 170.1; IR (ATR) v 2942, 1736, 1541, 1438, 1353, 1223, 1170, 1025, 942, 749 cm⁻¹; HRMS (ESI-TOF) [M + Na]⁺ calcd for C₁₇H₂₀N₂NaO₈S⁺ m/z 435.0832, found m/z 435.0833.

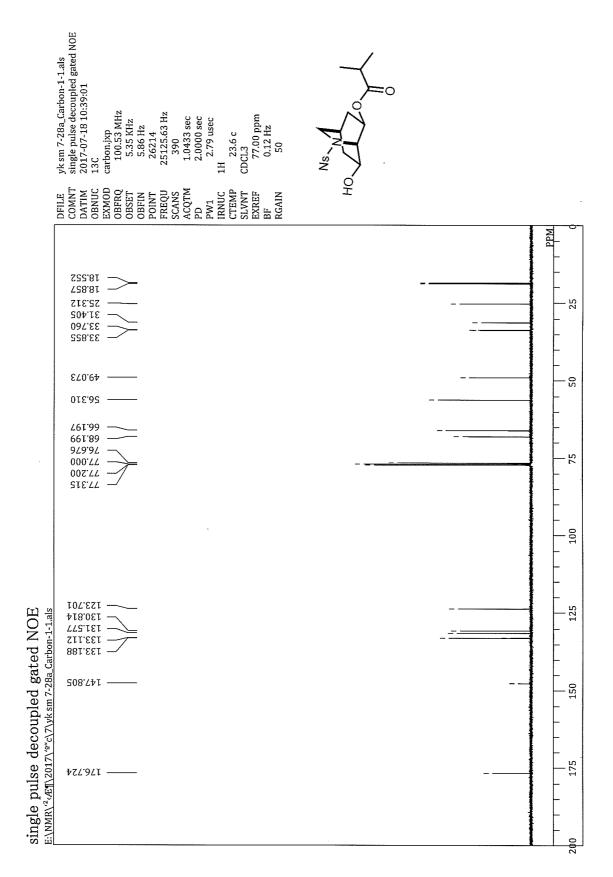
NS N HO / OH

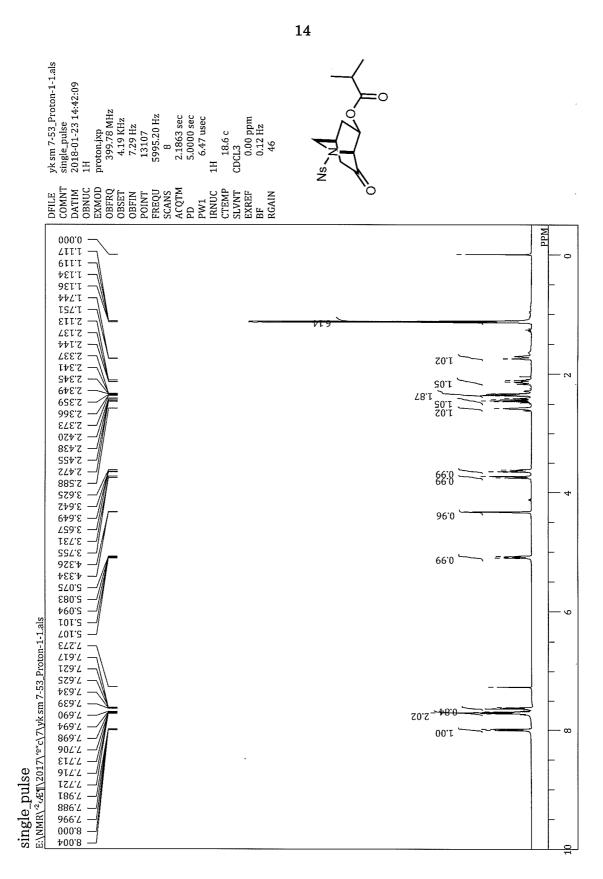
(1*S*,4*R*,6*R*,7*S*)-2-((2-Nitrophenyl)sulfonyl)-2-azabicyclo[2.2.2]octane-6,7-diol (12)

