Supplementary Information for:

Molecular Recognition of Structures is Key in the Polymerization of Patterned Barnacle Adhesive Sequences

Christopher R. So,^{1,*} Elizabeth A. Yates,^{2,†} Luis A. Estrella,¹ Kenan P. Fears,¹ Ashley M. Schenck,³ Catherine M. Yip,³ and Kathryn J. Wahl¹

AUTHOR ADDRESSES

¹Chemistry Division, Code 6176, US Naval Research Laboratory, 4555 Overlook Ave, SW,

Washington, DC 20375-5342 USA

²US Naval Academy Faculty sited in Code 6176, US Naval Research Laboratory, Washington,

DC, USA

³US Naval Academy Midshipmen sited in Code 6176, US Naval Research Laboratory, Washington, DC, USA

Figure S1. Representative polymerization curves for peptides observed to undergo aggregation with similar T_{lag} and $T_{1/2}$ times at 50, 100 and 200 μ M. (Bottom) Plots showing all T_{lag} times for all concentrations and all active peptides as well as bar plots with quantified standard deviation.

Figure S2. Raw and normalized absorbance data from FTIR as a ratio of 1625 cm⁻¹ to 1698 cm⁻¹

Figure S3. Seed assay performed using *mut*BCP1 and A β 42 seeds against BCPs 3/4/3C/4C showing little cross-seeding activity.

Figure S4. Kyte and Doolittle hydropathy plot of BCP1C showing hydrophobic stretch across residues 7-11.