Supplementary Information for

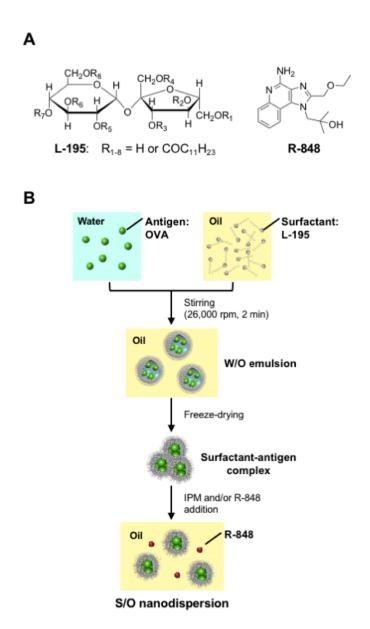
Transcutaneous co-delivery of tumor antigen and resiquimod in solid-

in-oil nanodispersions promotes anti-tumor immunity

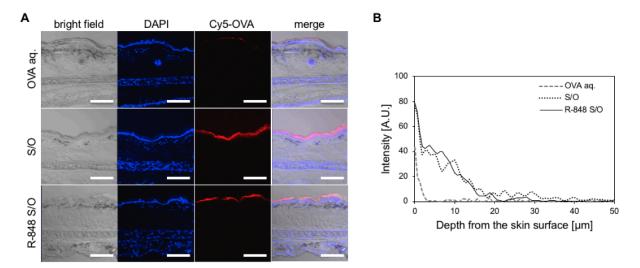
Rie Wakabayashi,^[a,c] Hidetoshi Kono,^[a] Shuto Kozaka,[a] Yoshiro Tahara,^[a] Noriho Kamiya,^[a,b,c] and Masahiro Goto*^[a,b,c]

^aDepartment of Applied Chemistry, Graduate School of Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan.

^bAdvanced Transdermal Drug Delivery System Center, Kyushu University, Motooka 744, Nishiku, Fukuoka 819-0395, Japan.


Center for Future Chemistry, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan.

*Corresponding author. E-mail: m-goto@mail.cstm.kyushu-u.ac.jp


Table of Contents

1.	Preparation of S/O nanodispersions	S2
2.	Delivery of OVA into deeper region of the skin by S/O	S3
3.	Transcutaneous delivery of fluorescent dye and S/O nanoparticles	S4
4.	Activation of cells in the skin by transcutaneous administration of R-848 S/O	
	nanodispersion	S5
5.	Migration of skin-derived LCs holding OVA to lymph node	S6
6.	OVA-specific IgG production in immunized mice	S 8
7.	Accumulation of cytotoxic T cells in the E.G7-OVA tumor	S9

1. Preparation of S/O nanodispersions

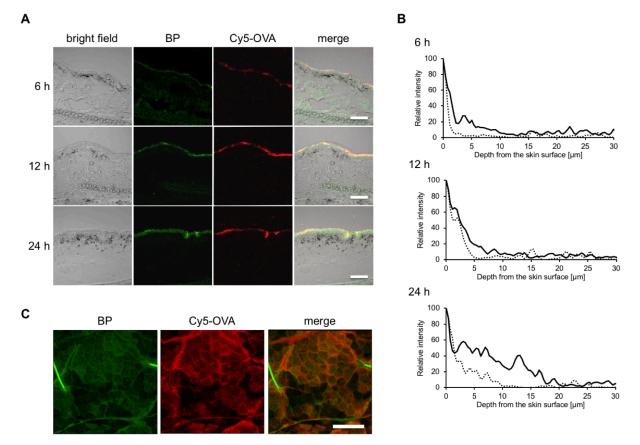
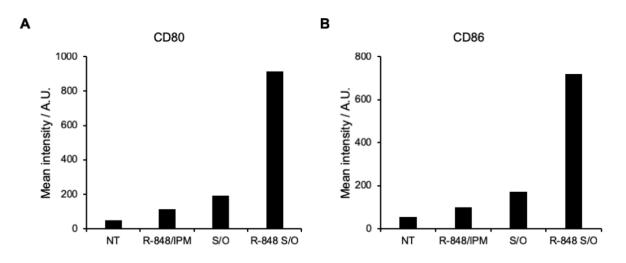


Figure S1. (A) Chemical structures of surfactant L-195 and Toll-like receptor ligand R-848 used in this study. (B) Preparation of S/O nanodispersion for co-delivery of OVA and R-848.

2. Delivery of OVA into deeper region of the skin by S/O

Figure S2. Transcutaneous delivery of OVA in the skin. (A) Light and fluorescence microscopy images of sections of ear auricles from C57BL/6N mice at 24 h after application of patches soaked in Cy5-OVA by PBS solution (OVA aq.), S/O nanodispersions without (S/O) or with (R-848 S/O) R-848. Skin sections were co-stained with DAPI to detect nuclei. Bars: 100 µm. (B) Skin permeation of Cy5-OVA into the deeper region of the skin.



3. Transcutaneous delivery of fluorescent dye and S/O nanoparticles

Figure S3. (A) Skin sectioning images after topical application of fluorescent dye BODIPY FL C_s (BP) and Cy5-OVA by S/O nanodispersions. (B) Skin permeation kinetics of BP and Cy5-OVA. Solid lines: BP; dotted lines: Cy5-OVA. (C) Skin permeation pathway of BP and Cy5-OVA. Bars: 100 μ m.