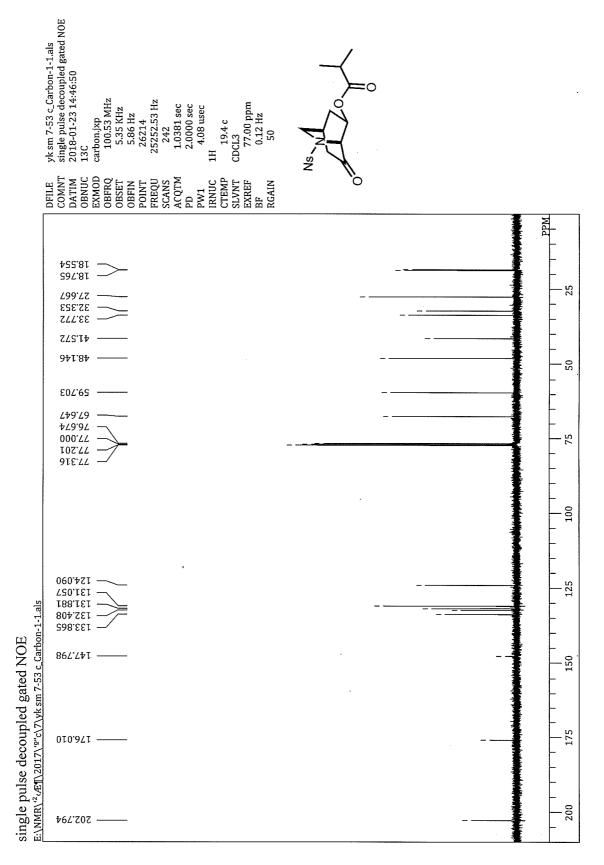
A solution of **s4** (630 mg, 1.53 mmol) and NEt₃ (1.1 mL, 5 eq, 7.6 mmol) in MeOH (30 mL, 0.05 M) was stirred at 60 °C. After 13 h, the reaction mixture was concentrated *in vacuo*. The obtained residue was purified by flash chromatography on silica gel (column condition; *n*-hexane/EtOAc, 1/2) to give **12** as white powder in 99% yield (502 mg): $R_f = 0.2$ (EtOAc); ¹H NMR (400 MHz, CDCl₃) δ 1.43 (dd, J=2.8, 12.4 Hz, 2H), 1.92-1.98 (m, 2H), 2.09-2.12 (m, 1H), 2.36 (br, 2H), 3.54 (dd, J=0.8, 1.6 Hz, 2H), 3.81 (t, 2.8 Hz, 1H), 3.93-3.96 (m, 2H), 7.58-7.61 (m, 1H), 7.68-7.73 (m, 2H), 8.08-8.11 (m, 1H); ¹³C NMR (100 MHz, CD₃CN) δ 26.4, 34.5, 50.1, 61.1, 66.8, 124.3, 131.7, 132.4, 133.6, 134.3, 149.2; IR (ATR) v 1539, 1367, 1337, 1167, 1130, 1044, 1009, 942, 740, 631 cm⁻¹; HRMS (ESI-TOF) [M + Na]⁺ calcd for C₁₃H₁₆N₂NaO₆S⁺ m/z 351.0620, found m/z 351.0621.

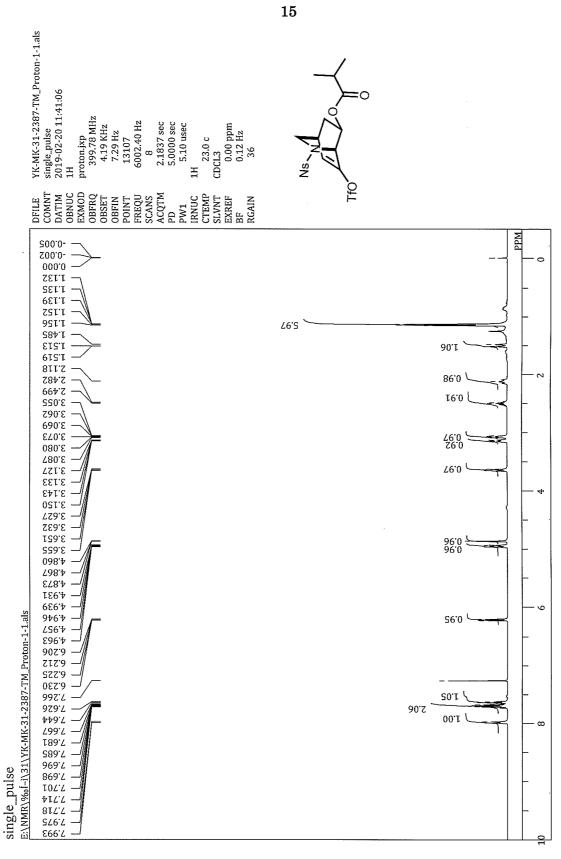

6. Supplementary Data for Asymmetric Desymmetrization

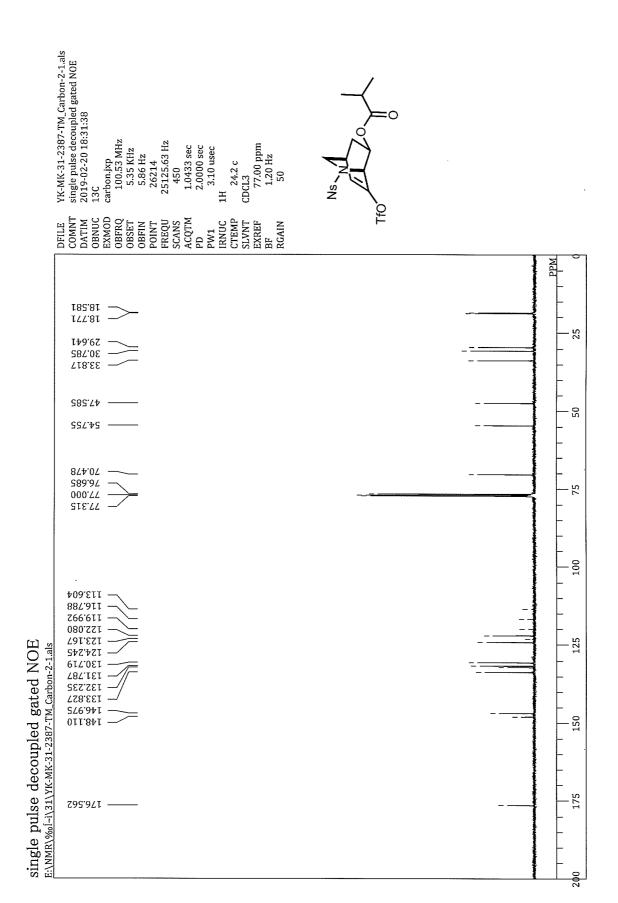

Table S1. An Additive Effect

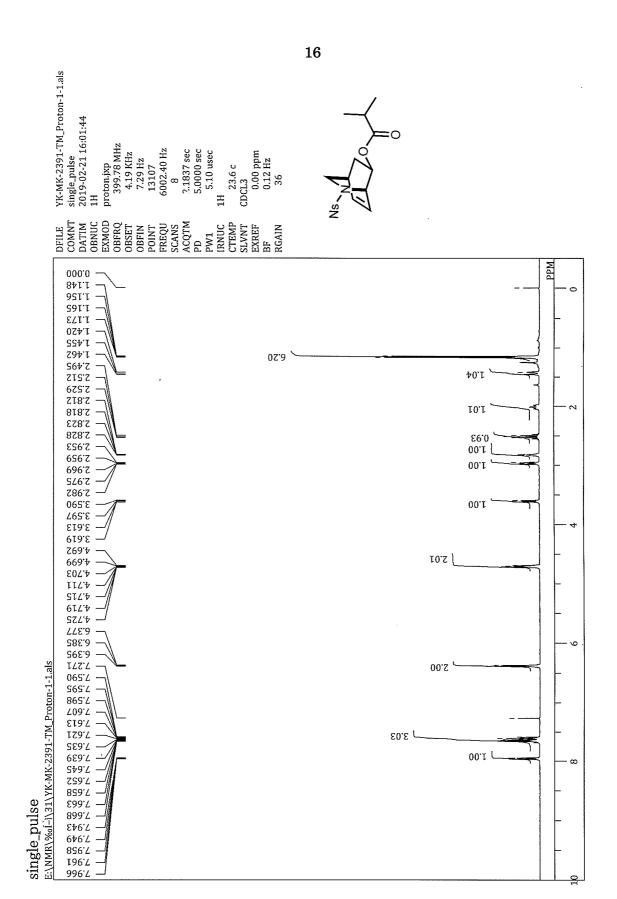