4. Activation of cells in the skin by transcutaneous administration of R-848 S/O nanodispersion

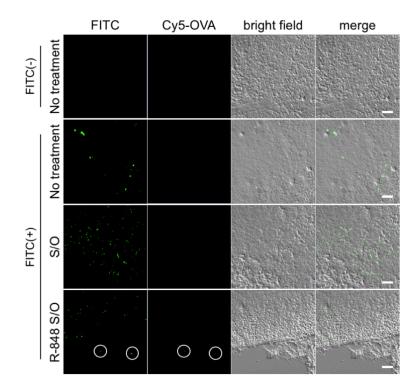
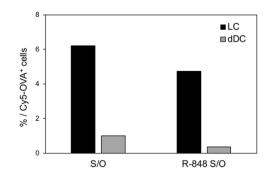
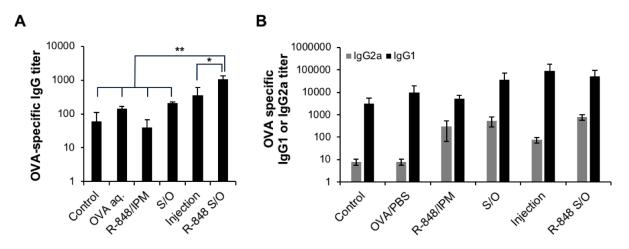

Patches immersed with samples (R-848, S/O, and R-848 S/O) were placed on the dorsal skin of C57BL/6N mice for 24 h. The skin was harvested and cell suspensions were prepared, which were stained with PECy7-conjugated anti-CD80 or anti-CD86 antibody (eBioscience) for flow cytometric analysis (Sony, ec800).

Figure S4. Activation of cells in the skin by transcutaneous administration of R-848 S/O nanodispersion. After 24 h administration, cell suspensions were prepared and stained with PECy7-conjugated anti-CD80 (A) or anti-CD86 (B) antibody.


5. Migration of skin-derived LCs holding OVA to lymph node.

Patches immersed with S/O or R-848 S/O nanodispersion were placed on the dorsal skin of C57BL/6N mice for 24 h. The patches were removed and the skin was wiped with 20% ethanol/water, and 30 μ L of FITC/dibutyl phthalate (5 mg/mL):acetone = 1:1 (vol:vol) were placed at the same sites for 24 h. The mice were sacrificed, and the draining LNs were harvested. Sections of LNs (20 μ m thickness) were imaged on confocal microscopy (Carl Zeiss, LSM700).


Figure S5. Migration of skin-derived DCs to lymph nodes. Fluorescence micrographs of draining lymph node sections from C57BL/6N mice after application of patches immersed with samples, followed by FITC painting to the dorsal skin. White circles indicate skin-derived LCs holding Cy5-OVA. Bars: 40 μ m.

Cell suspensions of LN were analyzed by flow cytometry (Sony, ec800) to identify which subset of skin-derived DCs is holding antigens. Briefly, C57BL/6N mice were immunized as above and LNs were harvested. Cell suspensions of LNs were stained with AlexaFluoro488-anti CD207 and PECy7-anti CD103 antibodies to distinguish LCs and dermal langerin⁻ DCs as CD207⁻ CD103⁻ cells or CD207⁻ CD103⁻ cells, respectively.

Figure S6. Percentage of LCs (CD207⁺ CD103⁻ cells) and dermal langerin⁺ DCs (CD207⁺ CD103⁻ cells) among Cy5-OVA⁺ cells in LN.

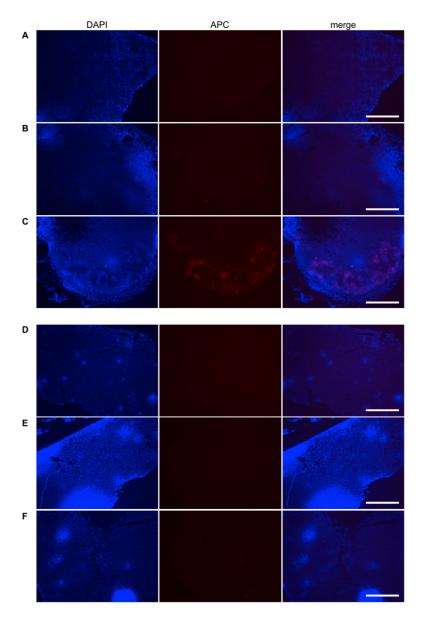

6. OVA-specific IgG production in immunized mice

Figure S7. OVA specific total IgG titer (A) and IgG1 or IgG2a titer (B) in serum of immunized mice. N = 4, mean \pm SE, p < 0.05, p < 0.01.

Group	IgG1/IgG2a
Control	386
OVA/PBS	1250
R-848/IPM	18
S/O	69
Injection	1194
R-848 S/O	66

Table S1. Balance of OVA-specific IgG1 and IgG2a in immunized mice.

7. Accumulation of cytotoxic T cells in the E.G7-OVA tumor

Figure S8. Accumulation of cytotoxic T cells (CTLs) at tumor site. C57BL/6N mice were immunized with s.c. injection or t.c. patch soaked with R-848 S/O nanodispersion twice and E.G7-OVA and EL4 tumor cells were inoculated. Twenty-one days after the inoculation, the tumors were harvested and sections of E.G7-OVA (A–C) or EL4 (D–F) were prepared. Sections were stained with APC-conjugated anti-CD8 to detect CTLs and DAPI to detect nuclei. Samples: (A, D) no treatment, (B, E) injection, (C, F) R-848 S/O. Bars: 1 mm.