CSA: 10-Camphorsulfonic acid

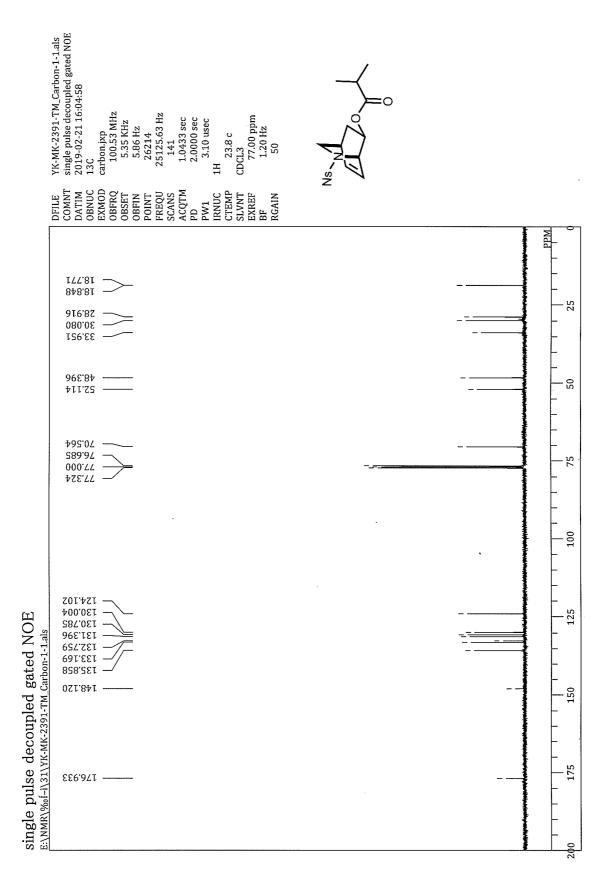

TableS2.AsymmetricDesymmetrizationofs5possessing4-Nitrobenzenesulfonyl Group

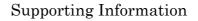


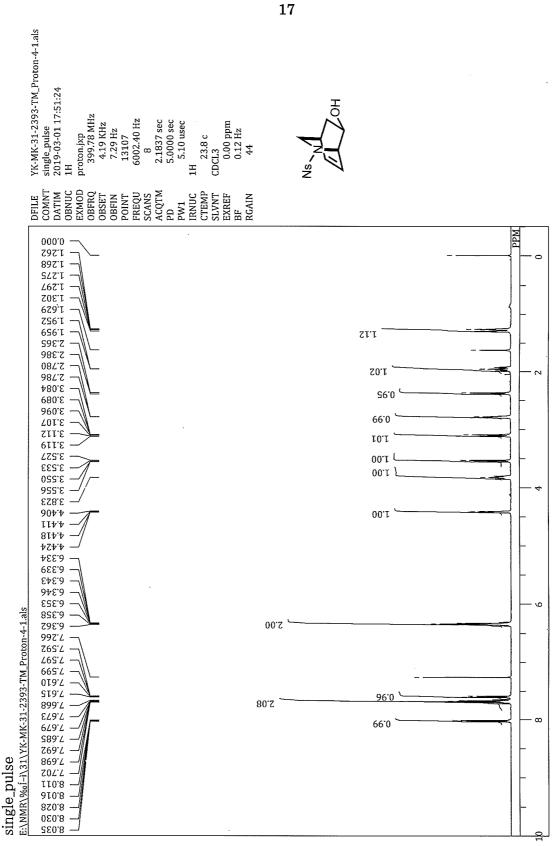

7. Charts of ¹H- and ¹³C-NMR spectra

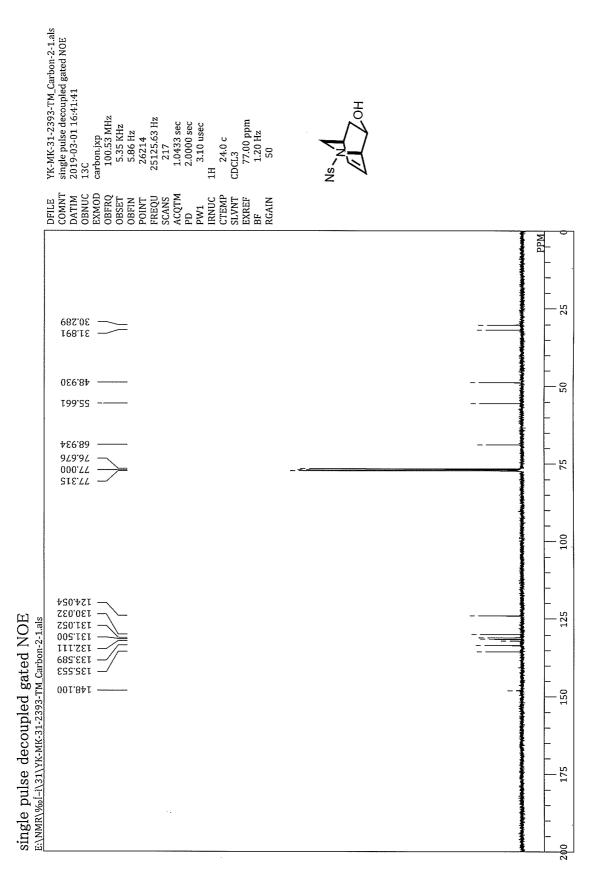


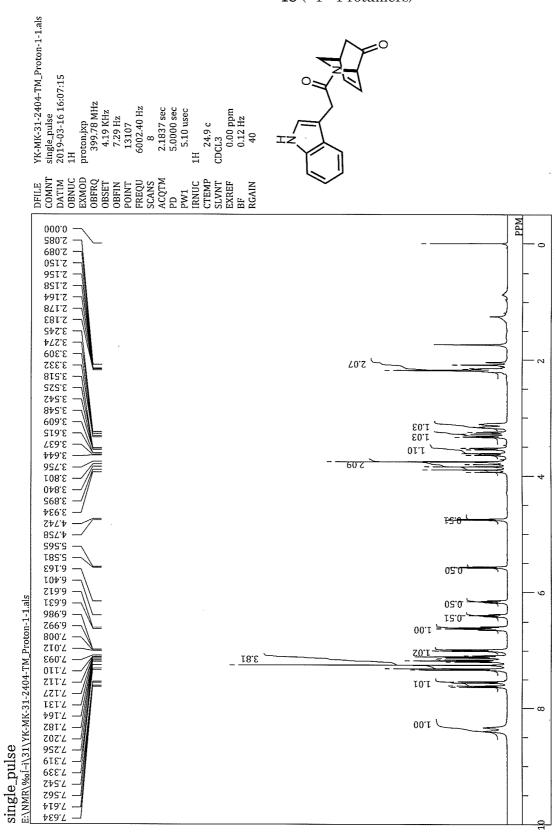


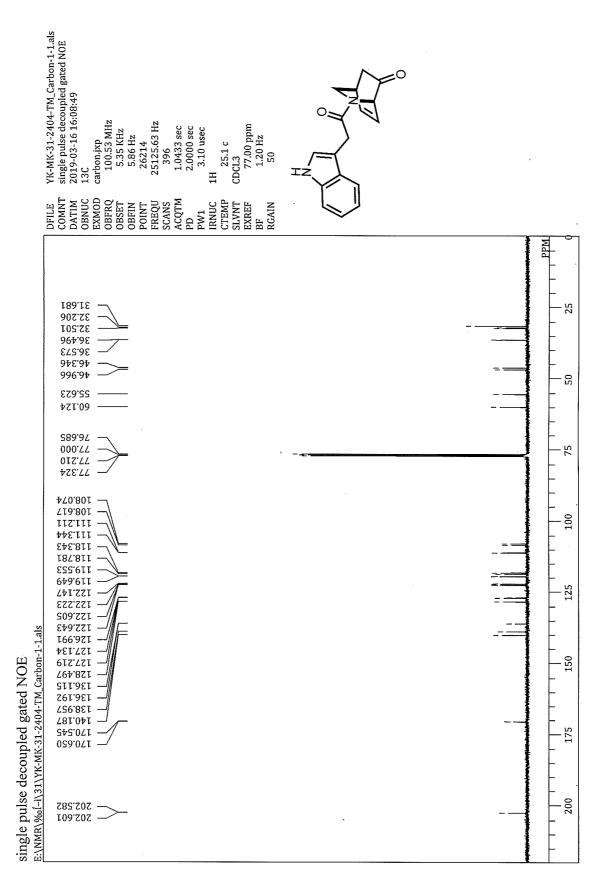


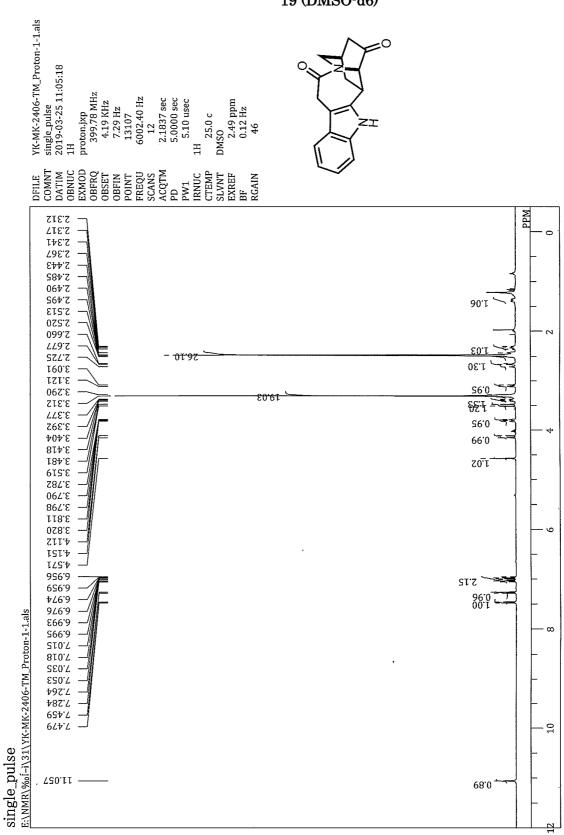


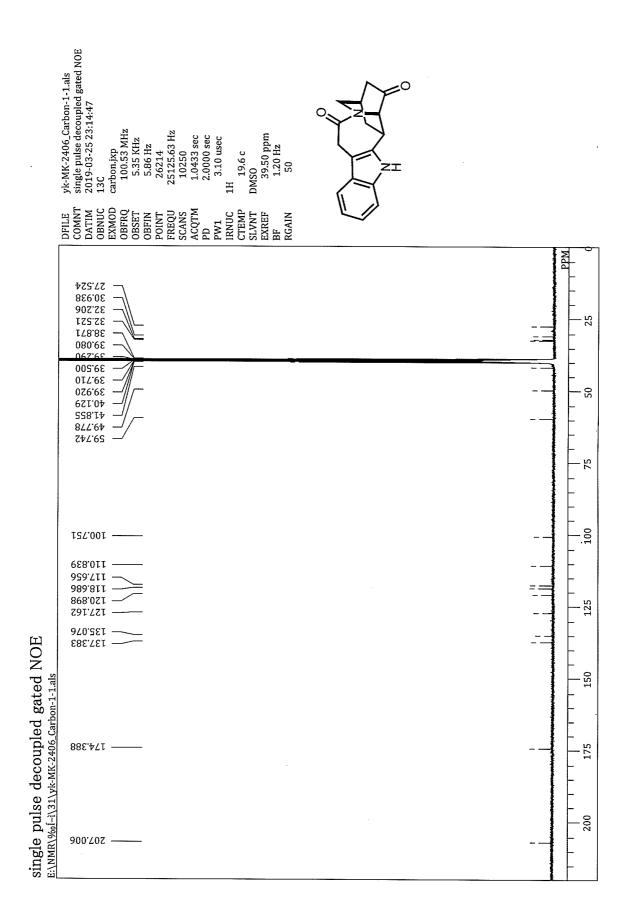


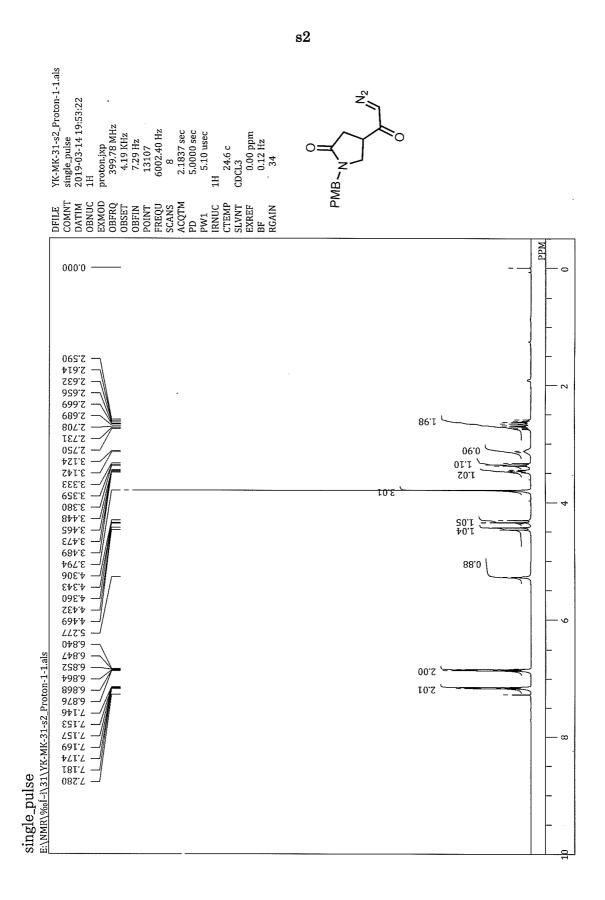


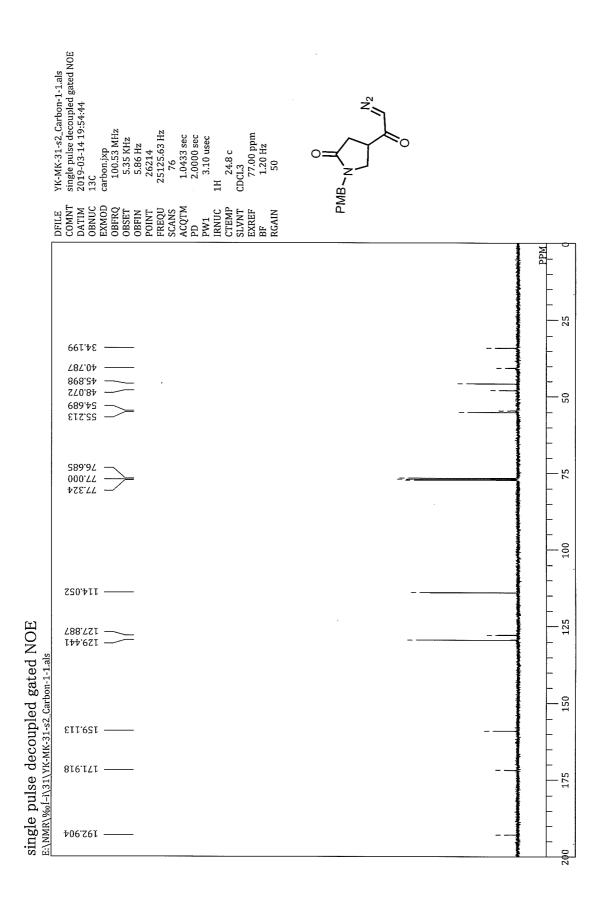

Supporting Information

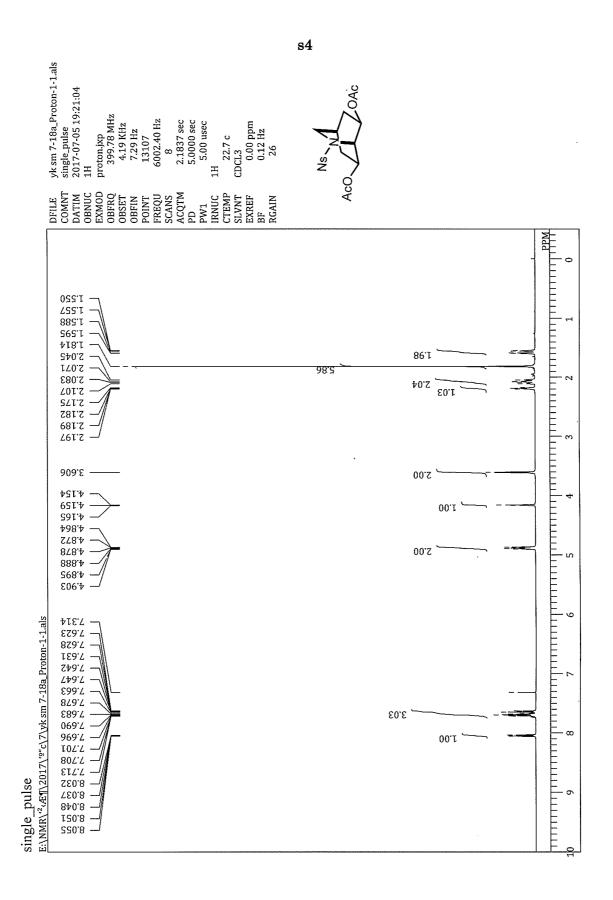


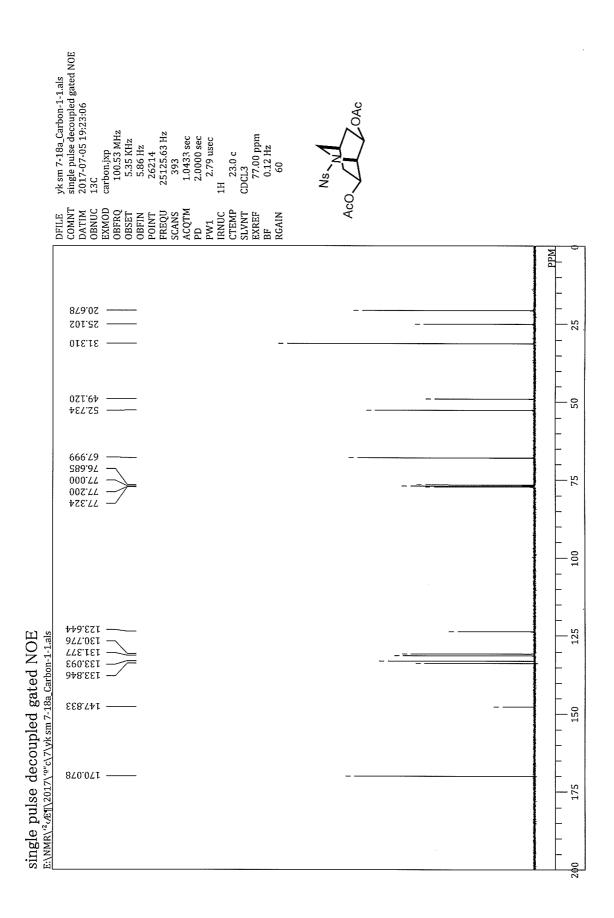


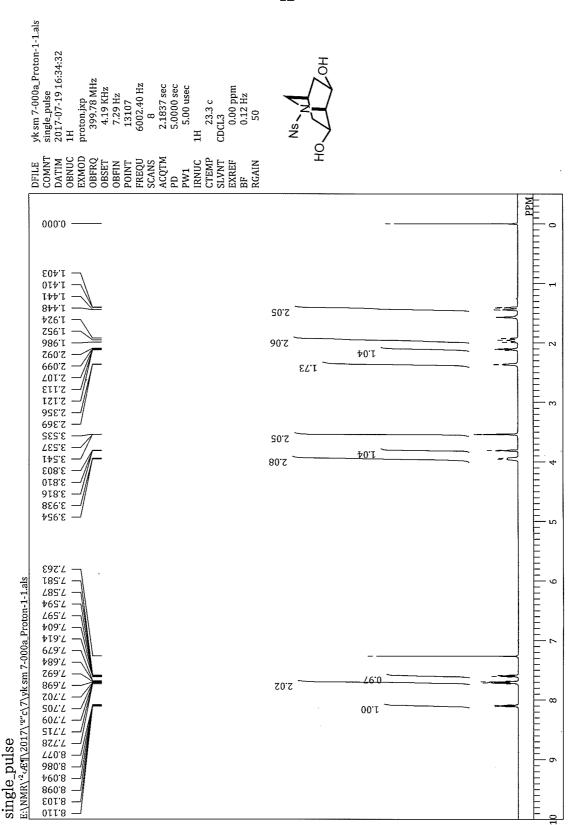

Supporting Information

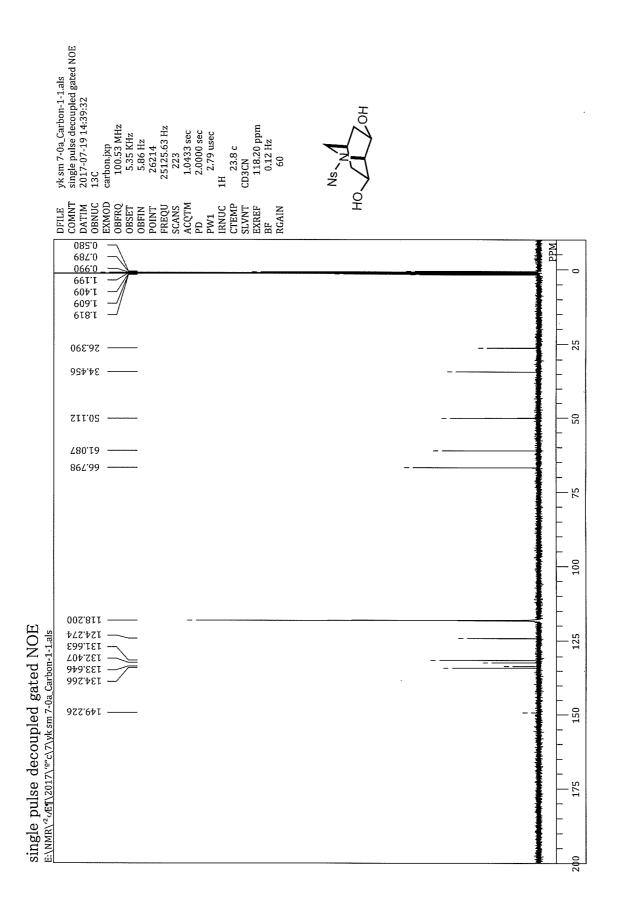

18 (~1 : 1 rotamers)



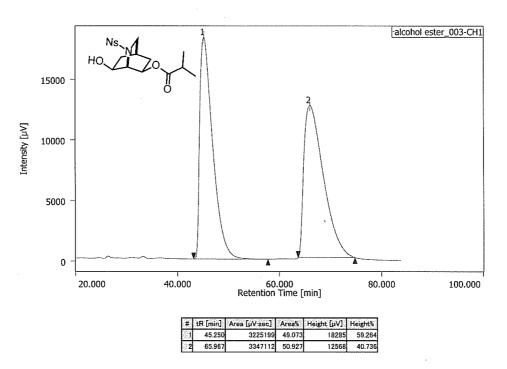


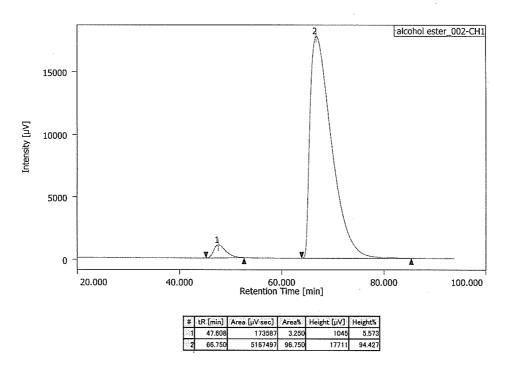

Supporting Information





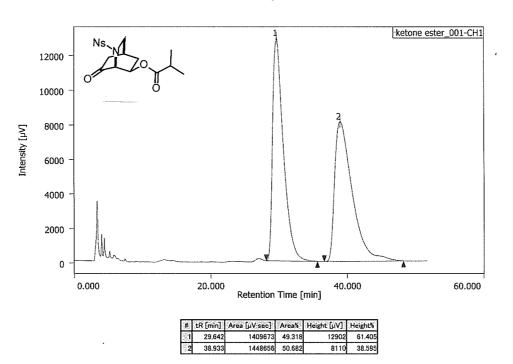
Supporting Information



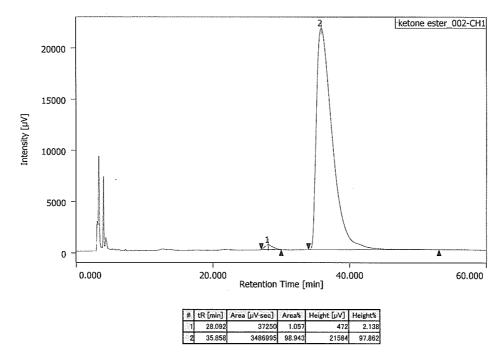

8. Chiral and Racemic HPLC Traces

13

alcohol ester_0222 alcohol ester_003 2019/03/28 18:15:40



alcohol ester_0222 alcohol ester_002 2019/03/28 18:12:54


S43

14

ketone ester_0221 ketone ester_001 2019/03/28 18:37:46

ketone ester_0221 ketone ester_002 2019/03/30 12:02:32

9. <u>References</u>

 (a) Harada, S.; Kawano, S.; Yamaoka, Y.; Yamada, K.; Takasu, K. Kinetic Resolution of Secondary Alcohols Catalyzed by Chiral Phosphoric Acids. *Angew. Chem. Int. Ed.* 2013, *52*, 10227. (b) Kuroda, Y.; Harada, S.; Oonishi, A.; Kiyama, H.; Yamaoka, Y.; Yamada, K.; Takasu, K. Use of a Catalytic Chiral Leaving Group for Asymmetric Substitutions at sp³-Hybridized Carbon Atoms: Kinetic Resolution of β-Amino Alcohols by p-Methoxybenzylation. *Angew. Chem. Int. Ed.* 2016, *55*, 13137.

2 Moisan, L.; Thuéry, P.; Nicolas, M.; Doris, E.; Rousseau, B. Formal Synthesis of (+)-Catharanthine. *Angew. Chem. Int. Ed.* **2006**, *45*, 5334.

3 Kim, S. J.; Batey, R. A. Enantioselective isoquinuclidine synthesis via sequential Diels-Alder/visible-light photoredox C-C bond cleavage: a formal synthesis of the indole alkaloid catharanthine. *Org. Chem. Front.* **2018**, *5*, 2934.

4 Dou, D.; He, G.; Mandadapu, S. R.; Aravapalli, S.; Kim, Y.; Chang, K.-O.; Groutas, W. C. *Bioorg.* Inhibitation of noroviruses by piperazine derivatives. *Med. Chem. Lett.* **2012**, *22*, 377.

5 Harada, S.; Kono, M.; Nozaki, T.; Menjo, Y.; Nemoto, T.; Hamada, Y. General Approach to Nitrogen-Bridged Bicyclic Frameworks by Rh-Catalyzed Formal Carbenoid Insertion into an Amide C–N Bond. *J. Org. Chem.* **2015**, *80*, 10317.